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Abstract

This report gives an overview of the use of machine learning in the PACO-PLUS
project. It lists the major learning problems that occur, the machine learning tech-
niques employed to solve them, and describes their roles and interrelations within the
PACO-PLUS architecture. Learning occurs throughout the project, mostly for solving
individually formulated problems. In addition, the project has produced novel, interre-
lated learning problems and methods, and has contributed new theoretical insights on
existing methods.

1 Introduction

One of the insights that motivated the PACO-PLUS project was the realization that the real
world is much too complex and unpredictable for sophisticated interaction to rely exclusively
on fixed, pre-programmed behaviors. Therefore, an important principle of PACO-PLUS is to
allow a robot to discover information about its environment, and to exploit the discoveries in
its interaction with the environment. Thus, learning is an overarching and ubiquitous aspect
of the project.

Any learning involves the optimization of an objective function f(x) over a parameter
vector x. From the viewpoint of an autonomous agent in control of the x, this requires the
closure of a feedback loop that enables the agent to observe information useful to optimize
f(x). Machine learning paradigms differ in the way this feedback is provided. Two types of
feedback mechanisms are explicitly put forward in PACO-PLUS:

• the observation of the consquences of the agent’s own actions, useful for exploratory
(trial-and-error) learning, e.g. by reinforcement learning,

• the observation of demonstrations of desirable behavior by an external teacher, useful
for imitation learning, e.g. by supervised learning.

These two paradigms are complementary and can be fruitfully combined to speed up the
more general but potentially slow exploratory learning by using imitation learning to bias
exploration towards promising regions of parameter space.

Exploratory learning requires closed perception-action loops. The PACO-PLUS architec-
ture (Fig. 1) permits the closure of perception-action loops through any of its three levels,
thus providing ample opportunities for exploratory learning (augmented by imitation learn-
ing, if desired) almost everywhere in the system. In general, the degree of adaptivity of such
cycles increases with the number of levels involved.

Figure2 shows how the major learning problems that occur in PACO-PLUS are situated
within this architecture. Their roles and interplay are described in the following sections.
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Figure 1: The psychologically-inspired PACO-PLUS cognitive architecture. The agent’s func-
tionalities are organized into three levels that are distinguished by their level of abstraction
of their view of the world, and that each occupy a dedicated role within the system. All levels
are concerned with both perception and action. Processing generally flows clockwise: Raw
sensory data are received on the bottom left and are increasingly abstracted on their way up.
The high level generates plans based on sensory information, which are turned into concrete
motor commands on their way down on the right. Executed motor commands have effects on
the environment, which trigger new sensory input, closing a perception-action cycle. Each
level can close perception-action cycles without going through levels above.
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Figure 2: Overview of the key learning problems within the PACO-PLUS architecture, and
the major links between them. Learning problems related to objects and recognition are
shown in yellow; learning of actions and action parameters is shown in pale red. The labels
correspond to the bold-face keywords in the following tables.
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Table 1: Learning at the Low Level
Objective Methods Pubs. Partn. WP
Static Recognition
Rule learning system: mapping raw
sensor readings to symbolic con-
ditions; trigger surprise on mis-
matches

Online supervised Bayesian clas-
sification assuming normally-
distributed sensor data

[5, 4] CSIC,
BCCN

WP6

Action Learning
Inverse kinematics from as few
robot movements as possible

Parametrized self-organizing maps;
gradient-based and exact methods
using rational Bézier surfaces and
prior knowledge

[28,
39]

CSIC,
UniKarl

WP8

Learning actions via kinesthetic
guidance

Locally Weighted Projection Regres-
sion, local Gaussian processes; incre-
mental training

[3] CSIC WP7

2 Learning at the Low Level

The low level constitutes the interface of the robot’s computational resources with the physical
world via sensors and effectors. It is responsible for translating raw sensor readings into
meaningful percepts, and for transforming motor behaviors into executable motor commands.
The low level does not contain a symbolic, long-term memory; its operations and learning
remain close to the signal level. The three low-level learning problems are summarized in
Table 1.

The surprise learning system is trained online to perform Bayesian classification of raw
sensor readings into semantic categories, assuming normally-distributed sensor data. Unex-
pected contingencies yield misclassifications (surprises) and give rise to learning.

Inverse kinematics of redundant manipulators is a long-standing, low-level problem in
robotics for which no generally-accepted solution exists. It is often addressed by learning
approaches; this is also the case here with the objective of minimizing the number of physical
training movements.

Complex low-level manipulations are tedious to pre-program and hard to learn by explo-
ration. Here, this is addressed under the programming-by-demonstration paradigm where
actions are learned from kinesthetic guidance given by a human trainer.

3 Learning at the Mid Level

Figure 2 reveals that most learning takes place at the mid level and its interfaces to the low
and high levels. This concentration arises by construction: The primary objective of the mid
level is to provide an infrastructure for learning from experience. Its central component is a
long-term, episodic memory where concrete sensorimotor experiences are stored. This allows
the construction of abstract concepts via statistical analysis of experiences, which is the basic
principle of OAC formation in PACO-PLUS.

The wide variety of learning problems situated at the mid level fall into two broad cat-
egories. Problems of the first category (Table 2) are concerned with recognition and form
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part of the bottom-up pathway in Fig. 1; they are shown as yellow boxes in Fig. 2. Prob-
lems of the second category (Table 3) learn action parameters and participate in closing
perception-action loops in Fig. 1; these are shown as pale red boxes in Fig. 2.

Most of the learning problems listed in Tables 2 and 3 serve specific, well-delineated
purposes, and address them using well-chosen, well-established methods of machine learning.
We will not give an in-depth description of each and every learning problem here; we direct
the reader to the tables and the references to the publications therein. Rather, we will
highlight some of the core components, connections and complementarities.

One core component of the mid level is a block of four interrelated learning systems that
address the entire chain from organizing low-level percepts to learning about grasp affor-
dances of objects. It begins by identifying a sparse set of three-dimensional visual features
as belonging to a rigid object by grasping features and moving the grasped object around
(birth of the object and grasping without object knowledge). On the basis of these
object features, 3D, probabilistic, structural object models are learned that are useful for
object detection, pose estimation, and learning of grasp affordances (grasp densities) via
exploration and demonstration.

These highly-structured, computationally-expensive 3D object representations are com-
plemented by a second object representation system that uses active learning to construct
view-based object models for rapid search, detection and coarse pose estimation.

While grasp densities are designed for learning to grasp familiar objects, a complementary
method addresses the problem of grasping unfamiliar objects via generalization from shape
attributes.

Other methods address the recognition of grasps, actions and scene changes, and form
essential components of scene interpretation and learning from demonstration.

Learning action parameters is a difficult problem. The PACO-PLUS project explores
complementary methods such as exploration for pouring fluids and pushing objects, and
coaching via demonstration and qualitative instructions given by a human teacher.

4 Learning at the High Level

The high level is concerned with reasoning, planning and language. The representations
manipulated at the high level are almost exclusively symbolic. Thus, the wide variety of
classical learning problems, which mostly concerns continuous-to-categorical or continuous-
to-continuous mappings, is absent here; their domain is the mid level. Learning at the high
level produces categorical-to-categorical mappings (Table 4).

One learning objective is the generation of macro action rules to coalesce sequences
of actions into a single meta-action and thus simplify the planning problem with growing
experience.

Another problem concerns the learning the effect of actions in the state space considered
for planning. This produces empirically-validated action-effect rules that can be used for
planning.

The third problem concerns grammar induction. Learning grammars and parsing
models is quite unlike other learning modules in PACO-PLUS. Most learning problems in
the project are standard classifier and associative learning problems, or involve unstructured
reinforcement learning. But parsing is not a classification problem. Almost all trees in the
1M word Penn Treebank constitute unique labels.

A parsing model has to provide a measure of how similar each of a large number (routinely,
thousands, sometimes millions) of possible parse trees for a novel sentence are to the trees it
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Table 2: Learning at the Mid Level: Objects and Recognition
Objective Methods Pubs. Partn. WP
Object Representations
3D object reconstructions (birth of
the object)

Bayesian filtering to accumulate 3D
information over multiple views

[17,
26]

SDU,
KTH

WP4

Probabilistic, structural object
models for recognition and pose es-
timation

Unsupervised feature clustering, spa-
tial co-occurrence statistics, Markov
networks

[11,
24]

ULg,
SDU

WP4

View-based object models; ma-
nipulation for figure-ground segmen-
tation and snapshot acquisition

Gaussian processes for background
modeling, Bayesian estimation of
Gaussian mixtures for object appear-
ance modeling

[37,
40, 21]

JSI,
UniKarl

WP2.1

Static Detection, Recognition, Estimation
Visual grasp classification and
mapping

k-nearest-neighbor classification and
regression

[15] KTH WP3.2

Object models; object recognition
and scene change tracking

Graph representations; Group
Method of Data Handling

[30] BCCN,
SDU

WP4.2

Grasping unfamiliar objects by gen-
eralization from shape attributes

Neural-network regression to connect
shape features (from box decomposi-
tion) to grasp quality measures (us-
ing GraspIt simulator as a trainer)

[14,
12]

KTH WP4.1

Cause-effect rules: learn precondi-
tions that yield expected postcondi-
tion under given action

Online constructive induction; best-
first search among candidate precon-
ditions

[6, 7] CSIC,
BCCN

WP6

Dynamic Action Recognition
Human upper body actions Hidden Markov Models,

Expectation-Maximization
[8, 13] AAU,

UniKarl,
JSI

WP3

Action primitives Unsupervised statistical clustering [29] AAU WP3

Visual object-action recognition Conditional Random Fields [16] KTH WP3.2
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Table 3: Learning at the Mid Level: Actions
Objective Methods Pubs. Partn. WP
Grasping and Other Actions
Grasping without object knowl-
edge

Regression using Radial Basis Func-
tion networks with autonomous la-
beling of training data

[25] SDU,
KTH

WP4

Grasp densities: continuous repre-
sentations of object-relative grasp pa-
rameters and their success likelihoods

Biased exploration, importance sam-
pling

[9, 10] ULg,
SDU

WP4.2

Pour fluid; improvement of a prior
learned (by demonstration) hand po-
sition

Kernel-based reinforcement learn-
ing methods; biased exploration by
“path straightening”

[34,
33, 35]

BCCN,
JSI,
UniKarl

WP8.1

Coaching: improving robot motor
behavior via marker-based or kines-
thetic demonstration and qualitative
instructions

Iterative trajectory adjustment via
transformation functions in Carte-
sian and configuration spaces

[27] JSI,
UniKarl

WP2.3

Action generalization by interpo-
lating example movements

Locally weighted regression on
splines or dynamic movement
primitives

[38,
36]

JSI,
UniKarl

WP2.3

Goal-directed pushing of objects by
learning the relation between contact
parameters and object response

Neural network regression [20] JSI WP4.1

Table 4: Learning at the High Level
Objective Methods Pubs. Partn. WP
Rule learning system: macro action
rules

Backpropagation of preconditions
and outcomes along sequences of ac-
tions

[6, 5,
4, 7, 2]

CSIC,
BCCN

WP6

Action effects in terms of before-
after state differences for planning
(STRIPS, ADL)

Kernel perceptron classification [22,
19, 23]

UEdin,
SDU

WP4.3,
WP5.1

Grammar induction Bayesian statistical learning, Dirich-
let processes

[32,
18, 31]

UEdin WP5.2
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was trained on. As in many other machine learning arenas, there are two main varieties of
models:

• Grammar-like Bayesian generative models, which enumerate the infinite set of possible
analyses, assigning probabilities to candidate analyses;

• Perceptron-like discriminative models which sum over weighted features to rank the
candidate analyses.

WP5.2 uses generative models, because much of the evidence for the nature of the child’s
grammar (including deviations from the adult grammar) comes from its productions. Gen-
erative models can be reversed to make predictions about about such deviations.

The deliverable D5.2.1 [1] outlining the problem shows how the problem of learning a lan-
guage from paired strings and meaning representations can be viewed as learning a generative
parsing model for the entire space of possibilities for universal grammar using an incremental
version of the EM algorithm, and shows how correct predictions follow. However, a sound
probability model for this problem is quite a complex object theoretically. The probability
distributions of all linguistic phenomena are highly skewed, and require discounting for future
unseen events, in particular for unseen words. The model used in the paper submitted since
the deliverable employs an infinitely expandable Dirichlet process as a prior, in particular
the “Chinese Restaurant Process” formulation to assign priors [18]. This model has been
run and evaluated on tyhe CHILDES data, including partial comparisons with related work
[44, 42, 43].

5 Theoretical Research

In addition to the application of learning methods to learning problems that arise in the
PACO-PLUS system, the PACO-PLUS scenario has also motivated fundamental research on
learning methods. This research took place under the umbrella of WP6 and mainly addressed
the following three topics:

• The relationship between correlation-based (Hebbian) learning and Reinforcement Learn-
ing was analyzed. The two were found to be equivalent under certain conditions.

• Methods were developed for learning forward dynamic models; such models are ex-
tremely important in both biological and robotic motor control. In robotics, force and
velocity controllers require accurate dynamic models, but such are very difficult to ob-
tain. Research on learning forward models is thus a field with a high potential for
impact.

• A novel reinforcement learning method with (receptive field based) function approxi-
mation and continuous actions has been developed. This method has been compared to
the currently best method from the literature (Natural Actor Critic [41]) and performs
equally well. As it is based on the generation of a learned vector field it offers different
advantages as compared to the Natural Actor Critic.

This RL method has been implemented on a movement recalibration problem (glass
filling) on a HOAP robot and will now be transferred to ARMAR.

In summary, the main goal of WP6 is to arrive at scientifically novel learning methods
and at a deeper understanding of learning in biological as well as artificial agents leading to
the advancement of the field.
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6 Conclusions

This report presents the most important occurrences of learning within PACO-PLUS. It
shows that learning occurs in all parts of the system, from the low end close to the hardware
to the high end concerned with abstract symbol manipulation, and both for perception and
for action.

Most learning problems are situated at the mid level. This is not an accident but by
design, as the mid level was designed to provide the infrastructure for learning from sensori-
motor experience to allow high-level symbols to be grounded in low-level physical interaction.
Nevertheless, both the low and the high level address some of their own problems using learn-
ing techniques.

The majority of the learning problems present in the system are structured by their
designers to map onto well-understood, classical problem formulations. This permits well-
motivated choices of state-of-the-art methods for solving them, their rigorous evaluation and
theoretical and empirical comparison to related work. This decomposition into independent
problems, an unavoidable principle in the construction of any complex system, has led to a
wide variety of different learning methods within the system, where almost no two are the
same. Many of the chosen methods are based on probabilistic models and statistics (MRF,
HMM, EM, CRF, RL), which is an almost inevitable consequence of the project’s reliance
on exploratory learning based on collecting empirical data. Naturally, this also reflects the
current popularity of probabilistic methods in machine learning, computer vision and artificial
intelligence.

On the other hand, some problems are unique to the project and emerge as a consequence
of the high-level objective of PACO-PLUS to allow an artificial system to construct its own
semantics by autonomous interaction with the world. Such problems have led to new learning
problem formulations and sets of interrelated learning systems such as the pathway from the
birth of the object to grasp densities.

Finally, beyond formulating and solving learning problems, PACO-PLUS has also shed
new insight on existing learning methods such as the relationship between Hebbian correlation
learning and reinforcement learning, and has contributed entirely new learning methods as
described in Section 5.
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Kragić, and Norbert Krüger. An Adaptive Strategy for Grasping Unknown Objects
Based on Co-planarity and Colour Information. Submitted.

[26] Nicolas Pugeault. Early Cognitive Vision: Feedback Mechanisms for the Disambiguation
of Early Visual Representation. Vdm Verlag Dr. Müller, 2008.
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