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1 Introduction

The purpose of this paper is to give a coherent definition and notation
for Object–Action Complexes (in the following called ’OACs’) within the
PACO-PLUS consortium. To further clarify the OAC concept we provide
— besides the formal definition — a number of examples of OACs at differ-
ent levels of the processing hierarchy and also some examples of the use of
OACs for the formalization of behaviours of different degrees of complexity.
The work here is to be seen as a summary of a converging discussion pro-
cess about OACs within the PACO-PLUS consortium. Of course, a difficult
topic such as the OAC concept is still open for modifications. This deliv-
erable is meant to provide a formal definition to be used as a basis for the
implementation of OACs to further guide the discussion process. This work
is based on some prior publications on OACs (see [7, 21]).

In section 2 we give a motivation for object-action complexes. Section 3
continues with the formal definition of OACs, while in Section 4 a number
of examples at different levels of the processing hierarchy are described. In
section 5 we discuss some outstanding issues related to OACs, which need
to be considered in our future work.
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2 Motivation for the Representation of Object-
Action Complexes

Object-Action Complexes (OACs) are proposed as a universal representation
enabling efficient planning and execution of purposeful action at all levels
of the cognitive architecture. OACs combine the representational and com-
putational efficiency for purposes of search (the frame problem) of STRIPS
rules [6] and the object- and situation-oriented concept of affordance [8, 19]
with the logical clarity of the event calculus [9, 20]. Affordance is the rela-
tion between a situation, usually including an object of a defined type, and
the actions that it allows. While affordances have mostly been analyzed in
their purely perceptual aspect, the OAC concept defines them more gener-
ally as state-transition functions suited to prediction. Such functions can
be used for efficient forward-chaining planning, learning, and execution of
actions represented simultaneously at multiple levels in an embodied agent
architecture.

An embodied agent interacting with the real world to achieve its goals
must develop predictive models that capture the dynamics of the world and
describe how the agent’s actions affect the world. Building such models,
by interacting with the world, requires overcoming certain representational
challenges imposed by

• the continuous nature of the world,

• the limitations of the agent’s sensors, and

• the stochastic nature of real world environments.

OACs are proposed as a framework for representing actions, objects, and the
learning process that constructs such representations at all levels, from the
high-level planning and reasoning processes that make use of them to the
low-level sensors and effectors that execute them and observe their outcome.

Six design principles underlie the formalization of OACs. The following
brief introduction of these principles is intended to provide intuitive moti-
vation for our later, more formal, definition.

P1 Attributes: Any formalization of actions, observations, and interac-
tions, with the world requires the specification of a space of attributes
and associated values that our definitions will operate over. Any com-
plete assignment of values to attributes defines a point within this
attribute space and represents a state of the world and the agents and
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objects within it. An agent’s expectations and predictions about how
the world will change will be defined over subspaces of this attribute
space.

While the attribute space may differ for different levels of action repre-
sentation, all levels of representation must be downwardly congruent,
that is higher level (more abstract) attribute spaces must be related to
lower (less abstract) levels by a (possibly partial) functional relation
that establishes corresponding states. This allows low level state in-
formation to inform OACs at higher levels, and guarantees that higher
level OACs’ predictions reflect actual changes at lower levels.

P2 Prediction: Any agent performing an action to achieve some effect
must have expectations about how the world changes through their
action, i.e., which attributes must hold for the action to be possi-
ble (which will typically include the presence of an object), which
attributes will change, and how they will change as a result of the ac-
tion. Such representations will be partial (only defined over a subspace
of the attribute space). Again, predictions at all levels must be con-
gruent, so that high level predictions about actions can be interpreted
at lower levels, and that high level changes in the world are captured
by low level features.

P3 Execution: In order to achieve its goals and assess the accuracy of its
predictions, an agent must have the means to actually perform actions
in the world. This requires an agent be embodied within a physical
system interacting with the physical world.

P4 Evaluation: In order to act effectively in a nondeterministic phys-
ical world, consistent with internal goals, an agent must have a way
of evaluating the differences between the predicted state and the ac-
tual observed state arising from the execution of an action. For this
to be effective, the downward congruency property of all levels must
guarantee that the results of each OAC are interpretable at their own
level based on sensor reports from the lower levels of the system. Fur-
ther relevant possible mismatches must be captured at lower levels and
propagated to higher levels of the system.

P5 Learning: State and action representations are dynamic entities that
can be extended by learning in a number of ways: continuous pa-
rameters can be optimized, the attribute space can be refined or in-
creased, new actions can be added, and prediction functions can be
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improved. Embodied physical experiences with actions, predictions,
and outcomes deliver the input to this process at all levels.

P6 Reliability: It is not sufficient for an agent merely to have a model of
the changing world, it must also learn how reliable its model is. Thus
our OACs will maintain metrics that enable computations over results
of past executions, estimating the accuracy with which predicted states
are actually realized.

These six properties motivate the more formal definition of OACs that fol-
lows.

3 Object-Action Complexes

In this section we provide a formalization of object-action complexes and
related entities. A formal definition of OACs and of the functions associated
with them is given in Section 3.1 and 3.2, respectively. The actual execution
of OACs is done in a hierarchical system with different levels coding actions
at different levels of abstraction. This is discussed in Section 3.3. In Section
3.4 we describe the learning processes within OACs.

3.1 Definition

Definition 3.1 We define an Object-Action Complex (OAC) as a triplet

(id;T ;M) (1)

containing

• a unique OAC identifier id,

• a prediction function T : S → S (where S is a global attribute space)
that codes the system’s belief of how the world (and the robot) will
change through the OAC [P2], and

• a statistical measure M representing the success of the OAC within a
window over the past [P6].

In the rest of this document we will adopt a C++ style notation as we
continue our definitions. We will use a normal font “OAC” to refer to the
concept of OACs in general, and we will use a typographic font “OAC” to
refer to the class of all OACs. We will define methods on the class OAC
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using the standard OAC::functionName notation. We will use “oac” to
refer to a particular OAC. Finally, we will refer to a particular application
of a function by oac.functionName.

As a slight abuse of notation, we will occasionally use oacid to refer to
the OAC with identifier id. If an OAC can only be applied to a specific
class of objects o or set of objects o1, . . . , on about which prior knowledge
is required in some kind of memory (e.g., since it depends on the concrete
shape of the object as in the example given in section 4.2), we indicate this
by the notation oaco or oaco1,...,on . However, one needs to be aware that
this is not always required, for example in case a certain cue (that can be
present in many objects) triggers an action. Examples for both cases are
given in section 4.

3.2 Functions associated to an OAC

3.2.1 Overview over functions associated to an OAC

In addition to id, T and M , the following class functions need to be defined
for each OAC.

• OAC::A()

• OAC::Â()

• OAC::updateM(. . . )

• OAC::updateT(. . . )

• OAC::updateActionParams(. . . )

• OAC::level()

Furthermore, we will later define a system level and the following set of
functions for each OAC:

• LEVEL::execute(. . . )

• LEVEL::eval(. . . )

The exact parameters of each of these functions will be defined below.
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3.2.2 Attribute Spaces

Note that in general much of S will be irrelevant for a particular OAC since
it is not required for the performance of the action and the action will not
affect it. On the other hand, since observations are costly, the system should
avoid observing these non–relevant parts of S. Hence it needs an indication
as to which parts of S to look for prior to the execution of the OAC. For
this purpose, it is often convenient to understand T as a function on only
the relevant attributes that are involved in the specific OAC [P1], i.e., a
subspace of S:

T : A → Â,

with A, Â ⊂ S.

Definition 3.2 We define the initial attribute space A for a particu-
lar OAC, oac, as a subset of the attribute space under which this OAC is
applicable. A associated with oac is denoted by oac.A().

Definition 3.3 We define the predicted attribute space Â for a partic-
ular OAC, oac, as the space to which oac.T maps. Â associated with a
particular oac is denoted by oac.Â().

Note that we write the attribute spaces A, Â, S in calligraphic notation to
distinguish them from concrete states A, Â, A′, S.

3.2.3 Statistical Evaluation

Definition 3.4 We define M as a statistics that captures the accuracy of
the particular oac’s prediction function.

OACs at different levels of the embodied system might define M in very
different ways. Consider the following three examples:

1. Imagine a simple domain where an oac is used until it fails once and
then it is never used again. In this case we might define M as a Boolean
flag that indicates if the oac has failed.

2. Next imagine a more complex domain where M tracks the probability
that the oac’s prediction function evaluates to success. Further we
want to know how many samples this statistic is based on. In this
case, we could define M as a pair that contains these two values.
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3. Finally, we can imagine very complex domains whereM = (M 〈〉, N, . . . )
gives an estimate of the success distribution of oac over a given time
window [P4]. M 〈〉 indicates the expectation of the oac’s performance
and N specifies the reliability of these estimates in terms of the number
of past experiences. Beyond these two values, it might be of conve-
nience to store statistical data over differences in attributes, in par-
ticular for lower level oacs (see section A). This is expressed by ′ . . .′

indicating additional oac dependent statistical entities.

We can even imagine more complex situations. To provide flexibility to ad-
dress all of these cases, we allow each OAC to define M as a level appropriate
statistical measure for the likelihood of its success and the relevant update
function, OAC::updateM() (see below).

Since M gives information about the reliability of the oac, it can be used
in three contexts. First, in the context of planning it is possible to associate
success likelihoods to computed plans and hence make decision on optimal
plans. Second, by looking at the distributions of M across all OACs that are
accessible to the system at a certain time, the system can make a statement
about its ability to predict the outcomes of its actions. Third, it might store
additional oac dependent statistical information useful for learning.

3.2.4 Instantiation and Experiment

Essential for the following are the two entities connected to OACs:

Definition 3.5 We define an instantiated OAC (iOAC) as a tuple

〈A; oac.T (A)〉

where A is an observed state, and oac.T (A) is the state oac predicts will
result when it is executed in state A.

We note that an instantiated OAC is precisely the information needed by
projective planners. A planner needs to be able to predict the state that
will result from the execution of an action in order to build plans.

Definition 3.6 We define an experiment denoted expr as a triple

〈A; oac.T(A); A′〉

where A′ is a state in S that is observed as a result of executing oac in state
A (see function LEVEL::execute(. . . ) below).
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We note that since the domain of the prediction function of the OAC
with identifier id may be in error and not include attributes that are in fact
relevant to the OAC instance that we want to learn, we can’t assume that
A′ will always be within Â.

3.3 System Levels

OACs are typically organized in a hierarchical system with different lev-
els.1 OACs exist at and only operate on one level given by the function
OAC::level().

Definition 3.7 We define a System Level as a state space S and a col-
lection of OACs defined on it. We let level represent a particular level.

Definition 3.8 We define a Goal denoted by g as a collection of distin-
guished states within the state space S that an agent is attempting to achieve.

In general any particular goal could be defined as a unique state, a set
of attribute assignments from S that provide a partial state specification,
or even a possibly partial function from states to states. While we note
its possible complexity, for brevity of notation we denote goals with just a
single term g.

For each oac that operates on the system level oac.level(), we require
definitions for the following functions. First, the actual execution of the
action needs to be performed [P3]:

Definition 3.9 We define the function LEVEL::execute(id, A) as a proce-
dure that executes the OAC with identifier id in the current world state, A.
It returns the experiment consisting of: A, oac’s prediction of the result-
ing state oac.T (A), and the actual observed state resulting from the OAC’s
execution:

LEVEL::execute() : (id×A)→ expr

The evaluation function eval determines how the OAC’s success is mea-
sured by comparing the predicted change oac.T (A) with the empirically
measured resulting state A′. As such, an experiment is an evaluated empir-
ical event that can be used for learning in cycles of execution and updating
(see below) and thus grounds the OAC in sensory experience.

1We note that to use OACs at least one system level must be defined, however this
does not mandate a multi-level hierarchy to use OACs.
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Definition 3.10 We define the function LEVEL::eval(id, expr, g) as a Boolean
function that takes the OAC with identifier id, an experiment expr on that
OAC, and a particular goal g, and determines if the OAC was successful
relative to the goal.

LEVEL::eval(): (id× expr × G)→ {success, failure}

We note that some OACs may also define further evaluation functions
that return more complex measures of success. Such a function might be
used to provide additional information useful in the context of action execu-
tion and learning. The function level.evalComp() used in later examples
is an example of such an extension to the OAC definition.

As with any abstract conceptual structures it is critical to understand
how such structures come into being. As new situated actions are learned at
each level of an OAC system some method will have to be called in order to
create new OACs to store their unique prediction functions and long term
statistics. While this is a complex process that may involve a number of
interacting learning processes, for the time being we define a place holder
function that creates a new OAC instance and adds it to a given system
level.

Definition 3.11 We define the function LEVEL::newOAC(A, A′) as a func-
tion that takes two actual states: an initial state, A, and a final state, A′,
and produces a new OAC that is added to the level.

LEVEL::newOAC() : (S × S)→(id, T,M)

3.4 Learning

Experiments are the material on which learning is based [P5]. Note that
different things can be learned:

• The prediction function T can be learned using different paradigms de-
pending on the characteristics of the OAC. It may be represented using
a fixed structure with a set of parameters BT subject to change, like
the Neural Network form section 4.3, or it may depend on a dynamic
structure where the representation is generated incrementally, like the
Rule-Based representations of section 4.4. The former representation
is more suitable for prediction functions which involve continuous at-
tribute/action spaces, where a particular value of an attribute is used

9



to adjust the general schema of the cause-effect associated with the ac-
tion, and in general it does not have any particular symbolic meaning
but describes a forward model of the motor action. It is used mainly
for low level OAC representations. The later strategy is more appro-
priated for high level OAC representations where cause-effects are de-
scribed at a symbolic level, and particular values of attributes/actions
are abstract discrete symbols that require to be combined incremen-
tally until a successful cause-effect prediction is obtained. The learning
of the prediction function is performed in the method OAC::updateT().

• The action execution function depends on a set of parameters BP

which through learning become improved such that the action is per-
formed according to the prediction. At lower levels BP can for exam-
ple specify an inverse model of the motor action. The change of BP is
performed in the function OAC::updateActionParams().

• Finally, M needs to be updated to reflect the long term success with
OAC::updateM().

All three updates can only be done on the basis of a difference between
a predicted state and an actually achieved state captured in an experiment,
their arguments are: an experiment, expr, and the evaluation of that ex-
periment, e.

Definition 3.12 oac.updateT(expr,e) is a procedure that updates the OAC’s
prediction function, T .

Definition 3.13 oac.updateM(expr,e) is a procedure that updates the long
term statistics, M for the given OAC’s prediction function.

Definition 3.14 oac.updateActionParams(expr,e) is a procedure that up-
dates the action execution parameters.

3.4.1 The early sensory-motor learning cycle

An OAC is an abstract description of how an action can be applied and
of the system’s expectation of the consequences this action would cause to
the system itself or/and the world. An experiment expr is the result of the
execution of an OAC in a concrete situation. The experiments become accu-
mulated in episodic memory, where performance statistics can be extracted
from them for purposes of planning and learning. It is through these action-
generated experiences (which are then in general followed by a learning step)
that an OAC is grounded in the real world.
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For example, at the early sensory motor level we can imagine a straight-
forward execution-update cycle2:

S:= initial-state
while true do

oac:= choose-an-oac(S);
level= oac.level();
expr:= level.execute(oac.id(), s);
oac.updateT(expr, level.eval(expr, g));
oac.updateM(expr, level.eval(expr, g));
S:= expr.A′;

end

Within the early sensory-motor learning cycle the OACs can be continually
refined and expanded. We would like to remark that the cycle of execution
and update does not only occur when learning is the aim of the agent but
that learning as a default occurs every time an OAC is executed. Hence
learning (or memorizing as prerequisite for learning) always takes place,
whatever the agent is doing and whatever purpose it is pursuing. Note
however, that in some circumstances (e.g., when a sufficient performance of
the OAC has been achieved) learning might not take place in order to spare
resources.

4 Examples of OACs

In this section, we give a number of concrete examples of OACs. These OACs
are situated within a three-level architecture [10]. The bottom, sensorimotor
level provides multisensory percepts and motor and sensing actions; the mid
level stores the robot’s sensorimotor experiences, makes them available to
various learning processes, and serves as a link between raw sensorimotor
and abstract symbolic processing, which is done at the high level. There are
also memory systems for storing OACs (MOAC), object descriptions (MO)
and rules (MR) as used by the applicable OACs.

The OACs discussed in the following sections include low-level actions
such as object-agnostic grasping (Sec. 4.1) and pushing (Sec. 4.3), mid-
level actions such as grasping an object based on previously-learned object
models (Sec. 4.2), and high-level, rule-based OACs for goal-directed pushing

2In this example, we could replace oac.updateT() by oac.updateActionParams() indi-
cating the learning of action parameters instead of learning the prediction.
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(Sec. 4.4) and planning (Sec. 4.5). In each subsection, we describe each OAC
first by a verbal description, then we give a formal definition and finally
we give an example how the OAC is embedded within a more complex
behavioral pattern.

4.1 Grasping without Object Knowledge: oacgGen

4.1.1 Description

oacgGen (’gGen’ standing for ’grasp generic’) associates grasping hypotheses
to co-planar contour pairs. It can be applied to any structure which contains
(1) 3D contours and (2) a co-planarity relation. Hence within the Early
Cognitive Vision system [12], it can be applied to scenes as well as learned
visual object representations (for details see [11, 17]).

Hence, oacgGen constitutes a visual feature/grasp association that can
trigger a grasping action on an unknown ’something’ (see figure 1). It can
be generated from any 3D structure in the scene (e.g., being generated from
one object, two objects or some fixated structures as for example a, for the
robot, non movable table) or also from an object that has been memorised.
It associates to any pair of co-planar contours (Ci, Cj) ∈ C × C (where C
is the space of 3D contours) certain grasping hypotheses GH(Ci, Cj). The
evaluation level.eval() is based on haptic information checking the grip-
per state after performing GH(Ci, Cj) and closing the gripper. More pre-
cisely level.eval() is set to true if the distance of the two fingers is not
at the minimal or maximal range after picking up an object. However, for
learning (as well as eventually for decision processes on higher stages) it
is advantageous to have a more detailed description of eventual failures,
hence level.evalComp() distinguishes between the categories ’successful’,
’collision’, ’non-grasped’ and ’unstable’.

Please also note that grasping without object knowledge is considered
to be a very hard problem and hence the avarage success is likely to be low
even after fine-tuning.

4.1.2 Definition

oacgGen is defined by

oacgGen = (gGen;
status(grasp) ==′ stable′;
M)
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(d)

(e)

Figure 1: (a) The image of the scene captured by the left camera. (b) A
possible grasping action type defined by using two coplanar primitives that
are shown in red (c) A successful grasping hypotheses. The 3D primitives
from which the grasp was calculated are shown with small red spheres.
Note that the primitives in the top left corner come from the robot and
the background. (d) Features used in learning process (e.g., distance from
the camera, distance between fingers, etc). (e) Change of performance as a
result of the learning process.
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Initial attribute space oacgGen.A: The initial attribute space contains
two preconditions. It requires that (1) there are co-planar contours Ci, Cj in
the scene or object representation (i.e., the set of co-planar contours is not
empty) and (2) that the gripper is empty as well as a (3) concretely chosen
pair of contours Ci, Cj :

A = {{(Ci, Cj) ∈ C×C|cop(Ci, Cj) > s} 6= ∅, status(gripper) == empty, C×C}

with cop(Ci, Cj) being a coplanarity relation defined on two 3D contours
Ci, Cj and C is the space of contours (for details, see []).
Predicted attribute space oacgGen.Â: As a consequqnce of the prediction
function the predicted attribute space is status(grasp)t+1 which can take
the four values ’stable’, ’collision’, ’non-successful’ and ’unstable’ which can
be evaluated haptically (see below).
Prediction function oacgGen.T : The only prediction is that the grasp has
been stable, i.e., status(grasp) ==′ stable′.
Evaluation level.eval() and level.evalComp(): For level.evalComp(),
we have four discrete cases coded as possible values status(grasp) can take:
’stable’, ’collision’, ’non-successful’ and ’unstable’ since for the generalisa-
tion process it is advantageous to distinguish between these:

1) In case of a collision (detected by the force torque sensor in the wrist of
the robot arm) no learning should take place since the problem arose
before the actual gripping took place.

2) In case of non-successful grasp (detected by maximal or minimal posi-
tion after the gripping operation before lifting) we have a failure that
can be a useful indication for learning.

3) In case of a stable grasp (detected by non-maximal or minimal position
after a picking up operation) we have a useful positive example for
learning.

4) The case of a non-stable grasp (detected by maximal or minimal posi-
tion after a picking up operation but non-maximal or minimal position
after initial closing of the gripper before the lifting operation) can be
seen as ’some kind of success’ for learning and can also trigger higher
level mechanisms to try a similar grasp again or do increase closure
force.

The binary evaluation level.eval() is defined as
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success iff status(grasp) ==′ stable′.

That means, it checks the gripper status after grasp execution and lifting
of the object. If the gripper is not in a minimal or maximal position, we
assume that the grasp was successful. This gives an indication that there is
a good control over the object to perform further actions with it.

Statistical Evaluation oacgGen.M : The first two terms are defined as
in item 2 discussed below definition 3.4 as the mean success–rate and the
number of experiments oacgGen.M is based on. It just depends on the
outcome of level.eval(). Separate statistics for the four cases ’successfull’,
’collision’, ’non-successful’ and ’unstable’ could be stored in addition.
Execution level.execute: In the execution, grasping hypotheses from
co-planar contour pairs become computed.3 Let Ω = {(Ci, Cj) ∈ C ×
C|cop(Ci, Cj) > s} be the set of contours being computed in a scene. Then
the arguments of execute are (#Ω 6= 0, status(gripper) == empty, (C1, C2)))
with #Ω being the number of elements in the set Ω and a concrete pair of
extracted contours (C1, C2) that has become picked beforehand.

The computed grasping hypothesis becomes performed and the grasp
status status(grasp)t+1 after picking up the object is sensed and evaluated
according to eval:

expr := (#Ω 6= 0, status(gripper)t == empty, (C1, C2);
status(grasp)t+1 ==′ stable′;
status(grasp)t+1)

Generalisation oacgGen.updateM() and oacgGen.updateActionParams():
The generalisation is done on M (by oacgGen.updateM) as well as on the
action parameters (by oacgGen.updateActionParams()) but not on the pre-
diction function that stays always constant. Learning is based on an RBF
network (for details see [17]). The optimal parameters for grasping (contour
distance, object position is working space, etc) are learned in a cycle of in-
stantiation and generalisation. We showed an increase of the success rate
from 29% percent to 42% percent by such learning. Note that since oacgGen

does make use of only little prior knowledge a very high performance can
not be expected and would very likely only indicate a rather trivial scenario.

3Actually multiple hypotheses become computed from each co-planar pair of contours
and then one is chosen according to a ranking criterion (for further details see [17, 1]).
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4.1.3 Simple exploration behaviour

oacgGen can be applied multiple times to different contour pairs. We can
easily produce an explorative behaviour by the following loop which basically
realises the learning cycle of instantiation and generalisation. The goal g is
just status(grasp) ==′ stable′:

while true do
level=oacgGen.level();
choose pair of contours
expr:= level.execute(gGen, A);
oacgGen.updateActionParams(expr, level.eval(expr, g));
oacgGen.updateM(expr, level.eval(expr, g));
drop object

end

4.2 Grasping Based on Object Knowledge: oacgObjo

4.2.1 Description

oacgObjo (‘gObj’ standing for ‘grasp Object’) codes the system’s prior knowl-
edge and its ability to make use of it to grasp a specific object ‘o’. In general
there are multiple ways to grasp the object and the ‘optimal grasp’ depends
on the context (however, we neglect this issue and focus on stable grasps
irrespective of any other purpose than having tight control over the object).
For this, it is of importance to represent in a compact and general form all
possible grasps preferably with information about how good the quality of
the grasp would be. Its formalisation relies to a large degree on the concept
of grasp densities [4] (Fig. 2). A grasp density is a function dGo : SE(3)→ R+

associated to an object o.4 Depending on the way a grasp density is con-
structed, it can represent e.g. the success likelihood of a grasp performed
with object-relative gripper pose p ∈ SE(3). Thus, the best grasp under the
specific constraints of a concrete scenario can be chosen as the maximum of
the grasp density function in the sub-area of performable grasps.

In contrast to oacgGen, the OAC oacgObjo requires an episodic memory for
its construction. It has also a direct link to planning (see section 4.5). In the
AI planner [] it codes the command ‘grasp(object)’. Moreover, it requires a
3D representation of the object in an object memory (MO) as well as a pose
estimation procedure (as described in [5]) that computes the pose of known

4 Task-dependent grasp affordances can modeled e.g. by distinct, task-specific grasp
densities.
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Figure 2: Grasp density. Each gripper represents a particle of its nonpara-
metric representation; their density reflects the local grasp success likelihood.

objects present in a scene. One possible method of learning and refining an
oacgObjo involves the integration of new grasping experiences into an existing
grasp density in a cycle of executions and updates (see section 4.2.3).

4.2.2 Definition

oacgObjo is defined by

oacgObjo := (gObj;
T : A → Â
M)

where

A := {status(gripper) == empty, targetObj == o, o ∈ scene, o ∈MO},
Â := {status(grasp) == stable}.

The initial attribute space oacgObj .A of T contains four preconditions It
requires that (1) the gripper is empty, that (2) the specified object o exists in
the scene and (3) that the object o be already present in the object memory
MO.5 The predicted attribute space oacgObj .Â, the workings of T itself, as

5For the aspect of generating such object knowledge we refer to [11].
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Figure 3: Multiple instances of an object within a scene, requiring selection
by a higher-level process.

well as the means of evaluation given by level.eval(), level.evalComp()
and oacgObj .M are identical to their counterparts of oacgGen.

Execution level.execute: The execution method level.execute com-
putes the pose of the end effector that corresponds to the grasp with the
highest likelihood of success under the given constraints such as workspace,
collisions, etc. (discussed below when we describe the execution procedure).
It then computes a collision-free trajectory of the robot arm such that the
end effector reaches the desired pose. Hence, the execution of oacgObj re-
quires a decision about how to grasp the object as well as whether such
a grasp is possible at all in a specific context (e.g., the object might be
unreachable for the robot).

Given a sceneW and an object memoryMO containing objects o1, . . . , on
with associated OACs oacgObjoi as available after a number of trials, the sys-
tem needs to receive an impulse to execute oacgObjoi on a concrete instance
õi of an object oi in the scene for which a representation in MO is present
(Fig. 3).6 The particular object õi of interest is implicitly communicated to
the OAC via the targetObj state attribute.

For execution, the system needs to make decisions which grasp to choose
from the set of possible grasps. In addition, the chosen grasp needs to be
transformed from the object co-ordinate system to the co-ordinate system
of the object found in the scene based on the pose estimation.

Let the function F gr(dGoi
,W, pose(õi)) ∈ SE(3) constrain a grasp density

dGoi
to those grasps that are in the current context performable on the in-

6Where this impulse comes from is not a subject of this paper but of higher level
mechanisms, see, e.g., [15]
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stance of object õi in the scene due to reachability constraints. Among the
physically possible grasps G ⊂ SE(3), the system may choose the grasp g ∈
G that maximizes the likelihood of success by locating the maximum grasp
density in the subspace of performable grasps defined by F gr(dGoi

,W, pose(õi)).
Alternatively, for active learning it might choose the grasp that maximizes
the information gained about the grasp density dGoi

. Assume now that a
concrete grasp G ∈ SE(3) has been chosen and a valid trajectory to G has
been computed. Then the system is able to perform the command grasp(õi)
by moving the gripper to G along the computed path, and to evaluate the
success of the grasping action.

The execution of an oacgObj results in an experiment

expr := (status(gripper)t == empty, targetObj == o, o ∈ scene, o ∈MO;
status(grasp)t+1 == stable;
status(grasp)t+1)

Update: oacgObjo .updateM can be defined in a canonical way as the mean
success rate over a time window and the number of experiments that have
been used for learning..

The predition function T remains unchanged, oacgObjo .updateT is thus a
no-op.

In one typical scenario, oacgObjo .updateActionParams might use a con-
crete experience for the concrete instance õi of the object oi to refine the
OAC oacgObjoi . Right now this is only done when the evaluation is posi-
tive. The underlying process is the updating of the grasp density dG by the
successful grasp (for details, see [4]).

4.2.3 Learning of ’grasping object o’ and its use for planning

We can now define two behaviours in which the OAC oacgObj is used:
Learning: We assume there is a single object of interest õi present in the
scene. This object is repeatedly grasped to learn about its grasp affordances:
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level := oacgObj .level();
while true do

õi := chooseObjectInScene();
expr:= level.execute(gObj, { targetObj = õi });
e := level.eval(gObj, expr, ’status(grasp)==stable’)
if e == success then

oacgObjoi .updateActionParams(expr, e)
oacgObjoi .updateM()
openGripper();

end
end

Planning: A plan for clearing a table might look like the following (see also
Sec. 4.5):

level := oacgObj .level();
while known object in scene do

õi := chooseObjectInScene();
expr:= level.execute(gObj, { targetObj = õi});
oacgObjoi .updateActionParams(expr, e)
oacgObjoi .updateM()
e := level.eval(gObj, expr, ∅);
if e == success then

putObjectAway(õi)a

openGripper();
end

end

aThis is another plan expressed in terms of OACs.

4.3 Acquiring Pushing Behaviours Based on Simpler Motor
Primitives: oacpush

4.3.1 Description

oacpush is an OAC that codes how to push an object in a given direction
on a planar surface without grasping. It does not encode all actions that
need to be taken to reach the goal in one step. Instead, it has to be applied
iteratively in a feedback loop until the target location is eventually reached.
It is situated at lower levels of the cognitive architecture. Because of its
iterative and nonprehensile nature, it is less accurate than the standard
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pick and place operation. To be applicable, the relevant object needs to
be localisable within the workspace of the robot. Therefore a model of the
object needs to be in the memory.7

Some initial motor knowledge needs to be available before this OAC can
be acquired. In particular, it is assumed that the robot knows how to move
the pusher, e. g. the robot hand or a tool held in its hand, along a straight
line in Cartesian space. Unlike the two grasping OACs described in section
4.1 and 4.2, where the focus is to associate perceptual events with the pre–
existing motor plans, the central point of the pushing OAC is to acquire a
prediction function and the associated control policy that enables the robot
to move the object in a desired direction. The control policy represented by
the OAC is neither object nor target dependent. A detailed description of
technical aspects of an earlier implementation of the pushing OAC oacpush

can be found in [14].

4.3.2 Definition

oacpush := (push;
loc(ô) = pushB(bin(o), a)∆T + loc(o);
M).

Here loc(o) and loc(ô) respectively denote the location of object o before
and after the application of the pushing action, bin(o) is the binary image
of an object before it is pushed, a are the parameters of the pushing action,
∆T is the duration of the push, and pushB is the function predicting the
outcome of the push. The prediction function is parameterized by B.

Initial attribute space oacpush.A: The initial attribute space requires
that 1) we can extract the binary image of an object placed on a 2-D pla-
nar surface within the robot workspace, 2) we can estimate its position and
orientation before being pushed, and 3) we know the intended pusher move-
ment a in Cartesian space. We write

A := {bin(o), loc(o), a} (2)

Since this OAC encodes a planar pushing behavior for objects that do not
roll on planar surfaces, only a 2-D binary image of an object to be pushed
(and not its full 3D shape) needs to be determined.

7While the in practice used object model for this OAC differs from the one mentioned
in section 4.2, the same model could be used if desired.
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Predicted attribute space oacpush.Â: The meassured outcome is the po-
sition and orientation of the object after being pushed with constant velocity
for a given amount of time ∆T

Â = {loc(ô)} (3)

Note that pushing as a nonprehensile action cannot be learned with sufficient
accuracy to move the object to a desired goal position in one step. Thus if
the planner specifies that the object o should be pushed to a certain target,
oacpush needs to be applied iteratively in a feedback loop to enable the robot
to move the object close to the specified target position and orientation.

Prediction function oacpush.TB: The prediction function TB predicts the
translational and rotational object movement when it is pushed at a given
point and angle on the boundary with constant velocity. The angle of push
is defined with respect to the boundary tangent. These two parameters
are fully determined by the object binary image and the pusher’s Cartesian
motion, which are all included in the initial attribute space A. Parameters
B of the prediction function oacpush.TB are included in the transformation
pushB, which predicts the linear and angular velocity of the object’s move-
ment while being pushed. At the end of this section we describe how these
parameters can be learned by exploration.

Execution level.execute: The impulse to push an object in a certain
direction and the appropriate action parameters a need to be provided
by a higher level cognitive process. Two possibilities will be discussed in
Section 4.3.3. The execution process works in the following steps: 1) ex-
tract the binary image of object o and acquire the pushing movement pa-
rameters a, 2) predict the outcome of the pushing action by calculating
oacpush.TB(bin(o), a), 3) execute the pushing movement by calling the push-
ing movement primitive initialized by a, and 4) localise the object after the
push. We can write

expr := (loc(o), bin(o), a;
oacpush.TB(bin(o), a);
loc(ô))

When the task is to push an object to a given target location, the robot
can solve it by successively applying level.execute(push, loc(o), bin(o), a)
in a feedback loop until the goal is reached. Note that motor primitives that
realize straight-line motion of the pusher in Cartesian space are constant
and do not change while learning oacpush.
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Figure 4: Pushing behavior realized by oacpush after learning transformation
function oacpush.TB

Evaluation level.eval(): We can collect useful data for learning only if
the pushing movement succeeded in moving the object. Defining the goal g
as ”the obect has moved”, we define level.eval() as a function that checks
if the object has moved. This can be done using the measured position and
orientation before and after the push

level.eval(push, g, expr) := TRUE iff

w′1 ‖û− u‖+ w′2

∣∣∣θ̂ − θ∣∣∣ > ε, w′1, w
′
2 > 0.

Here and in what follows we use loc(o) = (u, θ), loc(ô) = (û, θ̂), and loc(o′) =
(u′, θ′) = oacpush(o).TB(loc(o), a) to respectively denote the current object
position and orientation, the position and orientation after the push, and
the predicted object position and orientation.

Statistical Evaluation oacpush.M : The statistical evaluation measures
how close was the predicted object movement to the real object movement.
For planar movements we can define the following metrics

d(loc(o′), loc(ô)) := w′′1
∥∥u′ − û

∥∥+ w′′2

∣∣∣θ′ − θ̂∣∣∣ , (4)

where w′′1 , w
′′
2 > 0. The statistical evaluation is defined like in Appendix

A in Eq. (10) and (11) and uses the above metrics, which combines all
parameters relevant for the evaluation of the pushing OAC.

Generalisation oacpush.updateM and oacpush.updateT: Learning has been
implemented for the prediction function TB. It is realized using a feed-
forward neural network with backpropagation. As described above, the
network represents a forward model of object movements that have been
recorded with each pushing action. Movements observed during execution
can be used for updating TB if the object has moved. The weights B of
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Figure 5: Mean error of robot pushing. Figure left shows the mean error
calculated using Eq. (4) and all measurements. Figure right shows the incre-
mental statistical evaluation as realized by oacpush.updateM. Four different
objects were used in the experiment.

the network can be refined incrementally. Statistical evaluation is also done
incrementally as experiments are performed. Note however, that since the
prediction function oacpush.updateTB changes during learning, the statisti-
cal evaluation oacpush.updateM only converges to the true accuracy of the
behavior once oacpush.TB becomes stable.

The motion of the pushed object depends on the object shape. Shape
of the object is expressed as a low resolution binary image, which is used
as an input to a neural network. In this way the system is able to learn
a transformation function that does not need to be acquired separately for
each object.

4.3.3 Incremental learning by exploration

There are two modes of operation in which we consider oacpush:

A. initial learning of the prediction function oacpush.TB and the asso-
ciated control policy, where the pushing directions encoded by a are
randomly selected, and

B. pushing the object towards a given target trg, where the current pusher
movement a is determined based on the previously learned prediction
function and the given target location.

The prediction function oacpush.TB is essentially encoded by a neural net-
work with the low resolution, binary image of an object as input values and
the predicted movement of the pushed object as output. Note, that the
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contact point on the object boundary and the angle of push are encoded
in the object image and are therefore indirectly used as input values. Thus
in mode B we calculate the optimal pusher movement a by first determin-
ing the desired Cartesian movement of o from its current location towards
the target location and then inverting the neural network using nonlinear
optimisation. The resulting behaviour is presented in Fig. 4.

The learning process has been implemented using the following explo-
ration behaviour:
D = ∅;
while true do

repeat
level = oacpush.level();
a = SelectRandomMotion;
expr = level.execute(push, loc(o), bin(o), a);
if level.eval(push, expr, ”the object has moved”) then
D = D ∪ {expr};
oacpush.updateM(expr);

end
until enough data collected ;
oacpush.updateT(D);

end
The inner repeat loop was implemented to allow for both batch and incre-
mental learning. In this context generalisation means calculating parameters
B of the transformation function oacpush.TB. Note that oacpush.updateM is
always applied to data that was not used for learning.

4.4 Rule-Based Action Sequences: oacrule(o)

4.4.1 Description

oacrule(o) is a symbolic description of cause-effects of the world in the highest
level of abstraction. This OAC has been implmente on the humanoid robot
ARMAR at UniKarl. In contrast to lower level OACs, like the grasping and
pushing OACs, in this case the perceptions and actions are described with
abstract references to lower level entities suitable to be used in the highest
layer of the architecture as action rules for high level tasks completion.
Actions in the oacrule(o) are commands that reference particular skills, like
grasp(object) or push(object), but the execution of these commands are in
charge of lower level mechanisms. Likewise, perceptions are described as
boolean attributes. The oacrule(o) is in close relation to the planning OAC
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of the next section as its instantiations have a STRIPS-like structure and
can be used as planning operators for deliberation [2], [3].

In this section a simple example of a oacrule(o) is presented where the
OAC is used to move objects on a plain surface in a controlled way. Given
a scenario with objects and movement restrictions, the oacrule codes the
necessary scenario configuration needed to move an object from its current
position and orientation to a final position and orientation without collid-
ing with other objects. oacrule is suitable for those scenarios with difficult
accessibility and with many objects blocking each other, like the shelf of a
fridge, a drawer or the shelf of a cupboard.

oacrule is progressively refined from experience using a constructive learn-
ing approach to find the minimal sets of relevant attributes that afford move-
ments of objects. These minimal sets of attributes are obtained from spe-
cialization of an initial set of attributes that codes the observed changes in
the world after a first experience of an action. Specialization consists in
adding necessary attributes to the precondition part of the rules to afford
a given movement without collisions. The learning method applied for rule
refinement is a constructive induction approach that performs a general to
specific beam search of set of attributes with a probabilistic performance
evaluation [3].

To illustrate the method, a simple scenario with glasses will be used to
clarify the description of the OAC. For instance, figure 6 shows how a real
world situation is internally represented by the robot using logic attributes
and an example of a rule for moving a glass from its position (glass in cell
4 in the example) to another (cell 6). A detailed description of the example
follows in the text below.

4.4.2 Definition

oacrule is defined by

oacrule := ( rule;
{in cell(oT , goal cell) == true,

in angle(oT , goal angle) == true};
M)

where oT accounts for the object to be moved (target object).

Initial attribute space oacrule.A: The initial attribute space consists in
a set of boolean attributes indicating the cell position and orientation angle
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(discretized) of the target object ’oT ’, cells and angles of the other objects
’oj ’ in the scene, and indications about which cells are empty. Additionally
to cells and angles, there is a couple of boolean attributes associated to each
object which indicate whether the object is graspable or pushable.

• in cell(o, icell), true if the object o is in cell number icell.

• in angle(o, iangle), true if the object o has an orientation with an
angle lying in the discretization segment iangle.

• empty(icell), true if cell icell is empty.

Figure 6: Example of a scenario with glasses. A) Example of a state rep-
resentation where the green glass is denoted as glass1, red glass as glass2,
and blue glass as glass3. B) One example of a rule for moving the green
glass from cell 4 to cell 6 together with three possible hypothesis for rule
specialization when surprises occur. Gray cells in the position representation
indicates a “don’t care” if the cell is occupied by a glass or not.
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• pushable(o), true if object o is pushable.

• graspable(o), true if object o is graspable.

As an example, the real world situation of figure 6(A) is internally rep-

Figure 7: Evolution of probabilities of success for the three hypothesis H1,
H2 and H3, in the example of figure 6 for a sequence of seven experienced
states. Black arrows indicate those situations where the rule in the example
for moving green glass from cell 4 to cell 6 is applicable and tried. Arrows
with a red cross reference to those situations where a blocking object pre-
vent to obtain the desired outcome while not crossed arrows accounts for
successful executions. Situations not marked with an arrow can not be used
for the example rule updating as other rules are applied.
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resented by the agent under a close world assumption as,

state = {empty(0), in cell(glass2, 1), empty(2), empty(3),
in cell(glass3, 4), in cell(glass1, 5), empty(6), empty(7),
empty(8), empty(9), empty(10), empty(11),
graspable(glass1), graspable(glass2), graspable(glass3)}

where the green glass is considered as the target object and orientations are
neglected as they are not relevant for the task.
Prediction function oacrule.T : The prediction function returns a true for
the target object in the goal cell and orientation angle,

{in cell(oT , goal cell) == true,

in angle(oT , goal angle) == true}

In the glasses example of figure 6, the prediction of the application of
the OAC for moving the green glass to 6 is,

goal = {in cell(glassT , 6)}

Predicted attribute space oacrule.Â: The predicted attribute space is
given by all the possible goal cells and goal orientation angles.
Evaluation: level.eval checks if the final cell position and orientation
angle of the target object oT after the action execution is the same as the
goal cell and goal angle. Whenever this is the case the expr is considered as
successful.
Execution level.execute: The highest chance of success has associated a
rule with an action that is selected for its execution,

P+
goal = max

∀rule∈activerules
P+
rule( goal|A, a); (5)

This probability is extracted from the active rule with highest chance
of returning the goal after its associated action execution. Active rules are
those which preconditions are included in the observed state A.
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When the process of execution is triggered the action of that rule is
passed to the lower level mechanisms as a command. The action consists in
movements of translation and rotation performed over objects. The move-
ment could be done by either grasping the object and then placing it in the
final position and orientation (skill = grasp), or by pushing it until the final
position and orientation are reached (skill = push),

a = move(õ, final cell, final angle, skill); (6)

Note that in the example of figures 6 and 7 it is assumed that no changes
are obtained after an action execution if there is an object blocking the
movement.

Generalization oacrule.updateActionParams:
To a rule the probability of obtaining the goal position and orientation

after applying its related action a becomes associated. The associated proba-
bility of success and failure in the predictions are denoted as P+

rule(goal|A, a)
and P−rule(goal|A, a) respectively. As we will see these probabilities will be
used for the oacrule refinement in the learning function.

In order to calculate the probabilities of success (or failure) for rule
selection and execution two numbers are stored for each rule,

• n+
rule , counter for successful predictions of the goal when the rule is

activated.

• n−rule , counter for failed predictions of the goal when the rule is acti-
vated.

The probabilities related to the success or failure in the prediction,
P+
rule(goal|A, a) and P−rule(goal|A, a), are calculated as,

P+
rule(goal|A, a) =

1
2

(
1 +

n+
goal|A,a

ntotalgoal|A,a
−
n−goal|A,a

ntotalgoal|A,a

)
(7)

P−rule(goal|A, a) =
1
2

(
1 +

n−goal|A,a

ntotalgoal|A,a
−
n+
goal|A,a

ntotalgoal|A,a

)
(8)

where ntotalrule is the total number of possible states where the rule could
be activated.

With these formulas a high P+
rule( goal|A, a) is a confident indicator of a

good chance of obtaining the prediction because the probabilities are based
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on densities of samples and assign to unexplored states the same chance
to result in a successful or failed prediction. Statistics fed only a few times
with a successful prediction would result in a probability of a positive a little
higher than 0,5. Others evaluation criteria based on relative frequencies, like
the entropy or the m-estimate, would indicate a high chance of obtaining a
success even with a few examples.

Figure 7 exemplifies how the probabilities of success evolves for the three
hypothesis about preconditions stated in figure 6.

Generalization is performed using a constructive induction approach to
find rules with the minimal sets of initial attributes to obtain the goal state
after executing action a (see [3] for details).

The rule representation is progressively refined from experience using a
general to specific beam search and memorized experiments expr [3]. When-
ever a rule has high uncertainty in its prediction (prob. close to 0,5) and
large confidence (high density of samples), it is refined by generating new
specializations of the rule using the information gain criterion. The density
of samples is calculated as,

ρrule =
n−rule + n+

rule

ntotalrule

≤ 1 (9)

4.5 Planning OAC

4.5.1 Description

The following is a simple example of a grasping OAC for use by an AI
planner. OACs like the following form the basis of the high level planning
in the PACO-PLUS system. It is the predictive nature of these OACs that
allow us to anticipate the effects of actions and correctly choose OACs that
will achieve our objectives. This example OAC is based loosely on the AI
planning level “graspA-fromTable” action that is used in UEdin integration
with SDU. (See PACO-PLUS deliverable 4.3.1 for details). Following the
definitions in Section 3.1 we will provide an OAC that defines grasping over
the global attribute space, S given in Table 1

4.5.2 Definition

An OAC to capture grasping for use in planning is defined by
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Properties
clear(?x) A predicate indicating that no object is stacked in ?x.

gripperEmpty A predicate describing whether the robot’s gripper is
empty or not.

inGripper(?x) A predicate indicating that the robot is holding object
?x in its gripper.

inStack(?x,?y) A predicate indicating that object ?x is in a stack with
object ?y at its base.

isIn(?x,?y) A predicate indicating that object ?x is stacked in object ?y.
onShelf(?x) A predicate indicating that object ?x is on the shelf.
onTable(?x) A predicate indicating that object ?x is on the table.
open(?x) A predicate indicating that object ?x is open.
radius(?x) = ?y A function indicating that the radius of object ?x is ?y.
reachable(?x) Predicates indicating that object ?x is reachable by

the gripper using a particular grasp.
shelfSpace = ?x A function indicating that there are ?x empty shelf spaces.

Table 1: Attribute Space for planning level OACs

oac = (gPlan;
T ;
M)

To define an OAC we provide an identifier, a prediction function, T de-
fined on this level’s S, and a statistical measure of the OAC’s prediction
success, M . Since the identifier for the OAC is only used to allow commu-
nication about OACs at different levels we will have little to say about it.
In this case without loss of generality we will assume it is something like,
gPlan.

Given a level with the state space, S, as defined in Table 1, we can define
the prediction function, T , for our OAC as the first order logical rule given
in Table 2. In this case, both the initial conditions and the predictions are

Name Initial Conditions Prediction
grasp-fromTable(?x) reachable(?x)

clear(?x)

gripperEmpty

onTable(?x)

inGripper(?x)

not(gripperEmpty)

not(onTable(?x))

Table 2: OAC prediction function, T , for a planning level grasping action.

32



assumed to be conjunctive (that is, all of the initial conditions of the rule
must be true in the world for the prediction function to be defined, and all of
the terms of the prediction are expected to be true in any state that results
from the execution of the OAC). Therefore, this function states that if an
object is on the table, the object is clear, the object is reachable, and the
gripper is empty, then if this OAC is executed we predict the object will be
in the gripper and not on the table. In any other case, the resulting state is
undefined.

We must also provide a statistical measure of the success of T , M . Taking
the simplest possible approach, we define M as the long term probability of
T correctly predicting the resulting state given the execution of the OAC
from an initial state for which the OAC is defined. Note that in classical
AI planning systems like STRIPS [18], M for this OAC would therefore be
fixed at one. Such classical planners assumed a deterministic and totally
observable world removing any uncertainty in their prediction functions.

More recent work in AI planning of course has moved beyond these far
too limiting assumptions [16]. There are now a number of AI planning
algorithms that are able to make use of probabilistic statements about the
long term success of this kind of prediction to build probabilistic plans for
actions. Thus in PACO-PLUS we define M as the long term accuracy of the
OAC’s prediction function. UEdin’s work on learning action representations
[13] produces OAC representations that are isomorphic to that shown here,
and we refer the interested reader to PACO-PLUS deliverable 5.1.2 for an
account of how this kind of OAC (both the symbolic prediction function and
the associated M) can be learned.

PACO-PLUS deliverable 4.3.5 outlines an interaction architecture for
executing these kinds of OACs. In general, we anticipate the execution
function for this kind of OAC would involve the invocation of a more specific
OACs (see Sections 4.2 and 4.3) designed to implement specific grasping
behavior on the robot hardware. This highlights a number of open issues in
this set of definitions including:

1. how the mapping to this lower level OAC is encoded and performed,

2. how the arguments to the called OAC are determined, stored, and
updated,

3. and more generally how objects are represented in the system as a
whole.

The implementation of the PACO-PLUS project has made a number of
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pragmatic decisions to answer these questions (again outlined in deliverable
4.3.5) that currently fall outside the scope of these OAC definitions.

4.5.3 Using this OAC in practice

OACs like this one are currently used in PACO-PLUS within the PKS system
[16] to build plans for stacking and unstacking of containers in a kitchen like
environment. We refer the interested reader to PACO-PLUS deliverable
4.3.5 for details of the encoding of actions for this domain and their use by
a planner.

5 Outstanding Issues

In summary, PACO-PLUS project views object-action complexes as a dy-
namic (learnable, refinable) and grounded representation that binds objects,
actions and attributes associated with an agent in a strong, causal way. They
can carry low-level (sensorimotor) as well as high-level (symbolic) informa-
tion and can thereby be used to join the perception-action space of an agent
with its planning-reasoning space. In addtion, they enforce the storage of
relevant information for further bootstrapping in episodic memory.

These properties open an avenue for addressing several important re-
search challenges in the cognitive sciences in the future. Addressing these
questions, we might find that extensions or modifications of the original
OAC definition might be required. At least the following challenges arise
for the last year of the project and beyond:

C1 Interactions between OACs

– (Linking levels) The relationship between OACs at different levels
of abstraction for execution and learning needs to be investigated
further. Rigorous formal algorithms for this interaction need to
be designed.

– (Continuity) How can we realize seamless and continuous switch-
ing and sequencing of OACs at the same or at different levels of
abstraction?

– (Stability) How can stability be achieved in a system that makes
use of dynamic OACs as sub–modules with temporally varying
success likelihoods?
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C2 Bootstrapping processes making use of the episodic memory: The
stored experiments provide the data for further learning processes
across OACs generalizing actions across objects (such as learning more
general part–action associations), emergence of perceptual categories
etc. For example, based on such a memory process an agent could try
to address the following three issues:

– (Categorization) How to realize that OAC sequences leading to
similar state space transitions define similar objects (e.g., pouring
water in object Ai leads to positive weight change in object Ai
suggests all objects Ai to be containers)?

– (Generalization) How detect and utilize re-occurrences of percep-
tual attribute–action combinations as for example in the learning
of part–action associations?

– How to address the learning of cause-effect couples and the learn-
ing of pre-conditions, where both ultimately would lead to new
planning rules ([2]).

– (Efficiency) How to efficiently distribute resources that are re-
quired for learning (on-line versus batch learning requiring stor-
age in episodic memory).

C3 Development of OACs: Critically within a system based on OACs,
interactions with the environment can lead to the creation of new
OACs. Such new OACs can be at varying levels of abstraction. We
can imagine learning new complex very low level skills (like how to
effectively move my foot so as to kick a soccer ball along a desired
trajectory) to a high level action (like learning that once I have passed
the soccer ball to my team mate I no longer have it). Identifying when
to create a new OAC as opposed to modifying an existing OAC is a
critical research area for understanding the power of OACs and how
and when they will allow us to make use of existing work to ground
our systems in real world experience.

C4 Extension of the attribute space: OAC based interaction with the en-
vironment can also result in learning new attributes. As such it will
also be critical to develop a formal model of how and when the at-
tribute space that OACs are defined on are extended and expanded.
We must provide an answer to the critical questions of when new at-
tributes should be added to the space, as opposed to when existing
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attributes should be refined. We note that this may even require re-
thinking the kinds of learning algorithms that we use to learn OACs
since many existing algorithms for learning require a fixed attribute
space to work in or are not amenable to the incremental learning that
is inherent in an OAC based interaction with the world.

This list is certainly incomplete and it is to be expected that it will have
to be extended in the course of future work. We believe, however, that the
OAC concept provides a solid starting point for discussing, defining and
addressing future challenges and that OACs will act as a glue for future
research in artificial cognition.

A Additional Notes on the Statistical Evaluation
of an OAC Using an Arbitrary Metric

Computing a statistical evaluation of the empirical success of an OAC can
involve (in addition to the binary success/failure statement) a quantitative
comparison of the expected and actual outcomes. This requires the measure-
ment of the initial (A) and resulting attributes (Â). We define the change
in attribute Aj (where Aj covers both world and internal attributes) after
executing an OAC as:

∆Aj = dj(Âj , T (Ajt )) (10)

where dj is a metric that makes the difference in every attribute Aj mea-
surable (i.e., it allows for a meaningful subtraction operation in this equa-
tion). T (Aj) is the restriction of T to the j-th attribute. Clearly dj will be
different for different attribute types like continuously encoded quantities,
discrete non-countable entities (hollow versus solid), rank attributes, rela-
tional attributes. The application of dj , however, assures that ∆Aj becomes
independent of the attribute as such (invariance property of the change). An
example for ∆Aj could be the changed filling level of a cup after a drinking
action.8

As a default setting for the components of M (which however can be
replaced by other statistical definitions with similar meaning), we can define

M̃
〈〉
j =

N∑
i=1

wi∆A
j
i (11)

8Note that eval can now be defined by thresholding operations over the ∆Aj , for
example by setting eval = 1 if 1

N

P
i ∆Aj > Θ, else = 0.
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the average change of a single attribute Âj after N executions of the iOAC.
N is the number of executions of the OAC. In addition we have the weighted
standard deviation:

M̃σ
j :=

∑N
i=1wi(M̃

〈〉
j −∆Aj)2.

where wi decodes a suitable window function (with wi > 0 for all i and∑
wi = 1) weighting recent experiences more than past ones. Note, so

far we have defined all these entities for each individual attribute j. If
necessary, this definition can be extended to the averaging over all attributes
using M̃ 〈〉 = 1

K

∑K
k=1 µjM̃

〈〉
j , and likewise for the variance, where µj weighs

different attributes differently. In the examples we will, thus, drop index j
assuming that averaging across attributes has taken place (if necessary).
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ater. Autonomuous learning of object-specific grasp affordance den-
sities. In ICRA Workshop Approaches to Sensorimotor Learning on
Humanoid Robots, pages 36–37, Kobe, Japan, 2009.

[5] R. Detry, N. Pugeault, and J. Piater. A probabilistic framework for 3D
visual object representation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, accepted.

[6] N. Fikes. STRIPS: a new approach to the application of theorem prov-
ing to problem solving. Artificial Intelligence, 2(3-4):189–208, 1971.

37



[7] C. Geib, K. Mourão, R. Petrick, N. Pugeault, M. Steedman, N. Krüger,
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