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Abstract:

The core focus of WP5.1 is the generalisation of the basic symbolic representation of OACs and ancillary
planning apparatus to communication and language. WP5.1 builds on WP3 to extend the representation
of OACs to communicative acts and is tightly integrated with WP4, in particular the theoretical and
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linguistic concepts. This deliverable primarily focuses on the PKS planner and its associated components,
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the general problem of planning with incomplete information and sensing. Some of the mechanisms
needed to integrate PKS within the robot control and communication architecture are also outlined, as
are associated learning techniques and experimental studies. The related deliverable D5.2.3 describes the
computational problem of natural language acquisition in greater detail.
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1. Executive Summary

The core focus of WP5.1 is the generalisation of the basic symbolic representation of OACs and ancillary
planning apparatus to communication and language. More specifically, this work builds on WP3 to extend
the representation of OACs to communicative acts (Task 5.1.1) and is tightly integrated with WP4, in par-
ticular the theoretical and practical components developed as part of WP4.3, to provide the foundational
infrastructure needed to support high-level linguistic concepts (Task 5.1.2). This deliverable primarily fo-
cuses on the planning mechanisms of our architecture, namely the PKS (“Planning with Knowledge and
Sensing”) planner [6, 7] and its associated components. In particular, we outline the extensions required
for PKS to support high-level dialogue and conversational acts within the three-level control and commu-
nication architecture developed as part of WP1 and WP4. (The associated deliverable D5.2.3 describes the
computational problem of natural language acquisition in greater detail.)

PKS is a state-of-the-art contingent planner that constructs plans in the presence of incomplete information
and sensing actions. Like most AI planners, PKS operates best in discrete, symbolic state spaces defined
using logical languages. Unlike traditional planners, PKS builds plans at a more abstract “knowledge level”
by representing and reasoning about how the planner’s knowledge changes during planning. In particular,
PKS is based on an extended version of STRIPS [4], where actions are described in terms of their effects on
the planner’s knowledge state, rather than the world state. PKS also supports numerical reasoning, run-time
variables [3], and features like functions that arise in real-world planning scenarios.

In deliverable D5.1.2, we previously described how PKS could be extended “downwards” to support low-
level continous control systems of the kind used in PACO-PLUS. In this deliverable, we focus on the “up-
wards task”, and use PKS as a planning framework for natural language and communication. We view
the problem of planning dialogue acts as an instance of the general problem of planning with incomplete
information and sensing, and outline the mechanisms needed to extend ordinary action planning to dialogue
planning. To do so, we work at the level of speech acts and focus on the changes we must make to the
representational and reasoning components of the “standard” version of PKS. In particular, these extensions
enable the planner to reason about the incomplete knowledge of multiple agents, and obtain further informa-
tion through dialogue acts modelled as information-gathering sensing actions. Thus, we treat the dialogue
problem as isomorphic to the problem of planning with incomplete information and sensing for a single
planning agent. This work can be seen as a practical implementation of the theory first outlined in [8].

This deliverable also provides an updated description of the control architecture we use to integrate the
planner and its associated components on the PACO-PLUS robot platforms. A central aspect of this work
is the inclusion of a new plan execution monitor that operates together with the PKS planner to control
high-level replanning and resensing activities. We also describe an extended version of a mechanism for
learning high-level planning actions, a new planner resulting from our work extending PKS, and the results
of experimental studies investigating the wider applicability of planning techniques to challenging problems
in natural language generation.

Seven additional documents are attached to this deliverable, highlighting the important role of planning in
the PACO-PLUS architecture for both dialogue planning and task planning. These documents also describe
the support mechanisms developed as part of WP4 that enable PKS to generate plans (dialogue or otherwise)
that can be executed in the lower level robot control spaces. More generally, these components provide the
infrastructure needed to support the longer term objectives of language and communication in WP5. Here
we briefly sketch the relation of each paper to this workpackage and deliverable, and make links to the
specific contributions of each paper.

[A] (Internal PACO-PLUS Technical Report) This document provides a snapshot of the extensions cur-
rently being implemented in PKS to support knowledge-level dialogue planning, as well as associated
control mechanisms required for both task and dialogue plan execution. This document reviews PKS’s
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basic knowledge representation framework, and the additions we require to extend this framework to
multi-agent contexts supporting plan generation in the PACO-PLUS demonstration scenarios. This
document builds on the integration architecture developed as part of WP4 (see [E] and [G] below)
to support language and interaction as part of WP5. (Earlier versions of this document appeared in
deliverables D4.3.5 and D5.1.2.)

[B] (Journal paper to appear in Computational Intelligence, Special Issue on Planning and Scheduling
Applications) This paper describes the results of experiments designed to test the feasibility of current
off-the-shelf planners as a general problem solving mechanism for challenging problems in natural
language generation. Such a study is a necessary companion to the dialogue planning work of PACO-
PLUS, in order to assess the more widespread potential of planning techniques for natural language
processing. This document describes work performed as part of WP5.

[C] (Paper to be presented at the 2010 European Conference on Artificial Intelligence in Lisbon, Portugal)
In previous work reported in deliverable D5.1.2, we describe a mechanism for learning STRIPS-
style [4] actions effects from world state snapshots of the form produced by the PACO-PLUS control
architecture described in [A]. This approach is based on a voted kernel perceptron learning model
[1, 5] which operates over a compact vector representation using deictic features embodying a notion
of attention. The present paper extends our previous approach and enables us to apply our learning
mechanism in noisy and partially observable planning domains. Such domains are characteristic of
the kind we investigate in PACO-PLUS, and those that arise in real-world dialogue scenarios. For
the purposes of an initial evaluation, we demonstrate our approach on standard benchmarks from the
International Planning Competition. This document describes work developed as part of WP4 and
WP5, with connections to WP6. (An earlier version of this work appeared in deliverable D5.1.2.)

[D] (Paper presented at the ICAPS 2009 Workshop on Planning and Learning in Thessaloniki, Greece)
This document presents a more detailed, but older version of [C]. This work was developed as part
of WP4 and WP5, with connections to WP6. (An earlier version of this work appeared in deliverable
D5.1.2.)

[E] (Paper presented at the ICAPS 2009 Workshop on Planning and Plan Execution for Real-World Sys-
tems in Thessaloniki, Greece) This document presents an overview of our approach to robot control
in PACO-PLUS, by using Object-Action Complexes (OACs) as a mechanism for overcoming the rep-
resentational differences that arise between different components of an integrated robot system. This
paper also describes the role of the high-level plan execution monitor developed for PKS, as a means
of controlling replanning and resensing activities during plan execution. Such a control mechanism is
required for both task and dialogue plan execution in PACO-PLUS systems. This document highlights
work performed as part of WP4 and WP1, with connections to WP5 and WP8.

[F] (Paper presented at the ICAPS 2009 Workshop on Generalized Planning: Macros, Loops, Domain
Control in Thessaloniki, Greece) This paper describes the structure of a new planner called P2 (Plan-
ning with Programs) that features a rich action representation language where action effects can be
described by program segments. P2 is derived from the original PKS planner, and is the direct result
of implementation work designed to enhance the basic PKS codebase to support dialogue planning.
While this new planning mechanism will not initially be used for dialogue planning in PACO-PLUS,
it provides a baseline for future applications of generalised planning techniques to natural language
processing. This document describes work performed as part of WP4 and WP5.

[G] (Poster presented at the 2010 International Conference on Cognitive Systems in Zurich, Switzerland)
This document describes the integration of the PKS planner on the ARMAR robot platform, with a
focus on task execution in the system architecture. Since the extensions required for communication
and dialogue are built on top of the ordinary PKS system, the mechanisms for high-level task plan ex-
ecution in the PACO-PLUS architecture also form the core of the mechanisms used for dialogue plan
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execution. This document provides a snapshot of the execution architecture currently implemented
on ARMAR, and highlights work performed as part of WP4 and WP1, with connections to WP5 and
WP8.

Together, these papers report a number of significant developments:

• A prototype version of the dialogue planner, built as an extension to the PKS planner.

• Results of a comprehensive set of experiments applying general purpose planning techniques to chal-
lenging problems in natural language generation.

• An extension of our action effect learning mechanism to noisy and partially observable planning
domains, plus initial experiments applying the learning mechanism to real state data from the SDU
robot/vision system.

• A new version of the PKS planner including a re-implementation of the core PKS plan generation
algorithms, and an initial version of a plan execution monitor for PKS.

• A spin-off planner (P2), capable of planning with an extended representation language supporting
action effects described as program segments.

• Changes to the PACO-PLUS control architecture supporting the integration of the new version of PKS
and its plan execution montior, and providing the necessary framework for dialogue planning.

• An implementation of many of the theoretical components planned and previously reported under
WP4 and WP5, providing a complete path from continuous low-level representations to high-level
models for planning and language. The representational structures underlying these components (and
those previously implemented) make use of the OAC concept, previously defined as part of WP4, and
provide the necessary infrastructure to go beyond the planned work of WP5.

A number of questions remain open at the time of this report and constitute further work.

• Integration activities are ongoing to incorporate the PKS-based dialogue planner onto the ARMAR
robot platform.

• A comprehensive set of experiments are planned to evaluate the effectiveness of our dialogue planner
and plan execution monitor in complex domains.

• Additional analysis of the action models learnt from the SDU robot/vision state data is planned, along
with further testing of our action effect learning mechanism.

• We are continuing to investigate the role of probabilistic models in high-level plan generation and
monitoring processes. Since nondeterminacy will undoubtedly arise as the result of perception and
action at the robot/vision level, we are continuing to investigate how best to manage such information
at the higher control levels. Our current approach makes use of rapid replanning [9] which has been
successfully applied by planners that have competed in the probabilistic track of the International
Planning Competition [2].

Besides the connections to WP1, WP4, and WP5 already mentioned, this workpackage also has interactions
with other workpackages including WP2, WP3, WP6, and WP7.
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2. Publications Associated with D5.1.3

[A] Integrating Low-Level Robot/Vision with High-Level Planning and Sensing in PACO-PLUS
Ronald Petrick, Christopher Geib, and Mark Steedman
Internal PACO-PLUS Technical Report, January 2010.

Abstract: This document describes UEDIN’s contribution to ongoing integration work
in PACO-PLUS, to link low-level robot platforms with high-level planning systems. We
investigate two robot domains from the planning-level point of view, as the basis for our
integration work: an object manipulation task in the KIT kitchen domain using the AR-
MAR robot platform, and an object stacking problem using SDU’s robot/vision system.
A high-level action representation is developed for each integration scenario, for the pur-
pose of goal-directed planning, by abstracting the capabilities of a robot and its working
environment. We also present a common message-passing and control architecture to fa-
cilitate communication in the integrated system. High-level planning is provided by the
PKS planner, which UEDIN has extended for use in robotic and linguistic domains. We
also briefly discuss a number of related integration tasks being pursued by UEDIN, such
as plan execution monitoring, high-level action learning, and dialogue planning. This doc-
ument describes components developed as part of WP4 to provide high-level support for
low-level continuous control systems, and forms the basic infrastructure needed to support
language and communication in WP5. It also forms part of the project-wide integration
work reported in WP1, with connections to WP8. The attached version of the report (as of
2010-05-01) reflects the current state of integration activities, including the first version of
the plan execution monitor and prototype changes to PKS supporting dialogue planning.

[B] Experiences with Planning for Natural Language Generation
Alexander Koller and Ronald Petrick
Computational Intelligence, Special Issue on Planning and Scheduling Applications, 2010, to appear.

Abstract: Natural language generation (NLG) is a major subfield of computational lin-
guistics with a long tradition as an application area of automated planning systems. While
current mainstream approaches have largely ignored the planning approach to NLG, sev-
eral recent publications have sparked a renewed interest in this area. In this paper, we
investigate the extent to which these new NLG approaches profit from the advances in
planner expressiveness and efficiency. Our findings are mixed. While modern planners
can readily handle the search problems that arise in our NLG experiments, their overall
runtime is often dominated by the grounding step they perform as preprocessing. Fur-
thermore, small changes in the structure of a domain can significantly shift the balance
between search and preprocessing. Overall, our experiments show that the off-the-shelf
planners we tested are unusably slow for nontrivial NLG problem instances. As a result,
we offer our domains and experiences as challenges for the planning community.

[C] Learning action effects in partially observable domains
Kira Mourão, Ronald Petrick, and Mark Steedman
Proceedings of the European Conference on Artificial Intelligence (ECAI 2010), 2010.

Abstract: We investigate the problem of learning action effects in partially observable
STRIPS planning domains. Our approach is based on a voted kernel perceptron learning
model, where action and state information is encoded in a compact vector representation as
input to the learning mechanism, and resulting state changes are produced as output. Our
approach relies on deictic features that assume an attentional mechanism that reduces the
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size of the representation. We evaluate our approach on a number of partially observable
planning domains, and show that it can quickly learn the dynamics of such domains, with
low average error rates. We show that our approach handles noisy domains, conditional
effects, and that it scales independently of the number of objects in a domain.

[D] Learning action effects in partially observable domains
Kira Mourão, Ronald Petrick, and Mark Steedman
Proceedings of the ICAPS 2009 Workshop on Planning and Learning, pp. 15–22, 2009.

Abstract: We investigate the problem of learning action effects in partially observable
STRIPS planning domains. Our approach is based on a voted kernel perceptron learning
model, where action and state information is encoded in a compact vector representation as
input to the learning mechanism, and resulting state changes are produced as output. Our
approach relies on deictic features that embody a notion of attention and reduce the size
of the representation. We evaluate our approach on a number of partially observable plan-
ning domains, adapted from domains used in the International Planning Competition, and
show that it can quickly learn the dynamics of such domains, with low average error rates.
Furthermore, we show that our approach handles noisy domains, and scales independently
of the number of objects in a domain, making it suitable for large planning scenarios.

[E] Combining Cognitive Vision, Knowledge-Level Planning with Sensing, and Execution
Monitoring for Effective Robot Control
Ronald Petrick, Dirk Kraft, Norbert Krüger, and Mark Steedman
Proceedings of the ICAPS 2009 Workshop on Planning and Plan Execution for
Real-World Systems, pp. 58–65, 2009.

Abstract: We describe an approach to robot control in real-world environments that inte-
grates a cognitive vision system with a knowledge-level planner and plan execution mon-
itor. Our approach makes use of a formalism called an Object-Action Complex (OAC) to
overcome some of the representational differences that arise between the low-level con-
trol mechanisms and high-level reasoning components of the system. We are particularly
interested in using OACs as a formalism that enables us to induce certain aspects of the
representation, suitable for planning, through the robot’s interaction with the world. Al-
though this work is at a preliminary stage, we have implemented our ideas in a framework
that supports object discovery, planning with sensing, action execution, and failure recov-
ery, with the long term goal of designing a system that can be transferred to other robot
platforms and planners.

[F] P2: A Baseline Approach to Planning with Control Structures and Programs
Ronald Petrick
Proceedings of the ICAPS 2009 Workshop on Generalized Planning: Macros, Loops,
Domain Control, pp. 59–64, 2009.

Abstract: Many planners model planning domains with “primitive actions,” where action
preconditions are represented by sets of simple tests about the state of domain fluents, and
action effects are described as updates to these fluents. Queries and updates are typically
combined in only very limited ways, for instance using logical operators and quantification.
By comparison, formalisms like Golog permit “complex actions,” with control structures
like if-else blocks and while loops, and view actions as programs. In this paper we
explore the idea of planning directly with complex actions and programs. We describe the
structure of a simple planner based on undirected search, that generates plans by simulating
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the execution of action programs before they are added to a plan. An initial evaluation
compares this approach against a classical heuristic planner using a domain whose program
structures have been compiled into ordinary PDDL actions. Initial results illustrate that in
certain domains, planning directly with programs can lead to a significant performance
improvement. This work offers a baseline planner to compare against alternate approaches
to planning with programs.

[G] Connecting Knowledge-Level Planning and Task Execution on a Humanoid Robot using
Object-Action Complexes
Ronald Petrick, Nils Adermann, Tamim Asfour, Mark Steedman, and Rüdiger Dillmann
Poster in the proceedings of the International Conference on Cognitive Systems (CogSys), 2010.

Abstract: This poster presents a snapshot of the current integration of the PKS planner on
the ARMAR humanoid robot platform. The planner is responsible for building high-level
plans, and operates closely with an execution monitor that makes decisions concerning
plan continuation, object resensing, and replanning. High-level plans are executed on the
ARMAR robot as a series of robot-level manipulation and sensing actions. Task planning
and task execution are connected using Object-Action Complexes (OACs), a universal rep-
resentation usable at all levels of a cognitive architecture, combining the representational
and computational efficiency of STRIPS rules, and the object- and situation-oriented con-
cept of affordance, together with the logical clarity of formalisms like the event calculus.
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Integrating Low-Level Robot/Vision with High-Level
Planning and Sensing in PACO-PLUS
Technical Report

Ronald Petrick,∗ Christopher Geib, and Mark Steedman
University of Edinburgh

2010-05-01

Abstract

This document describes UEDIN’s contribution to ongoing integration work in PACO-PLUS, to link
low-level robot platforms with high-level planning systems. We investigate two robot domains from
the planning-level point of view, as the basis for our integration work: an object manipulation task
in the KIT kitchen domain using the ARMAR robot platform, and an object stacking problem using
SDU’s robot/vision system. A high-level action representation is developed for each integration
scenario, for the purpose of goal-directed planning, by abstracting the capabilities of a robot and
its working environment. We also present a common message-passing and control architecture to
facilitate communication in the integrated system. High-level planning is provided by the PKS
planner, which UEDIN has extended for use in robotic and linguistic domains. We also briefly
discuss a number of related integration tasks being pursued by UEDIN, such as plan execution
monitoring, high-level action learning, and dialogue planning. This document describes components
developed as part of WP4 to provide high-level support for low-level continuous control systems,
and forms the basic infrastructure needed to support language and communication in WP5. It also
forms part of the project-wide integration work reported in WP1, with connections to WP8.

Revision history

2010-05-01 : Update reflecting the current state of integration activities, including the first ver-
sion of the plan execution monitor and prototype changes to PKS supporting dia-
logue planning.

2009-07-10 : Minor revision of the document.

2009-01-29 : This report presents a status update on UEDIN’s integration work, extending and
replacing two previous UEDIN technical reports: A Scenario for Integrating Low-
Level Robot/Vision, Mid-Level Memory, and High-Level Planning with Sensing
(2008-07-20) and A Scenario for Integrating Low-Level Robot/Vision and High-
Level Planning with Sensing (2008-05-30).

∗Contact: rpetrick@inf.ed.ac.uk
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1 Introduction

In this document we describe the state of integration work designed to link low-level
robot systems with high-level planning components as part of WP4. This work forms
part of the project-wide integration work reported in WP1, and is connected to WP8.

We focus on two robot domains here, as the basis for our integration tasks: an object
manipulation task in the KIT kitchen domain using the ARMAR robot platform [Asfour
et al., 2006, 2008], and an object stacking problem using SDU’s robot/vision system
[Kraft et al., 2008]. In this document we will discuss UEDIN’s contribution to ongoing
integration efforts, from the point of view of the planning task and required high-level
representation in these scenarios.

High-level planning capabilities are supplied by the PKS planner [Petrick and Bacchus,
2002, 2004], which UEDIN is extending for use in robotic and linguistic domains as
part of WP4 and WP5. PKS is a state-of-the-art knowledge-level planner that constructs
plans in the presence of incomplete information. Unlike traditional planners, PKS builds
plans at the “knowledge level”, by representing and reasoning about how the planner’s
knowledge state changes during plan generation. Actions are specified in a STRIPS-like
[Fikes and Nilsson, 1971] manner in terms of action preconditions (state properties that
must be true before an action can be executed) and action effects (the changes the action
makes to properties of the state). PKS is able to construct conditional plans with sensing
actions, and supports numerical reasoning, run-time variables [Etzioni et al., 1992], and
features like functions that arise in real-world planning scenarios.

Like most AI planners, PKS operates best in discrete, symbolic state spaces described us-
ing logical languages. As a result, integration work between UEDIN and KIT/SDU has
centred around the design of high-level action representations that abstract the capabili-
ties of a robot and its working environment for goal-directed planning. Integration also
requires the ability to communicate information between system components. To this
end, UEDIN has developed a socket communication library and message passing proto-
col (WP4) that facilitates the exchange of messages between the planner and lower-level
system components.

Early integration work established a link between SDU’s robot/vision system and UEDIN’s
high-level planning components. More recently, we have focused on combining the
high-level planner with KIT’s ARMAR robot platform. Although differences between
the KIT and SDU systems require different high-level action representations, the “core”
concepts in each representation are similar, and the communication architecture is un-
changed across platforms. We have also reserved a role for possible mid-level processes
which could be added to our architecture, beyond the end of PACO-PLUS.

In the remainder of this document we describe the high-level planning representation
developed for each integration scenario, and the associated message-passing and control
architecture. In Section 2, we discuss UEDIN’s integration work with KIT. In Section 3,
we focus on the SDU integration domain. In Section 4, we describe possible extensions
to our current action representations. In Section 5, we introduce the current specifica-
tion of the message passing protocol and communication architecture. In Section 6, we
briefly discuss a number of related integration tasks being investigated by UEDIN as part
of WP4 and WP5, including plan execution monitoring, action learning, and dialogue
planning. Finally, in Section 7 we mention future directions for this work.
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2 Object Manipulation in a Kitchen Domain (KIT/UEDIN Integration)

In this section we describe the state of ongoing integration work to link UEDIN’s high-
level planning components with KIT’s ARMAR robot platform [Asfour et al., 2006,
2008]. We primarily focus on the action representation used to support planning in
the KIT robot domain, and the kinds of plans we can currently build in this environment.

Our work centres around modelling the tasks that the ARMAR robot can perform within
the KIT kitchen environment (previously described as part of WP1 and WP8). This
domain is a real-world kitchen with commonplace objects and appliances (e.g., cereal
boxes, cups, plates, fridge, stove, etc.). The kitchen is divided into a number of dis-
crete workspaces (e.g., sideboard, cupboard, dishwasher, etc.), each of which support a
range of different activities and challenges for the robot. At an abstract level, the tasks
mainly involve manipulating the set of objects available in the domain, which may re-
quire moving between the workspaces (e.g., the robot may have the task of bringing a
juice container from the fridge to the sideboard).

The high-level representation must accurately model the dynamics of the robot’s inter-
action with the kitchen environment in order to enable directed, goal-driven planning to
be performed. As a result, there are a number of interesting complexities that must be
considered. For instance, both the robot and certain kitchen objects can move between
workspaces. Some objects can also be contained within other objects. Moreover, the
robot has multiple gripper hands and must decide which gripper it should use to manip-
ulate an object; due to the geography of the kitchen and the hardware limitations of the
robot, some objects require that a particular hand be used. The action specification must
also encode the robot’s ability to upright toppled objects or nudge flat objects to the edge
of a surface before grasping. As future work, we will also consider the situation where
the robot has incomplete information about the location of certain objects in the kitchen
and must therefore actively sense the world to find them.

Typically, we will use our domain representation to build plans that direct the robot to
relocate objects in the kitchen. For instance, the robot may be given the goal of clearing
all dirty dishes to the dishwasher, or collecting the ingredients needed to make breakfast.
As a result, our representation must be expressive enough to support such high-level
tasks, while permitting efficient planning in a real-world setting.

2.1 High-level domain description

To encode the above scenario, we formally define the sets of actions and properties we
require for the high-level planning domain. Our focus will be on building a STRIPS-
style representation [Fikes and Nilsson, 1971] that can be used with the PKS planner
[Petrick and Bacchus, 2002, 2004].

We begin by defining a list of special constants which denote certain aspects of ourConstants
domain, such as valid workspace locations, gripper hands, and kitchen objects. In par-
ticular, we make use of the following constants:

• Workspaces: cupboard, dishwasher, fridge, sideboard, stove,

• Gripper hands: lefthand, righthand,

• Objects: applejuice, calgonitsalt, graninijuice, measuringcup,
ricebox, vitaliscereal.
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Constants act as labels that let us reference designated objects within our representation
and generated plans. In this case, we define five discrete workspaces in the kitchen,
two gripper hands, and a set of six objects. Besides the special objects listed above, the
kitchen also contains a set of cups and plates, denoted by constants of the form cup1,
cup2, . . . , cupN and plate1, plate2, . . . , plateM, respectively. Some of the defined
constants also serve a dual purpose in our representation. For instance, the workspace lo-
cations also denote objects that can be manipulated in certain ways (e.g., the dishwasher
can be opened and closed). The constant list can easily be extended if new objects are
added to the domain.

The set of available high-level actions is shown at the top of Table 1. All of these actionsActions
are considered to be ordinary “physical” planning actions with effects that change the
state of the world. These actions correspond to (sets of) low-level motor programs that
the robot can execute in the domain. In our current domain specification, we do not con-
sider high-level “sensing” actions that enable the planner to direct the robot to observe
and return certain information about the state of the world. (The robot is assumed to have
its normal low-level sensors which provide it with world-level information, however.)

High-level actions divide the set of object manipulation tasks into context-dependent
operations. For instance, grasp can be used to pick up objects from the centre of
flat surfaces like the sideboard, while grasp-fromEdge is used to pick up (flat) ob-
jects from the edge of a surface. The remove-from action is used to take objects out
of other objects like the fridge. Once the robot is holding an object it can transfer it
between hands using the pass-object action. Actions also exist for placing objects
onto surfaces (put-down) or into other objects (put-in). Certain objects can be repo-
sitioned to enable grasping. For example, flat objects can be moved to the edge of a
surface (nudge-toEdge) and “toppled” objects can be placed in an upright position
(place-upright). The task of opening objects is also divided into multiple actions.
For instance, open is used to open objects that require a single-handed operation (e.g.,
opening the cupboard) while open-partial and open-complete allow a more com-
plex, two-step opening procedure (e.g., opening the fridge requires the robot to switch
hands halfway through the process). Objects can be closed in a single step using the
close action. Finally, the robot is able to move between workspaces in the kitchen.

All of the above actions are parametrized with variables denoting objects, locations, and
gripper hands. During planning, these variables are replaced with constants to produce
specific action instances. It is these action instances that will ultimately be passed to
the robot and converted into low-level motor programs for execution in the real world.
We note that many of these actions are object centric and modelled with a high degree
of abstraction: we do not provide plan-level actions that specify 3D spatial coordinates,
joint angles, or similar real-valued parameters. Details of the actual execution of these
actions are left to the robot controller. (E.g., grasp does not specify the gripper pose that
should be used to pick up an object, nor the spatial coordinates of the object’s location.)

High-level properties (predicates and functions) model features of the world, robot, andProperties
domain objects, and correspond to abstract versions of information available at the robot
level. High-level properties are typically formed by combining information from mul-
tiple low-level sensors in particular ways, and packaging that information into a logical
form. Like actions, high-level properties can be parametrized and instantiated by defined
constants.
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Actions

close(?l,?h) Close ?l with gripper ?h.

grasp(?o,?l,?h) Grasp object ?o from ?l using gripper ?h.

grasp-fromEdge(?o,?l,?h) Grasp object ?o from the edge of ?l using gripper ?h.

move(?l1,?l2) Move the robot from location ?l1 to location ?l2.

nudge-toEdge(?o,?l,?h) Nudge flat object ?o to the edge of ?l using gripper ?h.

open(?l,?h) Open ?l with gripper ?h.

open-partial(?l,?h) Partially open ?l with gripper ?h.

open-complete(?l,?h) Finish opening ?l with gripper ?h.

pass-object(?o,?h1,?h2) Pass object ?o from gripper ?h1 to ?h2.

place-upright(?o,?l,?h) Put object ?o upright at ?l using gripper ?h.

put-down(?o,?l,?h) Put object ?o down at ?l using gripper ?h.

put-in(?o,?l,?h) Put object ?o into ?l using gripper ?h.

remove-from(?o,?l,?h) Remove object ?o from ?l using gripper ?h.

Properties

atEdge(?o) A predicate indicating that object ?o is at the edge of a surface.

flat(?o) A predicate indicating that object ?o is flat.

gripperEmpty(?h) A predicate indicating that gripper ?h is empty.

hand(?h) A predicate indicating that ?h is a valid gripper hand.

inGripper(?o,?h) A predicate indicating that object ?o is in gripper ?h.

location(?l) A predicate indicating that ?l is a valid location in the kitchen.

object(?o) A predicate indicating that ?o is a valid object in the domain.

objLocation(?o,?l) A predicate indicating that object ?o is at location ?l.

objOpen(?o) A predicate indicating that the door of object ?o is fully open.

objPartialOpen(?o) A predicate indicating that the door of ?o is partially open.

robotLocation = ?l A function indicating that the robot is at location ?l.

toppled(?o) A predicate indicating that object ?o is in a toppled state.

Table 1: High-level actions and properties in the kitchen domain
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The high-level properties in the kitchen domain are shown at the bottom of Table 1.
These properties capture the high-level dynamics of the world while leaving certain
lower-level properties to the robot system (e.g., 3D coordinates, gripper angles, etc.).
For instance, robotLocation denotes the location of the robot in the kitchen and
objLocationmodels object locations, in terms of the location constants defined above,
rather than spatial coordinates. The atEdge property indicates an object is at the edge
of a particular surface. The grippers’ states are modelled by two properties: inGripper
means that a particular object is in one of the robot’s grippers, while gripperEmpty
means that the gripper is empty. Object openness is represented by two properties
that track whether an object is partially open (objPartialOpen) or completely open
(objOpen). Certain object features are also captured in a binary way. For instance, ob-
jects may be flat or toppled. Finally, location, object, and hand are special “type”
predicates that map the range of constants into particular classes, letting us restrict the
constants that can be instantiated for a given parameter.

2.2 Representing actions for planning

Using the above constants, actions, and properties we can write planning operators for
the actions we require. Our current domain encoding is given in Table 2. These actions
are formalized for use with the PKS planner, however, we have simplified the syntax
here. We note that the & and | operators in certain action preconditions correspond
to conjunction and disjunction operations, respectively. Action effects are defined in
terms of the changes they make to the planner’s knowledge state, and so references to
Kf denote an update to a particular PKS database used to model its knowledge of world
facts (similar to a standard STRIPS database).

Due to the physical layout of the kitchen environment and current hardware limitationsRestrictions
and

limitations
of the ARMAR robot, our high-level actions encode a number of constraints which limit
their operation. For instance, the close action can be used to close the cupboard, dish-
washer, or fridge, however the robot’s right gripper must be used to close the cupboard
and dishwasher; the left gripper must be used to close the fridge. Likewise, the open
action must be used to open the cupboard and dishwasher, while open-partial and
open-complete must be used to open the fridge. Similar types of constraints exist
for other actions in our representation. There are also constraints still under discussion
that haven’t yet been encoded in our current representation (e.g., can flat objects be in
a toppled state? Does the robot need to slide a plate to the edge of the cupboard before
removing it?). While some of these restrictions may be lifted in the future, others are
necessary for modelling the correct operation of the robot.

We also note that this action representation is preliminary and our encoding may be
extended in the future to accommodate new actions or properties. For instance, we
are considering the addition of two high-level sensing actions: an action that checks a
workspace for specific objects, and an action the determines whether an object is in a
suitable orientation for grasping or stacking. More discussions are needed with KIT to
properly define such actions.
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Actions Preconditions Effects

close(?l,?h) ((?l=cupboard & ?h=righthand) |

(?l=dishwasher & ?h=righthand) |

(?l=fridge & ?h=lefthand))

robotLocation=?l

(objOpen(?l) | objPartialOpen(?l)

gripperEmpty(?h)

del(Kf,objOpen(?l))

del(Kf,objPartialOpen(?l))

grasp(?x,?l,?h) object(?x)

(?l=sideboard | ?l=stove)

hand(?h)

¬flat(?x)
¬toppled(?x)
robotLocation=?l

objLocation(?x,?l)

gripperEmpty(?h)

add(Kf,inGripper(?x,?h))

del(Kf,gripperEmpty(?h))

del(Kf,objLocation(?x,?l))

grasp-fromEdge(?x,?l,?h) object(?x)

(?l=sideboard | ?l=stove)

hand(?h)

flat(?x)

atEdge(?x)

robotLocation=?l

objLocation(?x,?l)

gripperEmpty(?h)

add(Kf,inGripper(?x,?h))

del(Kf,gripperEmpty(?h))

del(Kf,objLocation(?x,?l))

del(Kf,atEdge(?x))

move(?l1,?l2) location(?l1)

location(?l2)

?l1 , ?l2
robotLocation=?l1

add(Kf,robotLocation=?l2)

nudge-toEdge(?x,?l,?h) object(?x)

(?l=sideboard | ?l=stove)

hand(?h)

flat(?x)

¬atEdge(?x)
robotLocation=?l

objLocation(?x,?l)

gripperEmpty(?h)

add(Kf,atEdge(?x))

open(?l,?h) (?l=cupboard | ?l=dishwasher)

?h=righthand

robotLocation=?l

¬objOpen(?l)
gripperEmpty(?h)

add(Kf,objOpen(?l))

open-partial(?l,?h) ?l=fridge

?h=lefthand

robotLocation=?l

¬objOpen(?l)
¬objPartialOpen(?l)
gripperEmpty(?h)

add(Kf,objPartialOpen(?l))

Continued on next page. . .
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Actions Preconditions Effects

open-complete(?l,?h) ?l=fridge

?h=righthand

robotLocation=?l

¬objOpen(?l)
objPartialOpen(?l)

gripperEmpty(?h)

add(Kf,objOpen(?l))

del(Kf,objPartialOpen(?l))

pass-object(?x,?h1,?h2) object(?x)

hand(?h1)

hand(?h2)

?h1 , ?h2
inGripper(?x,?h1)

gripperEmpty(?h2)

add(Kf,gripperEmpty(?h1))

add(Kf,inGripper(?x,?h2))

del(Kf,gripperEmpty(?h2))

del(Kf,inGripper(?x,?h1))

place-upright(?x,?l,?h) object(?x)

location(?l)

hand(?h)

toppled(?x)

robotLocation=?l

objLocation(?x,?l)

gripperEmpty(?h)

del(Kf,toppled(?x))

put-down(?x,?l,?h) object(?x)

(?l=sideboard | ?l=stove)

hand(?h)

robotLocation=?l

inGripper(?x,?h)

add(Kf,gripperEmpty(?h))

add(Kf,objLocation(?x,?l))

del(Kf,inGripper(?x,?h))

put-in(?x,?l,?h) object(?x)

((?l=cupboard & hand(?h)) |

(?l=dishwasher & ?h=righthand) |

(?l=fridge & ?h=lefthand))

robotLocation=?l

objOpen(?l)

inGripper(?x,?h)

add(Kf,gripperEmpty(?h))

add(Kf,objLocation(?x,?l))

del(Kf,inGripper(?x,?h))

remove-from(?x,?l,?h) object(?x)

((?l=cupboard & hand(?h)) |

(?l=fridge & ?h=lefthand))

robotLocation=?l

objOpen(?l)

objLocation(?x,?l)

¬toppled(?x)
gripperEmpty(?h)

add(Kf,inGripper(?x,?h))

del(Kf,gripperEmpty(?h))

del(Kf,objLocation(?x,?l))

Table 2: Representation of high-level actions in the kitchen domain
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2.3 Example plans

In this section we give three examples of plans we can currently generate in the kitchen
domain using PKS and the above action descriptions.

In each example we consider a scenario with only 3 objects: the vitalis cereal, the appleCommon
initial

conditions
juice, and a plate. Initially, all the objects and the robot are located at the sideboard.
The plate is considered to be a flat object and the apple juice box is in a toppled state.
The cupboard, dishwasher, and fridge doors are all closed. Thus, we have the following
common initial conditions:

• Objects names: vitaliscereal, applejuice, plate1,

• Initial object locations: objLocation(vitaliscereal,sideboard),
objLocation(applejuice,sideboard), objLocation(plate1,sideboard),

• Initial robot location: robotLocation = sideboard,

• Object properties: flat(plate1), toppled(applejuice).

In each example we consider the goal of returning particular objects to different locations
in the kitchen: the vitalis cereal to the cupboard, the plate to the dishwasher, and the
apple juice to the fridge. The plan in each case must also ensure that any objects opened
should be closed again by the end of the plan. Since our current action representation
does not include sensing actions, the resulting plans will be linear plans, i.e., simple
sequences of actions.

2.3.1 Example 1

Goal: The vitaliscereal should be in the cupboard.

Plan

grasp(vitaliscereal,sideboard,lefthand)

move(sideboard,cupboard)

open(cupboard,righthand)

put-in(vitaliscereal,cupboard,lefthand)

close(cupboard,righthand)

In this case, the object manipulation is straightforward. The plan directs the robot to
pick up the vitalis cereal with its left gripper, move to the cupboard, open the cupboard
door with its right gripper, place the cereal in the cupboard, and close the door.
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2.3.2 Example 2

Goal: plate1 should be in the dishwasher.

Plan

nudge-toEdge(plate1,sideboard,lefthand)

grasp-fromEdge(plate1,sideboard,lefthand)

move(sideboard,dishwasher)

open(dishwasher,righthand)

pass-object(plate1,lefthand,righthand)

put-in(plate1,dishwasher,righthand)

close(dishwasher,righthand)

Since plate1 is a flat object, the plan first directs the robot to nudge the object to the
edge of the table before grasping it with its left hand. The robot can then move to the
dishwasher and open it with its right hand. In this case, the robot must pass the plate
between its hands and put it into the dishwasher using its right hand. (This behaviour
results from the restriction that ensures the robot only manipulates the dishwasher with
its right hand.) The plan finishes by directing the robot to close the dishwasher door.

2.3.3 Example 3

Goal: the applejuice should be in the fridge.

Plan

place-upright(applejuice,sideboard,lefthand)

grasp(applejuice,sideboard,righthand)

move(sideboard,fridge)

open-partial(fridge,lefthand)

pass-object(applejuice,righthand,lefthand)

open-complete(fridge,righthand)

put-in(applejuice,fridge,lefthand)

close(fridge,lefthand)

Since the apple juice is initially in a toppled state, the plan directs the robot to upright
the object before grasping it with its right hand and moving to the fridge. In this case,
opening the fridge is a two-step operation that begins with the robot’s left gripper and
finishes with the robot’s right gripper. In between, the robot must pass the apple juice
between its hands. Once the fridge is open, the plan directs the robot to put the apple
juice in the fridge and close the fridge to complete the plan.

We note that instead of considering the individual goals in the above examples, we could
have given the planner the more complex goal of performing all of the above tasks in a
single plan (i.e., “clean up the kitchen”). One possible solution that PKS could produce
in this case is a plan that conjoins each of the above plan fragments with appropriate
move actions inserted, to return the robot to the sideboard to retrieve the next object.
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3 Object Stacking with Sensing (SDU/UEDIN Integration)

In this section we discuss a second planning domain, which combines UEDIN’s high-
level architecture with SDU’s cognitive vision robot platform [Kraft et al., 2008] (part of
WP4.1). While we have recently focused on integration between KIT and UEDIN sys-
tems, our work with SDU is ongoing. In particular, we continue to extend our high-level
architecture and protocols—which were initially developed for use with SDU (and have
been successfully transferred to the KIT system). The more mature state of integration
between SDU and UEDIN provides us with an opportunity to develop and experiment
with new components (e.g., high-level sensing actions and plan execution monitoring)
before deploying them on the KIT platform. Furthermore, by working with multiple
robot systems we can better ensure we develop general techniques that can be transferred
to other platforms—a requirement we believe is essential for cognitive architectures to
be successful.

The testing domain we have developed with SDU is a simple object manipulation sce-
nario. We assume a table with a number of objects that are graspable by the robot. We
consider situations with no more than 10 objects and, initially, only 1-3 objects. For
simplicity we assume that objects are generally cylindrical in shape but not necessarily
identical. In particular, each object can have a different radius which determines its size.
Objects may or may not be open containers which, together with object size, determines
whether or not we can stack objects inside other objects.

The goal of the scenario is to clear all open objects from the table, by removing them to
some designated location (e.g., a shelf, a corner of the table, etc.). The location may also
be restricted in some way as to force object stacking in order to successfully complete
the task. For instance, there might only be room for 2 objects to sit side by side on a
shelf, meaning all other objects would have to be appropriately stacked. The high-level
planner will typically have only incomplete information concerning the openness of ob-
jects and must therefore plan explicit sensing actions to determine whether a particular
object is open or not. Unlike ordinary physical actions which change the state of the
world, sensing actions typically return information about the world state without nec-
essarily changing it. Object openness plays two important roles in this scenario: as a
goal condition that determines which objects should be removed from the table, and as
a prerequisite for stacking operations.

This scenario also reserves a role for mid-level memory components (WP4.2) within
a testing environment that lets us investigate the interaction between all three levels of
the system. For example, consider a plan that includes a high-level sensing action to
determine the openness of an object. At the low level, the robot/vision system may be
able to ascertain whether an object is open or not by one of two means: it can poke an
object in order to verify its concavity, or it can focus the vision system on the object at a
higher level of resolution. A mid-level memory component might be able to make a more
informed choice between poking and focusing operations and, thus, could refine a high-
level plan before passing it to the low level. The robot/vision system must then interpret,
understand, and execute the plans generated and refined by the upper levels. Although
we are currently interested in establishing a direct connection between the robot/vision
system and planner, the opportunity remains for integrating mid-level components in the
future.
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(a) Grasp Type A (b) Grasp Type B (c) Grasp Type C (d) Grasp Type D

Figure 1: Robot grasp types available to the planner

3.1 High-level domain description

To encode the above scenario, we define a set of high-level actions and properties, as
described in Table 3. In contrast to the domain description of the previous section,
our representation will include both ordinary “physical” actions that change the state of
the world, and high-level “sensing” actions that observe the state of the world, but don’t
necessarily change it. Furthermore, the set of defined actions differs from that of the KIT
scenario (e.g., the KIT domain focuses on multi-handed object manipulation while the
SDU domain deals with multiple grasping options and object stacking). Certain aspects
of the domain representation, and the high-level control architecture, remain identical
however. As in the previous domain, high-level properties and actions not only form the
basis of the planner’s formal domain representation but are related to low-level features
and motor programs.

In discussions with SDU we have agreed to model four types of grasping actions at thePhysical
actions planning level, as illustrated in Figure 1. These actions correspond to a subset of the

possible grasping options the robot is capable of performing. In general, these actions
exhibit the following behaviour:

• Grasp Type A: This action can only be used to grasp objects at the top of a stack, or
an empty object on the table. Objects must also satisfy a minimum and maximum
radius restriction.

• Grasp Type B: This action can only be used to grasp objects on the table that are
not part of a stack. Objects must also satisfy a minimum radius restriction.

• Grasp Type C: This action can only be used to grasp objects that aren’t contained
in other objects, i.e., the “outermost” object which must be on the table. Objects
must also satisfy a maximum radius restriction.

• Grasp Type D: This action can only be used to grasp objects that aren’t contained
in other objects, i.e., objects that are on the table. Objects must also satisfy a
maximum radius restriction. For simplicity, we will assume that objects stacked
within the object being grasped will not affect the grasp.

For the planner’s domain encoding it is necessary to subdivide Grasp Type A into two
separate actions, to avoid reasoning about conditional effects. The planner therefore has
five grasp actions available to it, corresponding to the four types of grasps available to
the robot. (For the purposes of the sample plans in this document we only require Grasp
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Types A and D.) Each grasping action takes a single argument, ?x, denoting the label of
an object. We have agreed that each object in the world will be designated by a string of
the form objN, where N is a non-negative integer, e.g., obj42.

We have also encoded four actions for moving and manipulating objects when success-
fully grasped (i.e., the “put” actions in Table 3). Each manipulation action is object
centric and modelled with a high degree of abstraction. For instance, we do not pro-
vide plan-level actions that specify 3D spatial coordinates, joint angles, or similar real-
valued parameters. The putAway action is particularly generic and should be consid-
ered a placeholder for a more complex (possibly predefined) operation that clears an
object from the table to its final destination location. For the purpose of this docu-
ment we will assume that objects are put away onto a shelf. We also note that both
putInto-objOnTable and putInto-stack actions denote stacking operations which
will have as a prerequisite the property that objects can only be stacked into open objects.

The high-level representation also includes a single sensing action, sense-open(?x).Sensing
actions At the planning level, this action is modelled as an information gathering or knowledge-

producing action that provides the planner with information about the openness of an
object. The high-level description of this action does not, however, prescribe how the
robot/vision system should actually obtain this information. For instance, a sense-open
action could potentially be executed at the low level as a poke operation which tests an
object’s concavity, or a focus operation which directs the vision system to study an object
at a higher resolution. (A mid-level memory process could also potentially mediate
between these choices.) Currently, the robot/vision system uses a poking operation, but
this action is subject to change in the future.

Table 3 also shows the current set of high-level properties we have defined for this do-Properties
main. Our list includes a set of predicates and functions which we have agreed could rea-
sonably be provided to the planner from sensor information available at the robot/vision
level. These properties are subject to change, however, as our requirements evolve.

3.2 Representing actions for planning

Using the above properties we can write PKS operators for the actions in this domain.
For simplicity, we have made the following restrictions in our action encodings: (i) all
objects are initially assumed to be on the table, (ii) grasp type C will initially be omitted
(grasp type B is not required for our initial examples), and (iii) the put-onTable action
will initially be omitted since there are no initial object stacks.

Our current domain encoding is given in Table 4. These actions are formalized for use
with the PKS planner, however, we have simplified the syntax here. Although most
of the details of the actual action encodings can be ignored, we mention two important
points. First, each action operator is parametrized with a set of arguments that can denote
any object in the world. Thus, all of our actions are object centric. Second, our encoding
takes advantage of PKS’s ability to work with functions and simple numerical expres-
sions, which we include as part of the action preconditions and effects. For instance, the
radius of an object plays a role in determining whether or not it can be stacked inside an-
other object, and the minimum/maximum grasp values help determine whether or not a
particular grasp action can be applied. Our domain encoding can be extended as needed
to accommodate new actions or properties that may arise in the future.
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Actions

graspA-fromTable(?x) Grasp object ?x from the table using Grasp Type A.

graspA-fromTopOfStack(?x) Grasp object ?x from the top of a stack using Grasp Type A.

graspB-fromTable(?x) Grasp object ?x from the table using Grasp Type B.

graspC-fromTable(?x) Grasp object ?x from the table using Grasp Type C.

graspD-fromTable(?x) Grasp object ?x from the table using Grasp Type D.

put-onTable(?x) Put object ?x onto the table.

putInto-objOnTable(?x,?y) Put object ?x into object ?y, which is on the table.

putInto-stack(?x,?y) Put object ?x into object ?y, which is at the top of a stack on
the table.

putAway(?x) Put object ?x away.

sense-open(?x) Determine whether object ?x is open or not.

Properties

clear(?x) A predicate indicating that no object is stacked in ?x.

graspAMinRadius = ?x

graspAMaxRadius = ?x

graspBMinRadius = ?x

graspCMaxRadius = ?x

graspDMaxRadius = ?x

Functions indicating the minimum/maximum radius restric-
tions for each grasp type.

gripperEmpty A predicate describing whether the robot’s gripper is empty or
not.

inGripper(?x) A predicate indicating that the robot is holding object ?x in its
gripper.

inStack(?x,?y) A predicate indicating that object ?x is in a stack with object
?y at its base.

isIn(?x,?y) A predicate indicating that object ?x is stacked in object ?y.

onShelf(?x) A predicate indicating that object ?x is on the shelf.

onTable(?x) A predicate indicating that object ?x is on the table.

open(?x) A predicate indicating that object ?x is open.

radius(?x) = ?y A function indicating that the radius of object ?x is ?y.

reachableA(?x)

reachableB(?x)

reachableC(?x)

reachableD(?x)

Predicates indicating that object ?x is reachable by the gripper
using a particular grasp.

shelfSpace = ?x A function indicating that there are ?x empty shelf spaces.

Table 3: High-level actions and properties in the object stacking domain
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Actions Preconditions Effects

graspA-fromTable(?x) reachableA(?x)

clear(?x)

gripperEmpty

onTable(?x)

radius(?x) ≥ graspAMinRadius
graspAMaxRadius ≥ radius(?x)

add(Kf,inGripper(?x))

del(Kf,gripperEmpty)

del(Kf,onTable(?x))

graspA-fromTopOfStack(?x) reachableA(?x)

clear(?x)

gripperEmpty

radius(?x) ≥ graspAMinRadius
graspAMaxRadius ≥ radius(?x)
(∃ ?z).
inStack(?x,?z)

onTable(?z)

add(Kf,inGripper(?x))

del(Kf,gripperEmpty)

(∀ ?y). isIn(?x,?y) ⇒
del(Kf,isIn(?x,?y))

add(Kf,clear(?y))

(∀ ?z). inStack(?x,?y) ⇒
del(Kf,inStack(?x,?z))

graspB-fromTable(?x) reachableB(?x)

clear(?x)

gripperEmpty

onTable(?x)

radius(?x) ≥ graspBMinRadius

add(Kf,inGripper(?x))

del(Kf,gripperEmpty)

del(Kf,onTable(?x))

graspD-fromTable(?x) reachableD(?x)

gripperEmpty

onTable(?x)

graspDMaxRadius ≥ radius(?x)

add(Kf,inGripper(?x))

del(Kf,gripperEmpty)

del(Kf,onTable(?x))

put-onTable(?x) inGripper(?x) add(Kf,gripperEmpty)

add(Kf,onTable(?x))

del(Kf,inGripper(?x))

putInto-objOnTable(?x,?y) ?x , ?y
inGripper(?x)

open(?y)

clear(?y)

onTable(?y)

radius(?y) > radius(?x)

add(Kf,gripperEmpty)

add(Kf,isIn(?x,?y))

add(Kf,inStack(?x,?y))

del(Kf,clear(?y))

del(Kf,inGripper(?x))

(∀ ?w). inStack(?w,?x) ⇒
del(Kf,inStack(?w,?x))

add(Kf,inStack(?w,?y))

putInto-stack(?x,?y) ?x , ?y
inGripper(?x)

open(?y)

clear(?y)

radius(?y) > radius(?x)

(∃ ?z).
inStack(?y,?z)

onTable(?z)

add(Kf,gripperEmpty)

add(Kf,isIn(?x,?y))

del(Kf,clear(?y))

del(Kf,inGripper(?x))

(∀ ?z). inStack(?y,?z) ⇒
add(Kf, inStack(?x,?z))

(∀ ?w). inStack(?w,?x) ⇒
del(Kf,inStack(?w,?x))

add(Kf,inStack(?w,?z))

putAway(?x) inGripper(?x)

shelfSpace > 0

add(Kf,onShelf(?x))

add(Kf,gripperEmpty)

del(Kf,inGripper(?x))

shelfSpace = shelfSpace - 1

sense-open(?x) ¬Kw(open(?x))

onTable(?x)

add(Kw,open(?x))

Table 4: Representation of high-level actions in the object stacking domain
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As with our planning domain in the previous section, the actions in Table 4 use a PKS-
style notation which is similar to STRIPS. However, unlike STRIPS, PKS uses multiple
databases as the basis for its representation. Thus, references to Kf and Kw in the “ef-
fects” section of an action denote two PKS databases: Kf is like a standard STRIPS
databases that stores the planner’s knowledge of facts, while Kw is a specialized database
for storing the effects of sensing actions. Also, ¬Kwopen(?x) in the description of
sense-open is a knowledge precondition that ensures the planner does not include a
sensing action in a plan if it already knows the outcome of the sensing (i.e., if the plan-
ner already knows whether an object is open or not then it shouldn’t sense the object).

3.3 Example plans

Using the above action descriptions, we give three examples of planning problems we
can solve with PKS. In each example we consider a scenario with 2 objects. Each object
has a size as indicated by its radius. We also assume certain minimum/maximum values
for the grasps but these values don’t play a large role in these examples. (For simplicity
we use integer values in our examples however we also permit real-valued quantities.)

In each example we assume the following initial conditions:Common
initial

conditions • Objects names: obj1, obj2,

• Object radii: radius(obj1) = 1, radius(obj2) = 4,

• Initial shelf space: shelfSpace = 1,

• Initial configuration: all objects are on the table (no initial stacks).

The goal in each example is to clear the open objects from the table by placing them on a
shelf with limited space. In Example 1, the planner initially knows that both objects are
open and, thus, can build a linear plan as a simple action sequence. In Examples 2 and 3,
sensing actions are required: in the second example, the planner knows that one object
is not open but does not know whether the second object is open or not; in the third
example, the planner does not know whether either object is open or not.

When PKS constructs a plan that includes sensing actions, it can build into the plan a set
of conditional branches for reasoning about the possible outcomes of a sensing opera-
tion. In particular, one branch is constructed for each possible value the sensed property
might have. The resulting plans in this case are structured as trees rather than simple
linear sequence of actions. In our examples, branch points are denoted by expressions
like “branch(open(objX)),” meaning “branch on the truth value of open(objX).” In
this scenario, we will only consider branches on binary properties, i.e., properties that
can be either true or false. A branch point is followed by two plan sections, labelled
as “K+” and “K-,” denoting two disjoint plan branches. The K+ branch indicates the
“knowledge positive” branch where open(objX) is assumed to be true. The K- branch
indicates the “knowledge negative” branch where open(objX) is assumed to be false
(i.e., ¬open(objX) is assumed to be true). Each branch can contain a sequence of
actions and possibly other branch points. A nil tag along a branch indicates that no
further operation takes place along that branch. At execution time, the information re-
turned from a sensing action will let the plan execution monitor decide which branch of
the plan it should follow at a branch point. The planner ensures that when conditional
plans are constructed, the goals are achieved along every branch of the plan.

Integrating low-level robot/vision with high-level planning and sensing in PACO-PLUS 18

Page 28 of 99



3.3.1 Example 1

Initial conditions: The planner initially knows open(obj1) and open(obj2) are true.

Plan

graspA-fromTable(obj1)

putInto-objOnTable(obj1,obj2)

graspD-fromTable(obj2)

putAway(obj2)

Since obj1 and obj2 are both initially known to be open the planner does not need
to include any sensing actions in the plan. The two objects can simply be stacked and
removed from the table.

3.3.2 Example 2

Initial conditions: The planner initially knows that ¬open(obj1) is true but does not
know the state of open(obj2).

Plan

sense-open(obj2)

branch(open(obj2))

K+:

graspA-fromTable(obj2)

putAway(obj2)

K-:

nil

Since the planner does not initially know whether obj2 is open or not it includes a
sense-open action in the plan. The plan then branches on the two possible outcomes of
open(obj2). If open(obj2) is true (the K+ branch) then obj2 is grasped and removed
from the table; if open(obj2) is false (the K- branch) then no further action is taken.
Since the planner initially knows that obj1 is not open, this object does not need to be
removed from the table.
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3.3.3 Example 3

Initial conditions: The planner does not initially know the state of open(obj1) and
open(obj2).

Plan

sense-open(obj1)

sense-open(obj2)

branch(open(obj2))

K+:

branch(open(obj1))

K+:

graspA-fromTable(obj1)

putInto-objOnTable(obj1,obj2)

graspD-fromTable(obj2)

putAway(obj2)

K-:

graspA-fromTable(obj2)

putAway(obj2)

K-:

branch(open(obj1))

K+:

graspA-fromTable(obj1)

putAway(obj1)

K-:

nil

Since the planner does not initially know whether obj1 or obj2 is open, it includes
two sense-open actions in the plan. It then considers each possible outcome of these
actions by constructing a plan with four branches (an initial branch point, followed by a
second branch point along each of the top-level branches):

(i) Along the K+/K+ branch where open(obj2) and open(obj1) are true, both ob-
jects are grasped and put away as in Example 1.

(ii) Along the K+/K- branch where open(obj2) and ¬open(obj1) are true, object
obj2 is grasped and put away.

(iii) Along the K-/K+ branch where ¬open(obj2) and open(obj1) are true, object
obj1 is grasped and put away.

(iv) Along the K-/K- branch where ¬open(obj2) and ¬open(obj1) are true, no fur-
ther action is taken.
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Actions

pullCloser(?x) Pull an object ?x closer to the robot.

pullCloser-usingObject(?x,?y) Pull object ?x closer to the robot using object ?y.

relocate-forGrasp(?x) Relocate object ?x into a position that permits grasping.

Properties

extendsGripper(?x) A predicate indicating that object ?x can be used to extend the
robot’s gripper.

inExtendedRange(?x) A predicate indicating that object ?x is in the range of the
robot’s extended gripper.

inGraspablePosition(?x) A predicate indicating that object ?x is in a graspable position.

inRange(?x) A predicate indicating that object ?x is in the range of the
robot’s ordinary gripper.

Table 5: Additional high-level actions and properties

4 Experimental Extensions to the Integration Domains

We have also defined a set of actions and properties that are not currently part of our
integration domains, but could be added to either domain as possible extensions.

4.1 Pulling and relocating actions

Table 5 describes three new actions and four new properties we are currently experiment-
ing with. These additions introduce a simple notion of object distance from the robot,
and the requirement that objects be within the robot’s reach before they can be manip-
ulated. The inRange predicate describes an object as being close enough to the robot
to be manipulated by its ordinary gripper, while inExtendedRange means an object is
outside the ordinary gripper range but reachable using a simple tool (e.g., a stick or hook)
that extends the gripper’s range. The pullCloser action enables the robot to move an
object closer to its workspace, with the effect that all objects stacked in that object are
also dragged closer. For instance, if the top object in a stack is not within the robot’s
range but the base object of the stack is, the robot can pull the stack of objects closer in
order to manipulate the top object. The pullCloser-usingObject action allows the
robot to use certain objects in the domain as a gripper extension, to move objects in its
“extended” range into its ordinary workspace. Finally, the relocate-forGrasp action
allows the robot to move an object into a better position in its workspace that facilitates
grasping (denoted by the predicate inGraspablePosition), for instance by nudging or
pushing the object. We note that inGraspablePosition does not necessarily indicate
that a grasp will actually succeed, but only that the positioning of the object (given its
shape, orientation, etc.) does not prevent a grasp attempt.

A preliminary encoding of these actions is given in Table 6, however, there are still
problems with our current representation. For instance, the definition of the action
pullCloser-usingObject does not take into consideration how the “gripper exten-
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Actions Preconditions Effects

pullCloser(?x) inRange(?x)

gripperEmpty

onTable(?x)

(∃ ?y).
?y , ?x
inStack(?y,?x)

inExtendedRange(?y)

(∀ ?y).
inStack(?y,?x)

inExtendedRange(?y)⇒
add(Kf,inRange(?y))

del(Kf,inExtendedRange(?y))

pullCloser-usingObject(?x,?y) ?x , ?y
inExtendedRange(?x)

clear(?x)

onTable(?x)

inGripper(?y)

extendsGripper(?y)

del(Kf,inExtendedRange(?x))

add(Kf,inRange(?x))

relocate-forGrasp(?x) inRange(?x)

gripperEmpty

onTable(?x)

clear(?x)

¬inGraspablePosition(?x)

add(Kf,inGraspablePosition(?x))

Table 6: Representation of additional high-level actions

sion” object has been grasped, only that it is in the gripper. One can imagine a more
sophisticated representation where a specific grasp type must be applied to use an object
“for pulling”. We also do not currently take into consideration the actual length of the
object used to extend the gripper, but instead only consider broad ranges. Furthermore,
the pullCloser does not mention how an object is actually moved towards the robot;
we must decide if this action requires a particular grasp type and whether an object
should be grasped with an ordinary grasp action before being pulled closer.

We also note that relocate-forGrasp and inGraspablePosition are quite abstract,
and are really generalised versions of actions like nudge-toEdge and properties like
atEdge from our first integration domain. While this particular action and predicate
combination may seem implausible as a robot-level reflex and sensor, we mention them
to highlight the complex learning problem that must take place to move from primitive
sensor data to an abstract action representation. In practice, such actions and properties
would more likely be applied in particular contexts (like nudge-toEdge for flat objects).

4.2 Example plans

To illustrate the use of the above actions and properties, we give three short examples
of planning problems we can solve. These examples assume that the actions in Table 6
have been combined with the action specifications in Table 4 from the SDU/UEDIN
robot stacking scenario. (These actions can also be added to the KIT/UEDIN scenario
with few changes required.) In each example we consider a domain with four objects,
with the goal of removing all open objects from the table.
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4.2.1 Example 1

Initial conditions: The planner initially knows that obj1, obj2, and obj3 are all on the
table and open. Object obj4 is not open but can be used as a gripper extension. Object
obj3 is known to be outside the range of the gripper.

Plan

graspA-fromTable(obj2)

putAway(obj2)

graspD-fromTable(obj4)

pullCloser-usingObject(obj3,obj4)

put-onTable(obj4)

graspA-fromTable(obj3)

putInto-objOnTable(obj3,obj1)

graspD-fromTable(obj1)

putAway(obj1)

In this plan the robot first grasps and removes obj2 from the table. It then uses obj4
to pull obj3 into its working space, before stacking obj3 in obj1 and removing the
stacked objects from the table.

4.2.2 Example 2

Initial conditions: The planner initially knows that obj1, obj2, and obj3 are all open,
and that obj4 is not open. Objects obj1 and obj2 are initially on the table. Object obj3
is stacked in obj1 but is outside the range of the gripper. Object obj1 is within the range
of the gripper however it can only be grasped using grasp type B.

Plan

pullCloser(obj1)

graspA-fromTopOfStack(obj3)

putInto-objOnTable(obj3,obj2)

graspB-fromTable(obj1)

putAway(obj1)

graspD-fromTable(obj2)

putAway(obj2)

In this plan the robot first pulls obj1 closer, bringing obj3 into its working space. Be-
cause obj1 can only be grasped using grasp type B, the entire stack cannot simply be
removed to the shelf. Instead, the robot must unstack obj3, stack obj3 in obj2, and
then remove obj1 and obj2 from the table. Object obj4 plays no role in this plan.
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4.2.3 Example 3

Initial conditions: The planner initially knows that obj1, obj2, and obj3 are all on the
table and open. Object obj4 is not open but can be used as a gripper extension. Object
obj3 is known to be outside the range of the unextended gripper. Object obj2 is not in
a graspable position on the table.

Plan

graspA-fromTable(obj1)

putAway(obj1)

graspD-fromTable(obj4)

pullCloser-usingObject(obj3,obj4)

put-onTable(obj4)

relocate-forGrasp(obj2)

graspA-fromTable(obj3)

putInto-objOnTable(obj3,obj2)

graspD-fromTable(obj2)

putAway(obj2)

In this case, the plan directs the robot to remove obj1 from the table. It then uses
obj4 to pull obj3 into the range of the gripper, relocates obj2 to a better position that
facilitates grasping, then grasps obj3 and stacks it in obj2 before removing obj2 from
the table. (Alternatively, the planner could have constructed a plan that stacked obj3 in
obj1 before removing obj1 and obj2 from the table.)
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Robot/

Figure 2: Flow of messages between the three system levels

5 Message Passing Protocol and Control Architecture

In this section we describe a simple domain-independent message passing protocol and
control architecture for exchanging information between the low-level robot/vision, mid-
level memory, and high-level planning components in the system. We begin by defin-
ing a set of messages that can be passed between the system levels. We then describe
the structure of the control architecture, and provide details of a communication library
supplied by UEDIN that implements our protocols. Both integration domains in this
document currently use our message passing protocol and architecture which we believe
is sufficiently general to support future domains on the PACO-PLUS robot platforms.

5.1 Message definitions

We define a set of 10 messages that capture the interactions between the three levels
of the system. Each message is defined by its type and content. A message’s type is
simply its name or label. Depending on the message type, a message may also contain
specific content or data to be sent. The message passing protocol we have defined is
currently based on a point-to-point model, where each message is sent by a particular
system component to another component. Moreover, the message set is designed in such
a way that messages are (generally) defined in send/receive pairs so that only certain
messages can be initiated by a “sending” level, with an appropriate response being sent
by the “receiving” level. The current set of defined messages is given in Table 7 and the
send/receive message pairs are given in Table 8.

5.2 Message passing control algorithms

The message passing protocol is initially driven by the robot/vision level of the system.
Because of the paired send/receive nature of our message set, the upper system levels
are forced to coordinate their operations in order to respond appropriately to lower-level
messages. Currently, communication only takes place between two “adjacent” levels
of the system, i.e., the robot and memory, or the memory and planner (see Figure 2).
This means that all communication between the robot and planner must flow through the
memory level, which typically acts as a forwarding service, but may also observe or re-
fine the flow of messages (see below). Because the message passing protocol is mainly
driven by the robot level, the memory and planning levels operate as message servers
that respond to message queries. This protocol also permits certain message exchanges
between the planner and memory levels that can interrupt the standard robot-driven pro-
cess. It is also worth noting that nothing in the implementation of the communica-
tion architecture prevents us from expanding this protocol to permit direct point-to-point
communication between any two components of the system.
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Message Type Description

MSG STATE UPDATE Provide updated state information
Sender/Destination: Robot to Memory, or Memory to Planner
Content: World state specification

ACK STATE UPDATE Acknowledge state update message
Sender/Destination: Planner to Memory, or Memory to Robot
Content: NONE

MSG ACTION REQUEST Request a new action
Sender/Destination: Robot to Memory, or Memory to Planner
Content: NONE

ACK ACTION REQUEST Acknowledge new action request for execution
Sender/Destination: Planner to Memory, or Memory to Robot
Content: NONE

MSG ACTION SUBMIT Submit a new action for execution
Sender/Destination: Planner to Memory, or Memory to Robot
Content: Action specification

ACK ACTION SUBMIT Acknowledge receipt of new action and start of action execution
Sender/Destination: Robot to Memory, or Memory to Planner
Content: NONE

MSG ACTION STOPPED Provide alert that execution of last submitted action has stopped
Sender/Destination: Robot to Memory, or Memory to Planner
Content: Action execution return value (1 = success or 0 = failure)

ACK ACTION STOPPED Acknowledge termination of last submitted action
Sender/Destination: Planner to Memory, or Memory to Robot
Content: NONE

MSG PLAN REQUEST Request entire plan from planner
Sender/Destination: Memory to Planner
Content: NONE

MSG PLAN SUBMIT Submit a complete plan
Sender/Destination: Planner to Memory
Content: Plan specification

Table 7: Message types defined in the message passing protocol

Integrating low-level robot/vision with high-level planning and sensing in PACO-PLUS 26

Page 36 of 99



Message type sent Expected response

MSG STATE UPDATE ACK STATE UPDATE

MSG ACTION REQUEST ACK ACTION REQUEST

MSG ACTION SUBMIT ACK ACTION SUBMIT

MSG ACTION STOPPED ACK ACTION STOPPED

MSG PLAN REQUEST MSG PLAN SUBMIT

Table 8: Send/receive message pairs

5.2.1 Robot-level control loop

At the robot level, the message-processing control loop follows a simple structure where
the robot essentially drives the message-passing process and the upper levels of the sys-
tem respond to queries. The robot-level control loop defines a synchronous cycle where
a message is sent and its acknowledgement is received before the next message can be
sent. As a result, the robot only executes one action at a time and provides updates on
the state of the world before the next action begins.

At an abstract level, the interaction between the robot and the higher levels follows the
RobotLevelControlLoop pseudo code given in Figure 3(a). After an initial report on the
world state, the main communication cycle consists of an action request by the robot,
which is fulfilled by the upper levels (ultimately the planner), an indication from the
robot when the action has finished executing, followed by an update on the new state
of the world. Messages to and from the robot level all pass through the memory level.
Thus, a request made by the robot for a planning-level service (e.g., requesting a new
action) will ultimately reach the planner after being forwarded through the memory.

5.2.2 Memory-level control loop

Unlike the more tightly-regulated control loop of the robot level, communication at the
memory level is more loosely structured using a client-server architecture. In particular,
the memory is able to respond to requests from both the robot and the planner, as well
as initiate certain messages of its own. The pseudo code for the memory-level control
algorithm is given in Figure 3(b).

In most cases, the memory will initially act as a forwarding service that delivers mes-
sages from the robot to the planner, and messages from the planner to the robot. One
possible extension for future work is the receipt of MSG ACTION SUBMITmessages from
the planner. Before forwarding such messages, a mid-level component could inspect the
message contents to check for sensing actions to be refined (as shown in Figure 3(b)).
In the context of the SDU/UEDIN integration scenario described in this document, the
memory could then transform all sense-open actions into poke or focus operations be-
fore passing them on to the robot. A similar approach could also be used to refine grasp
operations specified by the planner. This protocol also supports a possible bottom-up
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role for a memory components, where the middle level “abstracts” subsymbolic robot-
level information into a symbolic form understandable by the planner.

The memory is also able to directly request information about the structure of a plan
from the planner. The planner will respond with a complete description of the current
plan, which may be a conditional plan with branches. The memory can then use this
information as needed, for instance to refine a plan before passing it to the robot level.

5.2.3 Planning-level control loop

The planning level control loop also operates in a client-server fashion, responding to
messages sent from the memory level (but typically originating from the robot level).
The planning level is responsible for constructing high-level plans and feeding the ac-
tions, one at a time, to the robot level through the memory level. The planner also re-
ceives world state updates from the robot (again, through the memory) as well as status
reports as to the success or failure of performed actions.

The memory level is also able to interact with the planner to request a complete de-
scription of the current plan. This part of the protocol provides the memory level with
greater information about a plan’s structure, which could be analyzed in order to help
direct future operations of the memory level, or refine actions destined for the robot.
Future versions of the communication protocol may also allow the planner to directly
“push” such plan information to the lower levels, for instance as a result of replanning
operations. The general planning-level control algorithm is given in Figure 3(c).

The message passing architecture we have outlined has a number of advantages. First,
the protocol clearly separates the operations of the three system levels and the interac-
tions between the levels, with the mid-level memory level acting as a form of mediator
or interpreter. For instance, this protocol allows for the possibility of different con-
tent formats for messages flowing between the lower and upper levels of the system
(e.g., messages exchanged between the robot and memory could contain subsymbolic
information, while messages exchanged between the memory and planner could contain
symbolic information). Also, changing the communication protocol for one pair of levels
need not force changes to the interaction of another pair of levels. Finally, the message
set has been designed to support more complex and flexible control architectures which
may arise in the future. For our current integration tasks, however, the existing process
is more than sufficient.

5.3 Socket communication library and sample code

For ease of implementation we have defined a set of C++ classes for manipulating mes-
sage types and message contents. These classes work in conjunction with a lightweight
socket library (also written in C++) that we have developed for Linux, to facilitate com-
munication between system components.

At the code level, message types are chosen from a list of predefined enum types, and
message contents are simple C++ strings. Currently, the content of MSG STATE UPDATE
messages must be a list of instantiated properties from the list of available domain prop-
erties that form the world state. Similarly, the content of MSG ACTION SUBMITmessages
must be a single instantiated action from the set of available domain actions. The content
of the MSG PLAN SUBMIT message will be a plan similar to the example plans we have
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Proc RobotLevelControlLoop
Send: MSG STATE UPDATE; Receive: ACK STATE UPDATE;
while !termination loop

Send: MSG ACTION REQUEST; Receive: ACK ACTION REQUEST;
Receive: MSG ACTION SUBMIT; Send: ACK ACTION SUBMIT;
Send: MSG ACTION STOPPED; Receive: ACK ACTION STOPPED;
Send: MSG STATE UPDATE; Receive: ACK STATE UPDATE;

endLoop
endProc

(a)

Proc MemoryLevelControlLoop
while !termination loop

choose
Send: MSG PLAN REQUEST;

or
Wait for message receive;
case MSG ACTION SUBMIT:

if action is sense-open then
Replace sense-open with poke or focus operation;

endIf
Forward message;

case MSG PLAN SUBMIT:
Update memory with received plan;

case all other message types:
Forward message;

endChoose
endLoop

endProc
(b)

Proc PlannerLevelControlLoop
while !termination loop

Wait for message receive;
case MSG STATE UPDATE:

Update world model;
Send: ACK STATE UPDATE;

case MSG ACTION UPDATE:
Send: ACK ACTION REQUEST
Construct plan/get next action in plan;
Send: MSG ACTION SUBMIT; Receive: ACK ACTION SUBMIT;

case MSG ACTION STOPPED:
Process action success/failure;
Send: MSG ACTION SUBMIT;

case MSG PLAN REQUEST:
Construct plan/get entire plan;
Send: MSG PLAN SUBMIT;

endLoop
endProc

(c)

Figure 3: Message passing control algorithms

Integrating low-level robot/vision with high-level planning and sensing in PACO-PLUS 29

Page 39 of 99



seen earlier in the document, but encoded as a Prolog-style list (see Section 5.4 for an
example). A plan iterator class is provided for inspecting the structure of conditional
plans in this format. (For more details, refer to the sample code distributed with the
socket library.)

For initial testing purposes the system terminates a plan by having the planner send a
MSG ACTION SUBMITmessage to the memory level in response to an action request, with
the string "EOP" as its content. The memory level then passes this message to the robot.
Both the memory and robot levels must then send a final ACK ACTION SUBMIT message
to the level above, at which point all system levels are free to terminate communication.
In the future, plan termination will force the suspension of the main control loop (i.e.,
the planner will not send an action) until a new goal is given to the planner and a new
plan is constructed.

The communication library is distributed with a set of sample programs that implement
the basic message passing protocol described in this document for the three levels of the
system. These programs focus solely on the communication interface, with little addi-
tional functionality. (For instance, the memory level program simply forwards messages
and always requests a complete plan after the first robot-level request for an action.) It
is hoped that these programs will serve as the basis for developing more sophisticated
modules that can simply be plugged into the communication architecture. A series of
pregenerated plans are also included with this software, to test the message exchange
process between the three levels.

Finally, we note that the current implemented version of the communication library de-
fines a set of experimental message types for introducing new objects, new properties,
and new actions into the planning-level domain description. While these messages cur-
rently have no effect on the communication protocol, these messages are reserved for
future extensions to the architecture.

5.4 Message passing example

To better understand the flow of messages between the three system levels, we consider
the scenario in Example 2 of Section 3.3, where the planner is given the goal of clearing
the open objects from a table and constructs the conditional plan:

Plan

sense-open(obj2)

branch(open(obj2))

K+:

graspA-fromTable(obj2)

putAway(obj2)

K-:

nil

Figure 4 shows the messages sent by all three levels during the execution of the action
sense-open(obj2) in this plan (i.e., a complete cycle of the robot-level control loop).

We note that the first message sent by the robot, MSG STATE UPDATE, provides the plan-
ner with its initial description of the world. We assume that upon initialization the
robot/vision system will send a complete world description, as a bootstrapping action.
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From the perspective of the planning system this message is no more than a particularly
large state update and requires no extra machinery.

Given an initial state description, the planner constructs a plan to achieve a given high-
level goal. The planner sends the actions in this plan to the robot/vision system one step
at a time, through the memory, in response to action requests. After the execution of each
action the robot/vision system reports an update of the world state back to the planner,
again, through the memory. In Figure 4 these updates are described in terms of state
changes, however, we have agreed that state updates will initially include a complete (or
as near as possible to complete) description of the new world state.

For many of the messages sent in this example, the memory level acts as a forwarding
service between the robot and the planner. (In the future the memory could take on
a more active role as a mediator or translator between the robot and planner.) One
notable exception is the occurrence of the MSG ACTION SUBMIT message. Since the
action specified in the content of this message is a sensing action, sense-open(obj2),
the example illustrates how the memory could refine this action by choosing between a
poke and a focus operation. In this case, focus(obj2) is chosen as the refined action
and the modified message is forwarded to the robot.

Figure 4 also illustrates the results of a MSG PLAN REQUEST message from the memory
to the planner. In this case, the planner responds with a plan of the form:

[sense-open(obj2),branch(open(obj2),

[graspA-fromTable(obj2),putAway(obj2)],[])].

This plan corresponds to the complete conditional plan given above, encoded in a Prolog-
style list format for transmission using the communication library. (The communication
library provides a helper class for processing plans in this compact format.)

We note that according to the message passing protocol, MSG PLAN REQUEST messages
could be sent by the memory at other times during its control loop, or not at all, produc-
ing slightly different message orderings than those shown in Figure 4. (In the sample
code the memory sends a MSG PLAN REQUEST after the first MSG ACTION SUBMIT mes-
sage is received.) Similarly, alternate message orderings—including messages sent in
parallel by different levels—could also arise since the robot, memory, and planner all
run as independent processes. (E.g., message 13 could be sent at the same time as mes-
sage 11, or even before it.) The implementation of the message passing protocol ensures
that such ordering differences do not lead to problems like deadlock, however.

5.5 Reimplementation of the message passing protocol in ICE

At present, UEDIN continues to support the socket communication library outlined in
this document and its implemention of the message passing protocol. However, as part
of ongoing integration work with the ARMAR robot platform, KIT has reimplemented
the PACO-PLUS message passing protocol using the Internet Communications Engine
(ICE) middleware (http://www.zeroc.com/ice.html), as a means of facilitating the
exchange of information between system levels and components. This software remains
fully compatible with the message passing protocol described in this document, but may
be adapted in the future. An overview of the current status of PKS integration on AR-
MAR using the ICE-based communication protocol is shown in [Petrick et al., 2010].
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Robot-level messages Memory-level messages Planner-level messages

1. MSG STATE UPDATE:
"onTable(obj1),...,!clear(obj1)"

2. (Forward to planner) MSG STATE UPDATE:
"onTable(obj1),...,!clear(obj1)"

3. ACK STATE UPDATE
4. (Forward to robot) ACK STATE UPDATE
5. MSG ACTION REQUEST
6. (Forward to planner) MSG ACTION REQUEST
7. ACK ACTION REQUEST
8. (Forward to robot) ACK ACTION REQUEST
9. MSG ACTION SUBMIT:

"sense-open(obj2)"

10. Refine sense-open(obj2) to focus(obj2)
(Forward to robot) MSG ACTION SUBMIT:
"focus(obj2)"

11. (Send to planner) MSG PLAN REQUEST
12. MSG PLAN SUBMIT:

"[sense-open(obj2),

branch(open(obj2),

[graspA-fromTable(obj2),

putAway(obj2)], [])]"

13. ACK ACTION SUBMIT
14. (Forward to planner) ACK ACTION SUBMIT
15. MSG ACTION STOPPED:

"1"

16. (Forward to planner) MSG ACTION STOPPED:
"1"

17. ACK ACTION STOPPED
18. (Forward to robot) ACK ACTION STOPPED
19. MSG STATE UPDATE:

"open(obj2)"

20. (Forward to planner) MSG STATE UPDATE:
"open(obj2)"

21. ACK STATE UPDATE
22. (Forward to robot) ACK STATE UPDATE
23. ... ... ...

Figure 4: Example of messages passed during the execution of sense-open(obj2)

6 Related High-Level Integration Work

In this section we briefly describe a number of related integration tasks that are currently
being investigated by UEDIN as part of WP4 and WP5.

6.1 Plan execution monitoring

Although we are able to construct plans for the proposed integration scenarios, a second
high-level component is needed in order to monitor plan execution and control replan-
ning/resensing activities. As part of WP4, UEDIN has built a plan execution monitor that
is responsible for assessing both action failure and unexpected state information that re-
sult from feedback provided to the planner from the execution of planned actions at the
robot level. The difference between predicted and actual states is used to decide between
(i) continuing the execution of a plan, (ii) resensing activities that target a portion of a
scene at a higher resolution to produce a more detailed state report, and (iii) replanning
from new/unexpected states. In particular, rapid replanning techniques used by planners

Integrating low-level robot/vision with high-level planning and sensing in PACO-PLUS 32

Page 42 of 99



Figure 5: Plan execution monitoring in the SDU/UEDIN domain (screenshots from de-
liverable D8.1.3, SDU/UEDIN)

such as FF-Replan [Yoon et al., 2007] have been successfully employed in domains such
as those in the probabilistic track of the International Planning Competition [Bryce and
Buffet, 2008].

To aid in the assessment of (ii), the plan execution monitor provides the vision system
with a list of the objects considered “relevant” to the execution of the action that is re-
ported to have failed, based on the high-level action description. Using this information,
the vision system can target particular parts of the scene with greater resolution in order
to reevaluate the sensors that provide information about these objects. This operation
may lead to new information about the world state.

For instance, Figure 5 shows the plan execution monitor being used to control execution
in the SDU/UEDIN domain. The first image shows a scenario where the monitor decides
the current action should proceed as planned: before applying the graspD-fromTable(obj1)
action, the monitor verifies that the preconditions of the action are satisfied in the current
state, i.e., reachableD(obj1), gripperempty, ontable(obj1), and graspDMaxRadius
>= radius(obj1) all hold. The second image shows a scenario where the monitor is
considering whether to apply the putInto-objectOnTable(obj1,obj2) action. In
this case, all the preconditions are satisfied except for ingripper(obj1). The monitor
decides to resense the properties of the two objects contributing to the action, obj1 and
obj2. After resensing, the monitor will then decide whether to continue with the current
action or replan entirely.

The plan execution monitor also has the task of managing the execution of conditional
plans that contain sensing actions like sense-open. When a sensing action is ultimately
executed at the robot level, the result of the sensing will be returned to the planner as
part of the standard state update cycle (see Section 5). When faced with a conditional
branch point in a plan, the plan execution monitor makes a decision as to the correct plan
branch it should execute, based on the current state information. If such information is
unavailable, for instance due to a failure at the robot/vision level, resensing or replanning
activities are be triggered as above. It is important to note that the robot/vision system
is never aware of the conditional nature of a plan, and never receives a “branch” opera-
tion like those shown in the example plans. From the point of view of the robot, it only
receives a sequential stream of actions. This is also the case for any memory level com-
ponents, except when a complete plan is requested. In such situations a fully-specified
conditional plan is transmitted to the memory level.

An initial version of the high-level plan execution monitor for PKS has been build and
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integrated into the SDU robot/vision system as part of the communication architecture
[Petrick et al., 2009]. Currently, we are in the process of integrating the plan execution
monitor with the ARMAR robot platform and the ICE-based communication infrastruc-
ture. Since our dialogue planner (see Section 6.3) is built on top of standard PKS, this
integration is particularly important, as the plan execution monitor will provide execu-
tion control for both task and dialogue planning in the integrated system.

6.2 High-level action learning in robot domains

In previous work [Mourão et al., 2008] reported in WP5, and included in deliverable
D5.1.2, we describe a mechanism for learning STRIPS-style actions effects from world
state snapshots of the form produced by the control architecture in Section 5. In particu-
lar, this work addresses the accommodation learning problem at the planning level, i.e.,
learning the prediction function or action mapping between states. (E.g., see the func-
tion T in the PACO-PLUS Object-Action Complex (OAC) definition provided as part of
WP1 and also reported elsewhere in related deliverables.)

Using machine learning techniques to learn action models is not a new idea. Prior ap-
proaches have applied a variety of techniques including inductive learning [Wang, 1995],
directed experimentation [Gil, 1994], logical inference [Shahaf and Amir, 2006], heuris-
tic search [Pasula et al., 2007], and support vector machines (SVMs) [Doǧar et al., 2007].

Our approach differs from previous approaches. We use kernel perceptron learning [Aiz-
erman et al., 1964, Freund and Shapire, 1999], combined with deictic referencing [Pa-
sula et al., 2007] which reduces the complexity of our representation and, hence, the
learning problem. As a result, we believe this technique will also allow our approach
to scale to larger problem instances. Initial experiments using data simulated from the
SDU/UEDIN integration domain have shown our approach to be quite efficient at learn-
ing action effects in this domain, resulting in high quality models with low error rates.
This work also illustrates how a high-level action representation, usable by a planner like
PKS, can be learnt (rather than preprogrammed) from data generated through a robot’s
interaction with the world.

In more recent work, our learning mechanism was also tested with noise-tolerant vari-
ants, including SVMs, kernel perceptrons with margins, and the voted perceptron which
produced the best performance. [Mourão et al., 2009, 2010] details extensions of this
learning approach to noisy and partially observable domains, with scalability experi-
ments using planning scenarios from the International Planning Competition (e.g., BlocksWorld,
Depots, and ZenoTravel).

Recent work has also focused on learning action models from real robot domains. In
conjunction with SDU, we have collected real state data from the SDU robot/vision en-
vironment and the object stacking scenario described in Section 3. To collect the needed
data, the integration scenario was tested by initially disallowing stacks of objects. In-
stead, objects could only be grasped from the table, put onto the table or shelf, or sensed
for openness. Once initial data was collected, stacks of height 2 were permitted but the
early learnt models were used to prune the state space, by reducing the number of no-op
and failure-prone actions. Initial cross-validation results indicate a 2-4% error on indi-
vidual features, with an overall correctness of 80% on full state predictions. Additional
analyses on this data are planned to assess the quality of the action rules induced in such
real-world environments.
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6.3 Dialogue planning for language and communication

We have primarily focused on robot-planner integration in this document, with an em-
phasis on standard task planning. As outlined in the objectives of workpackage WP5,
however, the mechanisms supporting the symbolic representation of actions and the an-
cillary planning apparatus will be generalised to language and communication. In partic-
ular, support for dialogue planning using speech acts will be built on top of the standard
planning interface provided by PKS for ordinary task planning in PACO-PLUS. (Deliv-
erable D5.1.3 contains a description of recent papers associated with this work.)

6.3.1 Motivation and background

The ability to plan is essential for an intelligent agent acting in a dynamic and in-
completely known world: generating a sequence of actions that changes the world to
bring about certain goal conditions often requires complex forward deliberation about
the knowledge it requires, and the effects of the agent’s actions. Agents that act in the
world through natural language dialogue with other agents often face similar challenges:
a speaker tries to change the mental state of the hearer for some purpose, by applying
actions that correspond to the utterance of words or sentence. As a result, the task of
choosing appropriate conversational moves has obvious parallels to planning, with both
problems requiring the ability to reason about actions, beliefs, and goals.

The link between natural language and planning has a long tradition [Perrault and Allen,
1980, Appelt, 1985, Hovy, 1988, Young and Moore, 1994, Stone, 2000], from early
approaches using structures like speech acts and discourse relations, and “beliefs, desires
and intentions” (BDI)-based approaches [Litman and Allen, 1987, Bratman et al., 1988,
Cohen and Levesque, 1990, Grosz and Sidner, 1990]. However, this work often suffered
due to the inefficiency of the planning techniques available at the time.

Current mainstream research has instead tended to segregate standard task planning
from dialogue planning, capturing the latter with more specialised approaches such as
finite state machines, information state approaches, speech-act theories, dialogue games,
or other rule-based approaches [Lambert and Carberry, 1991, Traum and Allen, 1992,
Green and Carberry, 1994, Young and Moore, 1994, Chu-Carroll and Carberry, 1995,
Matheson et al., 2000, Beun, 2001, Asher and Lascarides, 2003, Maudet, 2004].

Recently, there has also been a renewed interest in applying modern planning techniques
to problems in natural language, including sentence generation [Koller and Stone, 2007],
instruction giving [Koller and Petrick, 2008], accommodation [Benotti, 2008], as well as
dialogue [Steedman and Petrick, 2007, Brenner and Kruijff-Korbayová, 2008]. However,
experiments using off-the-shelf planners [Koller and Petrick, to appear] also demonstrate
that while planning offers a promising alternative to current approaches, large problem
instances can still be a challenge for the current generation of modern planners.

6.3.2 Dialogue planning as knowledge-level planning

Our approach to dialogue planning is motivated by the observation that certain types of
dialogue actions can be modelled as instances of sensing actions or information gath-
ering actions. In this view, the dialogue generation problem can instead be treated as
an instance of the more generation AI problem of planning with incomplete information
and sensing [Stone, 2000].
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Plan 1 Plan 2
Go to the station Go to the station
Buy a ticket Buy a ticket
Check the departure board Ask someone for information
Go to the track Go to the track
Board the train Board the train
. . . . . .

Figure 6: Example of two plans for taking a train journey

For instance, Figure 6 shows two simple plans for taking a train journey. While most
of the plan steps are identical, one important action is different in each plan: “check the
departure board” in Plan 1, and “ask someone for information” in Plan 2. In the first
case, the act of checking the departure board can be viewed as an observational action
which returns information to the agent (e.g., the track number for a particular train). In
the second case, asking someone for information is an example of a speech act, but one
with a similar effect to checking the departure board: it also returns information to the
agent. As a result, both actions serve as information gathering steps in the plan. This
leads to the obvious questions: can we reason about dialogue acts in the same way as
ordinary actions, and can we use the same machinery for planning such actions?

The problem of reasoning about incomplete information and sensing is very closely
connected to the problem of reasoning about knowledge and action—a problem that has
been well studied in the literature (e.g., [Moore, 1985, Scherl and Levesque, 1994, 2003,
Stone, 1998], among others). Since we are interested in applying planning techniques to
this problem, the PKS planner provides an appropriate starting point: PKS is designed
around the concept of modelling the planner’s knowledge state and how that knowledge
state evolves during the plan generation process.

However, dialogue planning also seems to require additional machinery than is currently
provided by the standard PKS planner. For instance, dialogues involve multiple partic-
ipants, while PKS was designed as a single agent planner. Plans also involve mixed-
initiative discourse among participants, with different participants performing actions
that together can be seen as contributing to the overall “plan”. Finally, if speech acts like
ask and tell are treated as planning-level actions, does PKS support the correct level of
representation in order to properly capture the effects of such actions? In other words,
are knowledge-level planning techniques suitable for the kinds of dialogue contexts we’d
like to consider?

In order to address the first two concerns, our solution is to (minimally) extend the PKS
planner in order to introduce a notion of “agency” into the planner. Existing knowledge
representation, reasoning, and plan generation mechanisms will all be extended to use
this new feature, which will act as a type of “index” into otherwise unchanged PKS
data structures and algorithms. In order to address the third concern, we plan to test our
planner in a number of domains, starting with the PACO-PLUS KIT kitchen domain, but
also considering other common benchmarks from the dialogue system literature (e.g.,
the modem troubleshooting domain), in order to properly evaluate the feasibility and
effectiveness of our approach.
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6.3.3 Extending PKS for dialogue planning

A simple notion of agency is introduced into PKS by using labels (modalities) for refer-Dialogue
participants encing dialogue participants and a special kind of knowledge container called common

ground. In particular, we use labels of the following form:

[S] Speaker supposition
[H] Hearer supposition
[X] , [Y] , . . . Other participant/agent suppositions
[CXY] Common ground between X and Y

We permit such labels to be defined at the domain (i.e., user) level and customised to
the particular context. These labels can also be nested in order to represent complex
statements, e.g.,

[S] p “The speaker supposes p.”
[S] [H] p “The speaker supposes the hearer supposes p.”
[H] [CSH] [S] p “The hearer supposes it’s common ground

between the speaker and hearer that the
speaker supposes p.”

Standard PKS provides a basic set of knowledge assertions, modelled through its databaseKnowledge
assertions representation and primitive query language, that allow it to represent and reason about

simple statements of the agent’s knowledge. These assertions are not unique to PKS, but
arise in many of the formal treatments of knowledge from the literature. In particular,
PKS builds knowledge expressions based on the following three assertions:

K p “Know p”,
Kvt “Know the value of t”,
Kw p “Know whether p”.

One of the strengths of PKS is its ability to model the effects of sensing actions. Using
the Kw and Kw assertions, PKS can represent indefinite information (at plan time), of the
kind returned by many common sensing actions.

To leverage this mechanism for dialogue planning, we allow knowledge assertions to
be combined with agent labels, in order to express agent-indexed knowledge assertions,
e.g.,

[S]¬Kcombo(safe) = c1 “The speaker doesn’t know the combination of
the safe is equal to c1.”

[S] [H] Kvtrack “The speaker knows the hearer knows the value
of the track (i.e., the track number).”

[S] [CSH] Kwopen(boxA) “The speaker knows it’s common ground between
the speaker and the hearer that they know whether
boxA is open.”

While these minimal additions address many of the knowledge representation concernsReasoning
with labelled

knowledge
we have previously considered, they do not specify how PKS can actually use such
extended knowledge assertions, or infer certain conclusions from the agent labels. To
do this, we adapt a series of rules for reasoning about speaker-hearer suppositions and
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Action Preconditions Effects
ask(X,Y, p) ¬ [X] p add(Kf , [CXY]¬ [X] p)

[X] [Y] p
tell(X,Y, p) [X] p add(Kf , [Y] p)

[X]¬ [CXY] p

Figure 7: Example PKS dialogue actions for ask and tell

common ground modalities first introduced in [Steedman and Petrick, 2007]:

A1. [X] φ⇒ φ Supposition Veridicality
A2. [X]¬φ⇒ ¬ [X] φ Supposition Consistency
A3. ¬ [X] φ⇒ [X]¬ [X] φ Negative Introspection
A4. [C] φ⇔ ([S] [C] φ ∧ [H] [C] φ) Common Ground
A5. [X] [C] φ⇒ [X] φ Common Ground Veridicality

Most of these rules are not unique to this work (e.g., A1, A2, and A3), but can be
found in other formal representations of knowledge. Here, we require rules similar to
these to augment PKS’s standard inference procedure, however, we don’t require them
in full generality. Instead, we restrict the recursive depth in which we apply these rules
(in particular, the depth of agent label reasoning) in order to improve the efficiency of
the inference process. This restriction is also in line with PKS’s standard inference
procedure which is sound, but incomplete. (In practice, this restriction hasn’t been a
problem and we don’t expect this to be problematic for the dialogue extensions.)

An important observation, however, is that the new reasoning rules we introduce into
PKS are primarily required for reasoning about knowledge. With the exception of A4
and A5, which reason about common ground information, these rules do not encode any
specific conversational rules, or rules for intent recognition. Instead, all reasoning is
performed at the knowledge level, in line with the standard PKS approach.

The final step in extending PKS to dialogue planning involves adapting its representationKnowledge-
level dialogue

actions
of actions. In particular, we extend the standard PKS action description language to
allow labelled knowledge assertions to be included as queries and database updates in
standard PKS actions.

For instance, Figure 7 shows an example of two speech acts, ask and tell, encoded as
extended PKS dialogue actions. In this case, the knowledge preconditions and effects
are captured by a series of knowledge assertions, modelled using existing PKS databases
and queries, and the new label mechanism. In the case of ask (i.e., “agent X asks agent
Y about p”), the knowledge preconditions encode the constraints that “it’s not the case
that agent X knows p” (the first precondition) and “agent X knows that agent Y knows
p” (the second precondition). The effects of ask are modelled by a single addition to
the Kf database, namely that the planner knows “it’s common ground between X and Y
that X doesn’t know p”. In the case of tell (i.e., “agent X tells agent Y p”), we use a
similar type of encoding. As preconditions, the action encodes that “X knows p” (the
first precondition) and “X doesn’t know p is common ground between X and Y” (the
second precondition). The effects of tell are described by a single Kf update, encoding
the fact that “Y knows p”.
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Robot1: Let’s make breakfast.
Robot2: Do you know where the milk is? [ask(loc(milk))]
Robot1: The milk is in the fridge. [tell(loc(milk) = fridge)]
Robot2: Is the cereal at the sideboard? [ask(loc(cereal) = sideboard)]
Robot1: No. [tell(no)]
Robot2: Where is the cereal? [ask(loc(cereal))]
Robot1: The cereal is in the cupboard. [tell(loc(cereal) = cupboard)]
Robot2: Okay. I suggest I go to the fridge, [assert-plan(move(sideboard,fridge),...)]

pickup the milk, bring it to the
sideboard, then go the cupboard,
pickup the cereal, and bring it
to the sideboard.

Figure 8: Sample dialogue in the KIT kitchen domain

With the extended PKS action representation in place, plans can be constructed using di-Generating
dialogue plans alogue acts, without changing the underlying plan generation mechanism. In particular,

since plan generation simply involves database update, query, and inference, all changes
to plan generation are encapsulated in these lower-level mechanisms, discussed above.
As a result, we can build plans by chaining together actions, using our extra rules for
representing and reasoning about agent labels, as a byproduct of the standard PKS plan
generation process. (See [Steedman and Petrick, 2007] for a description of the type of
reasoning that is performed during plan generation using speech acts like ask and tell.)

There are two interesting observations arising from this type of planning mechanism
when applied to dialogue. First, plan generation takes place in the space of multi-agent
plans. In particular, while we have a single planner (i.e., an agent generating a plan
from that agent’s perspective), the plan may contain actions that must be performed by
other agents. However, in practice, the planner has no guarantee that other agents will
actually perform those actions; those actions might simply be possible (or even probable)
but are chosen purely from reasoning about the knowledge state of the planner, and
it’s beliefs about the knowledge states of others. As a result, we see this mechanism
working in conjunction with a plan execution monitor that supports replanning, in order
to construct new plans when the system detects that things have gone wrong. Second,
one strong advantage of this approach is that both direct and indirect speech acts (and
other linguistic phenomena, we expect) can be generated from the same mechanisms
for reasoning about knowledge and common ground. As mentioned above, no specific
conversational rules are encoded into the approach. Thus, this approach remains general
purpose like other domain independent planners.

6.3.4 Testing domain and current state of integration in PACO-PLUS

In PACO-PLUS, we have focused on generating plans in the KIT kitchen domain de-
scribed in Section 2. In particular, we are interested in building plans that require the
agent to engage in dialogue with another agent to gather information that fills in the
“gaps” that exist in its own knowledge. This can be seen as a form of collaborative
knowledge exchange, leading to the construction of a task plan to be executed by one of
the agents in the kitchen environment. For instance, Figure 8 shows an example of the
kinds of dialogues we have been considering in PACO-PLUS.

At present, we have implemented a prototype version of the PKS-extended dialogue
planner, using the mechanisms described above, and are currently in the process of in-
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tegrating it into the PACO-PLUS communication architecture, for inclusion on the AR-
MAR robot platform. To date, we have only performed limited off-line testing using
the KIT kitchen domain description. For instance, the following example is a condi-
tional plan for finding the milk in the kitchen, by querying another agent for its location,
retrieving the milk, and then bringing it to the sideboard:

ask-location(robot2,robot1,milk)

tell-location(robot1,robot2,milk)

move(sideboard,location(milk))

branch(location(milk))

K(location(milk) = fridge):

open-partial(fridge,lefthand)

open-complete(fridge,righthand)

remove-from(milk,fridge,righthand)

close(fridge,lefthand)

K(location(milk) = stove):

grasp(milk,stove,righthand)

...

move(location(milk),sideboard)

put-down(milk,sideboard,righthand).

Once integration work has been completed, a comprehensive evaluation study is planned,
to investigate the effectiveness of our approach in the PACO-PLUS demonstration do-
main. We also intend to apply our approach to other benchmark domains from the natural
language dialogue systems literature.

Finally, an in-depth technical publication is planned for a future ICAPS and/or SIGDIAL
conference, describing the planner extensions we have implemented and the results of
our evaluation. However, we foresee this work extending beyond the end of PACO-
PLUS.

7 Discussion

In this document we described two high-level action representations enabling goal-
directed planning in low-level robot domains. Although the focus of our integration
effort has shifted towards the KIT kitchen domain, which supports a more complex robot
platform and real-world planning environment, our action descriptions, message pass-
ing protocol, and communication library also continue to support the SDU robot/vision
platform at the present time. Furthermore, while we continue to extend our integration
work for the final demonstrations of the PACO-PLUS systems, a number of important
issues remain for future work beyond the end of PACO-PLUS.

1. All high-level grasp operators abstract the task of grasping into single action steps.
We may extend the planner’s representation to provide “finer-grained” actions that
split the act of grasping into a sequence of steps like positionForGraspA(obj1),
graspA-fromTable(obj1), lift(obj1). Such actions would provide more de-
tailed execution instructions to the robot system and, on failure, the robot system
could more accurately indicate to the planner the specific aspect of the grasp that
failed. Initially such sequences could be generated by simply “macro-expanding”
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certain actions (like grasps) in a plan.

2. The execution of the high-level sensing action sense-open requires the imple-
mentation of a robot-level test that determines the openness of a particular object.
For instance, the robot could perform a “poke” operation that attempts to deter-
mine the concavity of the object, or a more vision-based “focus” operation to study
the object at a higher resolution. The test should not be part of the ordinary sensor
report produced by the robot, but should instead be a special demand-driven oper-
ation. As discussed earlier in the document, this may also be a good place for the
inclusion of mid-level processes to guide the choice of refinement operations. We
could also consider similar refinements for grasp actions and generate plans with
abstract actions like grasp(obj1), leaving the choice of more specific robot-level
actions like graspA(obj1) or graspD(obj1) to lower system levels.

3. There are many places where incomplete world state information can be intro-
duced into the system, resulting from the interaction of the robot in a real-world
setting. Thus, we must always be aware of the limitations of the system’s capabil-
ities, and the traditional AI assumption that we have complete models of the state
changes resulting from executed actions. In PACO-PLUS, we have tried to ensure
that our action models and state updates are as complete and correct as possible.
However, this remains an area for future work beyond the end of PACO-PLUS.

4. A more complex interaction between the robot, memory, and planning levels
might be desirable in the future. For instance, the planning level may require
the ability to terminate an action during its execution if it has an undesirable out-
come, or alert the memory about a replanning operation. This would require a
more asynchronous architecture, including state update messages from the robot
during action execution, as well as the ability to issue halt commands from the
planning level. We also see the possibility of a more comprehensive “bottom-up”
role for the memory level, as an abstraction component that mediates between the
robot/vision level and the high-level planner. Such extensions should not require
a significant reworking of the message passing protocol.

5. We also envision a more significant extension to the message passing protocol
to support the addition of new objects, properties, and actions (i.e., “the birth of
an object/property/action”) into the high-level planning representation as a result
of memory-level reasoning. Partial support for such messages already exists in
the socket library, however, future versions of the message passing protocol must
more fully specify these new message types.

6. Integration continues on the ARMAR platform to incorporate a new version of the
basic PKS planner, the extended dialogue planner, and the plan execution monitor.
Significant testing is also needed to properly evaluate the feasibility and effective-
ness of these new modules in real-world contexts.
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Natural language generation (NLG) is a major subfield of computational linguistics with a
long tradition as an application area of automated planning systems. While current mainstream
approaches have largely ignored the planning approach to NLG, several recent publications have
sparked a renewed interest in this area. In this paper, we investigate the extent to which these new
NLG approaches profit from the advances in planner expressiveness and efficiency. Our findings are
mixed. While modern planners can readily handle the search problems that arise in our NLG
experiments, their overall runtime is often dominated by the grounding step they perform as
preprocessing. Furthermore, small changes in the structure of a domain can significantly shift the
balance between search and preprocessing. Overall, our experiments show that the off-the-shelf
planners we tested are unusably slow for nontrivial NLG problem instances. As a result, we offer
our domains and experiences as challenges for the planning community.

Key words: natural language generation, planning

1. INTRODUCTION

Natural language generation (NLG; Reiter and Dale 2000) is one of the major subfields of natural
language processing, concerned with computing natural language sentences or texts that convey a
given piece of information to an audience. While the output of a generation task can take many forms,
including written text, synthesised speech, or embodied multimodal presentations, the underlying
NLG problem in each case can be modelled as a problem of achieving a (communicative) goal by
successively applying a set of (communicative) actions. This view of NLG as goal-directed action has
clear parallels to automated planning, which seeks to find general techniques for efficiently solving
the action sequencing problem.

Treating generation as planning has a long history in NLG, ranging from the initial attempts
of the field to utilise early planning approaches (Perrault and Allen 1980; Appelt 1985; Hovy 1988;
Young and Moore 1994), to a recent surge of research (Steedman and Petrick 2007; Koller and Stone
2007; Brenner and Kruijff-Korbayová 2008; Benotti 2008) seeking to capitalise on the improvements
modern planners offer in terms of efficiency and expressiveness. This paper attempts to assess the
usefulness of current planning techniques to NLG by investigating some representative generation
problems, and by evaluating whether automated planning has advanced to the point that it can
provide solutions to such NLG applications—applications that are not currently being investigated
by mainstream planning research.

To answer this question, we proceed in two ways. First, we present two generation problems
that have recently been cast as planning problems: the sentence generation task and the GIVE task.
In the sentence generation task, we concentrate on generating a single sentence that expresses a
given meaning. In this case, a plan encodes the necessary sentence with the actions in the plan
corresponding to the utterance of individual words (Koller and Stone 2007). In the GIVE domain
(“Generating Instructions in Virtual Environments”), we describe a new shared task that was recently
posed as a challenge for the NLG community (Byron et al. 2009). GIVE uses planning as part

1 Address correspondence to koller@mmci.uni-saarland.de or rpetrick@inf.ed.ac.uk.
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2 Computational Intelligence

of a larger NLG system for generating natural-language instructions that guide a human user in
performing a given task in a virtual environment.

Second, we evaluate the performance of several off-the-shelf planners on the planning domains
into which these two generation problems translate. Among the planners we test, we explore the
efficiency of FF (Hoffmann and Nebel 2001)—a planner that has arguably had the greatest impact
on recent approaches to deterministic planning—and some of its descendants, such as SGPLAN
(Hsu et al. 2006). All of the planners we test are freely available, support an expressive subset of the
Planning Domain Definition Language (PDDL; McDermott et al. 1998), and have been successful
on both standard planning benchmarks and the problems of the International Planning Competition
(IPC).1 Using these planners—together with an ad-hoc Java implementation of GraphPlan (Blum
and Furst 1997) serving as a baseline for certain experiments—we perform a series of tests on a range
of problem instances in our NLG domains.

Overall, our findings are mixed. On the one hand, we demonstrate that some planners can readily
handle the search problems that arise in our testing domains on realistic inputs, which is promising
given the challenging nature of these tasks (e.g., the sentence generation task is NP-complete; see
Koller and Striegnitz 2002). On the other hand, these same planners often spend tremendous amounts
of time on preprocessing to analyse the problem domain in support of the search. On many of our
problem instances, the preprocessing time overshadows the search time. (For instance, FF spends
90% of its runtime in the sentence generation domain on preprocessing.) Furthermore, small changes
in the structure of a planning domain can dramatically shift the balance between preprocessing and
search. As a consequence, we are forced to conclude that the off-the-shelf planners we investigated
are generally too slow to be useful in real NLG applications. It is also our hope, however, that these
results will spark an interest to improve the quality of planner implementations—especially in the
area of preprocessing techniques—and to this end we offer our domains and experiences as challenges
for the planning community.

The remainder of this paper is structured as follows. In Section 2, we introduce the idea of NLG
as planning and briefly review the relevant literature. In Section 3, we describe a set of planning
problems associated with two NLG tasks: sentence planning and situated instruction generation. In
Section 4, we report on our experiments with these planning problems. In Section 5 we discuss our
results and overall experiences, and conclude in Section 6.

2. NLG AS PLANNING

The task of generating natural language from semantic representations (NLG) is typically split
into two parts: the discourse planning task, which selects the information to be conveyed and
structures it into sentence-sized chunks, and the sentence generation task, which then translates
each of these chunks into natural language sentences. The sentence generation task is often divided
into two parts of its own—the sentence planning task, which enriches the input by, e.g., determining
object references and selecting some lexical material, and the surface realization task, which maps
the enriched meaning representation into a sentence using a grammar. The chain of domain planning,
sentence planning, and surface realization is sometimes called the “NLG pipeline” (Reiter and Dale
2000).

Viewing generation as a planning problem has a long tradition in the NLG literature. Perrault
and Allen (1980) presented an approach to discourse planning in which the planning operators
represented individual speech acts such as “request” and “inform”. This idea was later expanded,
e.g., by Young and Moore (1994). On the other hand, researchers such as Appelt (1985) and Hovy
(1988) used techniques from hierarchical planning to expand a high-level plan consisting of speech
acts into more detailed specifications of individual sentences. Although these systems covered some
aspects of sentence planning, they also used very expressive logics designed to reason about beliefs
and intentions, in order to represent the planning state and the planning operators. Most of these
systems also used ad-hoc planning algorithms with rather näıve search strategies, which did not scale

1See http://ipc.icaps-conference.org/ for information about past editions of the IPC. Also see (Hoff-

mann and Edelkamp 2005) for a good overview of the deterministic track of the 2004 competition.
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S:self

NP:subj ↓ VP:self

sleeps

V:self

N:self

rabbit

NP:self

the

N:self

white N:self * 

{sleep(self,subj)} {rabbit(self)} {white(self)}

Figure 1: An example grammar in the sentence generation domain.

well to realistic inputs. As a consequence, the NLG-as-planning approach was mostly marginalized
throughout the 1990s.

More recently, there has been a string of publications by various authors with a renewed interest
in the generation-as-planning approach, motivated by the ongoing development of increasingly more
efficient and expressive planners. For instance, Koller and Stone (2007) propose an approach to
sentence generation (i.e., the sentence planning and surface realization modules of the pipeline) as
planning—an approach we explore in more detail below (Section 3.1). Steedman and Petrick (2007)
revisit the analysis of indirect speech acts with modern planning technology, viewing the problem as
an instance of planning with incomplete information and sensing actions. In addition, Benotti (2008)
uses planning to explain the accommodation of presuppositions, and Brenner and Kruijff-Korbayová
(2008) use multi-agent planning to model the joint problem solving behaviour of agents in a situated
dialogue. While these approaches focus on different issues compared to the 1980’s NLG-as-planning
literature, they all apply existing, well-understood planning approaches to linguistic problems, in
order to utilise the rich set of modelling tools provided by modern planners, and in the hope that
such planners can efficiently solve the hard search problems that arise in NLG (Koller and Striegnitz
2002). This paper aims to investigate whether existing planners achieve this latter goal.

3. TWO NLG TASKS

We begin by considering two specific NLG problems: sentence generation in the sense of Koller
and Stone (2007), and the generation of instructions in virtual environments (Byron et al. 2009). In
each case, we introduce the task and show by example how it can be viewed as a planning problem.

3.1. Sentence generation as planning

One way of modelling the sentence generation problem is to assume a lexicalized grammar in
which each lexicon entry specifies how it can be combined grammatically with the other lexicon
entries, what piece of meaning it expresses, and what the pragmatic conditions on using it are.
Sentence generation can then be seen as constructing a grammatical derivation that is syntactically
complete, respects the semantic and pragmatic conditions, and achieves all the communicative goals.

An example of such a lexicalized grammar is the tree-adjoining grammar (TAG; Joshi and
Schabes 1997) shown in Figure 1. This grammar consists of elementary trees (i.e., the disjoint trees
in the figure), each of which contributes certain semantic content. For instance, say that a knowledge
base contains the individuals e, r1 and r2, and the facts that r1 and r2 are rabbits, r1 is white and
r2 is brown, and e is an event in which r1 sleeps. We could then construct a sentence expressing
the information {sleep(e, r1)} by combining instances of the elementary trees (in which the semantic
roles, such as self and subj, have been substituted by constants from the knowledge base) into a
TAG derivation as shown in Figure 2. In the figure, the dashed arrow indicates TAG’s substitution
operation, which “plugs” an elementary tree into the leaf of another tree; the dotted arrows stand for
adjunction, which splices an elementary tree into an internal node. We can then read the sentence
“The white rabbit sleeps” from the derivation. Note that the sentence “The rabbit sleeps” would
not have been an appropriate result, because “the rabbit” could refer to either r1 or r2. Thus, r2
remains as a distractor, i.e., an incorrect possible interpretation of the phrase.

This perspective on sentence generation also has the advantage of solving the sentence planning
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Figure 2: Derivation of “The white rabbit sleeps.”

(:action add-sleeps
:parameters (?u - node ?xself - individual ?xsubj - individual)
:precondition

(and (subst S ?u) (referent ?u ?xself) (sleep ?xself ?xsubj))
:effect

(and (not (subst S ?u)) (expressed sleep ?xself ?xsubj)
(subst NP (subj ?u)) (referent (subj ?u) ?xsubj)
(forall (?y - individual)

(when (not (= ?y ?xself)) (distractor (subj ?u) ?y)))))

(:action add-rabbit
:parameters (?u - node ?xself - individual)
:precondition

(and (subst NP ?u) (referent ?u ?xself) (rabbit ?xself))
:effect

(and (not (subst NP ?u)) (canadjoin N ?u)
(forall (?y - individual)

(when (not (rabbit ?y)) (not (distractor ?u ?y))))))

(:action add-white
:parameters (?u - node ?xself - individual)
:precondition

(and (canadjoin N ?u) (referent ?u ?xself) (rabbit ?xself))
:effect

(forall (?y - individual)
(when (not (white ?y)) (not (distractor ?u ?y)))))

Figure 3: PDDL actions for generating the sentence “The white rabbit sleeps.”

and surface realization problems simultaneously, which is particularly useful in cases where these
two problems interact. For instance, the generation of referring expressions (REs) is usually seen
as a sentence planning task, however, syntactic information about individual words in available
when the REs are generated (see, e.g., Stone and Webber 1998). (In the example, we require the
referring expression “the white rabbit” to be resolved uniquely to r1 by the hearer, in addition to
the requirement that the derivation be grammatically correct.)

However, the problem of deciding whether a given communicative goal can be achieved with a
given grammar is NP-complete (Koller and Striegnitz 2002): a näıve search algorithm that computes
a derivation top-down takes exponential time and is clearly infeasible to use in practice. In order to
circumvent this combinatorial explosion, the seminal SPUD system (Stone et al. 2003), which first
established the idea of integrated TAG-based sentence generation, used a greedy, but incomplete,
search algorithm. To better control the search, Koller and Stone (2007) recently proposed an alter-
native approach which converts the sentence generation problem into a planning problem, and solves
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the transformed search problem using a planner (Koller and Stone 2007).2 The resulting planning
problem in this case assumes an initial state containing an atom subst(S, root), encoding the fact
that a sentence (S) must be generated starting at the node named root in the TAG derivation tree,
and a second atom referent(root, e) which encodes the fact that the entire sentence describes the
(event) individual e. The elementary trees in the TAG derivation are encoded as individual planning
operators.

Figure 3 shows the transformed planning operators needed to generate the above example
sentence, “The white rabbit sleeps.” Here the action instance add-sleeps(root, e, r1) replaces the
atom subst(S, root) with the atom subst(NP, subj(root)). In an abuse of PDDL syntax, we write
subj(root) as a shorthand for a fresh individual name.3 At the same time, the operator records that
the semantic information sleep(e, r1) has now been expressed, and introduces all individuals except
r1 as distractors for the new RE at subj(root). These distractors can then be removed by subsequent
applications of the other two operators. Eventually we reach a goal state, which is characterized by
goals including ∀x∀y.¬subst(x, y), ∀x∀y.¬distractor(x, y), and expressed(sleep, e, r1). For instance, the
following plan correctly performs the necessary derivation:

(1) add-sleeps(root, e, r1),
(2) add-rabbit(subj(root), r1),
(3) add-white(subj(root), r1).

The grammatical derivation in Figure 2, and therefore the generated sentence “The white rabbit
sleeps,” can be systematically reconstructed from this plan. Thus, we can solve the sentence gener-
ation problem via the detour through planning and bring current search heuristics for planning to
bear on generation.

3.2. Planning in instruction giving

In the second application of planning in NLG, we consider the recent GIVE Challenge (“Gen-
erating Instructions in Virtual Environments”; Byron et al. 2009). The object of this shared task
is to build an NLG system which produces natural language instructions which guide a human
user in performing a task in a virtual environment. From an NLG perspective, GIVE makes for an
interesting challenge since it is a theory-neutral task that exercises all components of an NLG system,
and emphasizes the study of communication in a (simulated) physical environment. Furthermore,
because the client displaying the 3D environment to the user can be physically separated from the
NLG system (provided they are connected over a network), such systems can be cheaply evaluated
over the Internet. This provides a potential solution to the long-standing problem of evaluating NLG
systems. The first instalment of GIVE (GIVE-1) evaluated five NLG systems on the performance of
1143 users, making it the largest ever NLG evaluation effort to date in terms of human users.

Planning plays a central role in the GIVE task. For instance, consider the example GIVE world
shown in Figure 4. In this world, the user’s task is to pick up a trophy in the top left room. The
trophy is hidden in a safe behind a picture; to access it, the user must push certain buttons in order
to move the picture out of the way, open the safe, and open doors. The user must navigate the world
and perform these actions in the 3D client; the NLG system must instruct the user on how to do
this. To simplify both the planning and the NLG task, the world is discretised into a set of tiles of
equal size. The user can turn by 90 degree steps in either direction, and can move from the centre of
one tile to the centre of the next tile, provided the path between two tiles is not blocked. Figure 5
shows the encoding of some of the available GIVE domain actions in PDDL syntax. In the example,
the shortest plan to solve the task consists of 108 action steps, with the first few steps as follows:

(1) turn-left(north,west),
(2) move(pos 5 2, pos 4 2,west),
(3) manipulate-button-off-on(b1, pos 5 2),

2See http://code.google.com/p/crisp-nlg/ for the CRISP system, which implements this conversion.
3These terms are not valid in ordinary PDDL but can be eliminated by estimating an upper bound n for

the plan length, making n copies of each action, ensuring that copy i can only be applied in step i, and

replacing the term subj(u) in an action copy by the constant subji. The terms S, NP , and N are constants.
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Figure 4: Map of an example GIVE world.

(:action move
:parameters (?from - position ?to - position ?ori - orientation)
:precondition

(and (player-position ?from) (player-orientation ?ori)
(adjacent ?from ?to ?ori) (not (alarmed ?to)))

:effect
(and (not (player-position ?from)) (player-position ?to)))

(:action turn-left
:parameters (?ori - orientation ?newOri - orientation)
:precondition

(and (player-orientation ?ori) (next-orientation ?ori ?newOri))
:effect

(and (not (player-orientation ?ori)) (player-orientation ?newOri)))

(:action turn-right
:parameters (?ori - orientation ?newOri - orientation)
:precondition

(and (player-orientation ?ori) (next-orientation ?newOri ?ori))
:effect

(and (not (player-orientation ?ori)) (player-orientation ?newOri)))

(:action manipulate-button-off-on
:parameters (?b - button ?pos - position ?alarm - position)
:precondition

(and (state ?b off) (player-position ?pos) (position ?b ?pos)
(controls-alarm ?b ?alarm))

:effect
(and (not (state ?b off)) (not (alarmed ?alarm)) (state ?b on)))

Figure 5: Simplified PDDL actions for the GIVE domain.

(4) turn-right(west, north).

Our description of GIVE as a planning problem makes it very similar to the classic Gridworld
problem (see, e.g., Tovey and Koenig 2000 or the 1998 edition of the IPC4), which also involves route
finding through a two-dimensional world map with discrete positions. As in Gridworld, the domain

4See http://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html.
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also requires the execution of certain object-manipulation actions (e.g., finding keys and opening
locks in Gridworld, or pushing the correct buttons to open doors and the safe in GIVE). However,
the worlds we consider in GIVE tend to be much bigger than the Gridworld instances used in the
1998 planning competition, with more complex room shapes and more object types in the world.

To be successful in GIVE, an NLG system must be able to compute plans of the form described
above. At a minimum, a discourse planner will call a domain planner in order to determine the
content of the instructions that should be presented to the user. This relatively loose integration of
NLG system and planner is the state of the art of the systems that participated in GIVE-1. However,
it is generally desirable to integrate the planner and the generation system more closely than this.
For instance, consider an NLG system that wants to generate the instruction sequence “walk to
the centre of the room; turn right; now press the green button in front of you”. Experiments with
human instruction givers (Stoia et al. 2008) show that this is a pattern that they use frequently:
the instruction follower is made to walk to a certain point in the world where the instruction giver
can then use a referring expression (“the green button”) that is easy for the follower to interpret.
An NLG system must therefore tightly integrate discourse planning and planning in the domain of
the world map. On the one hand, the structure of the discourse is determined by the needs of the
NLG system rather than the domain plan; on the other hand, the discourse planner must be aware
of the way in which the instruction “turn right” is likely to change the visibility of objects. Even if
an NLG system doesn’t implement the generation of such discourse as planning, it must still solve
a problem that subsumes the domain planning problem. For these reasons, we consider the GIVE
domain planning problem as a natural part of a GIVE NLG system.

4. EXPERIMENTS

We now return to the original question of the paper: is planning technology ready for realistic
applications in natural language generation? To investigate this question we consider two sets of
experiments, designed to evaluate the performance of several planners on the NLG planning domains
from the previous section. Starting with the CRISP domain, we first present a scenario which focuses
on the generation of referring expressions with a tiny grammar (Section 4.1). We then look at a
setting in which CRISP is used for surface realization with the XTAG Grammar (XTAG Research
Group 2001), a large-scale TAG grammar for English (Section 4.2). In the second set of experiments
we investigate the GIVE domain. We begin with a domain that is similar to the classic Gridworld
(Section 4.3), and then add extra grid cells to the world that are not necessary to complete the
task (Section 4.4). We also investigate the role that goal ordering plays in these problems. These
experiments are configured in a way that lets us explore the scalability of a planner’s search and
preprocessing capabilities, and illustrate what we perceive to be one of the main limitations of current
off-the-shelf planners for our applications: they often spend a long time computing ground instances,
even when most of these instances are not required during plan search.

4.1. Experiment 1: Sentence generation (referring expressions)

For the first experiment on sentence generation, we exercise the ability of the CRISP system
described in Section 3.1 to generate referring expressions. This problem is usually handled by the
sentence planner if sentence planning and surface realization are separated; here it happens as part
of the overall generation process.

We consider a series of sentence generation problems which require the planner to compute a
plan representing the sentence “Mary likes the Adj1 . . . Adjn rabbit.” Each problem instance assumes
a target referent r, which is a rabbit, and a certain number m of further rabbits r1, . . . , rm that are
distinguished by properties P1, . . . , Pn with n 6 m. The problem instance is set up such that r has
all properties except for Pi in common with each ri for 1 6 i 6 n, and rn+1, . . . , rm have none of
the properties Pi. That is, all n properties are required to describe r uniquely. The n properties are
realized as n different adjectives, in any order. This setup allows us to vary the plan length (a plan
with n properties will have length n+4) and the universe size (the universe will contain m+1 rabbit
individuals in addition to the individuals used to encode the grammar, which have different types).

We converted these generation problem instances into planning problem instances as described
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Figure 6: Results for the sentence generation domain. The horizontal axis represents parameters
(m,n) from (1, 1) to (10, 10) in lexicographical order. The vertical axis is the runtime in milliseconds.

in Section 3, and then ran several different planners on them. We used three off-the-shelf planners:
FF 2.3 (Hoffmann and Nebel 2001), Metric-FF (Hoffmann 2002), and SGPLAN 6 (Hsu et al. 2006);
all of these were highly successful at the recent IPC competitions, and unlike many other IPC
participants, support a fragment of PDDL with quantified and conditional effects, which is necessary
in our domain. In addition, we used an ad-hoc implementation of GraphPlan (Blum and Furst 1997)
written in Java; unlike the three off-the-shelf planners, this planner only computes instances of literals
and operators as they are needed in the course of the plan search, instead of computing all ground
instances in a separate preprocessing step. Finally, we reimplemented the incomplete greedy search
algorithm used in the SPUD system (Stone et al. 2003) in Java.

The results of this experiment are shown in the graph in Figure 6.5 The input parameters (m,n)
are plotted in lexicographic order on the horizontal axis, and the runtime is shown in seconds on
the vertical axis, on a logarithmic scale. These results reveal a number of interesting insights. First,
the search times of FF and Metric-FF (shown as thinner lines) significantly outperform SGPLAN’s
search in this domain—on the largest instances, by a factor of over 100.6 Second, FF and Metric-FF
perform very similarly to each other, and their search times are almost the same as those of the
SPUD algorithm, which is impressive because they are complete search algorithms, whereas SPUD’s
greedy algorithm is not.

Finally, it is striking that for all three off-the-shelf planners, the search only accounts for a tiny

5All runtimes in Sections 4.1 and 4.2 were measured on a single core of an AMD Opteron 8220 CPU running

at 2.8 GHz, under Linux. FF 2.3 and Metric-FF were recompiled as 64-bit binaries and run with a memory
limit of 32 GB. Java programs were executed under Java 1.6.0 13 in 64-bit mode and were allowed to “warm

up”, i.e., the JVM was given the opportunity to just-in-time compile the relevant bytecode by running the

planner three times and discarding the runtimes before taking the actual measurements. All runtimes are
averaged over three runs of the planners.

6For FF and Metric-FF, we report the “searching” and “total” times reported by the planners. For

SGPLAN, we report the “total” time and the difference between the “total” and “parsing” times.
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Figure 7: Results for the XTAG experiment, at k = 1 and k = 2.

fraction of the total runtime; in each case, the preprocessing times are higher than the search times
by one or two orders of magnitude. As a consequence, even our relatively näıve Java implementation
of GraphPlan outperforms them all in terms of total runtime, because it only computes instances by
need. Although FF is consistently much faster as far as pure search time is concerned, our results
indicate that FF’s performance is much more sensitive to the domain size: if we fix n = 1, FF takes
27 milliseconds to compute a plan at m = 1, but 4.4 seconds to compute the same plan at m = 10.
By comparison, our GraphPlan implementation takes 20 ms at m = 1 and still only requires 22 ms
at m = 10.

4.2. Experiment 2: Sentence generation (XTAG)

The first experiment already gives us some initial insights into the appropriateness of planning for
the sentence generation domain: on the examples we looked at, the search times were quite acceptable,
but FF and SGPLAN spent a lot of time on the initial grounding step. However, one weakness of
this experiment is that it uses a tiny grammar, consisting of just the 12 lexicon entries that are
needed for the experiment. While the grounding problem can only get worse with larger grammars,
the experiment by itself does not allow us to make clear statements about the efficiency of the search.
To address this problem, we ran a second sentence generation experiment. This time, we used the
XTAG Grammar (XTAG Research Group 2001), a large-scale TAG grammar for English. XTAG
contains lexicon entries for about 17,000 uninflected words using about 1100 different elementary
trees. Although XTAG does not contain semantic information, it is possible to automatically equip
the lexicon entries with inferred semantic representations based on the words in the lexicalized
elementary trees. The result is a highly ambiguous grammar: the most ambiguous word, “ask”, is
the anchor of 314 lexicon entries.

In our experiment, we were especially interested in two questions. First, how would the planners
handle the search problem involved in generating sentences with such a large and ambiguous gram-
mar? Second, would it be harder to generate sentences containing verbs with multiple arguments,
given that verbs with more arguments lead to actions with more parameters and therefore more
instances? To answer these questions, we generated sentences of the form “S and S and . . . and
S”, where each S was a sentence, and n was the number of sentences in the conjunction. Each S
was a sentence of the form “the businessman sneezes”, “the businessman admires the girl”, or “the
businessman gives the girl the book”—that is, they varied in the number k of syntactic arguments
the verb expects (1 for the intransitive verb “sneeze”, 2 for the transitive verb “admire”, and 3
for the ditransitive verb “give”). This means that the output sentence for parameters n and k
contained n(2k + 2) − 1 words. The instances were set up in such a way that the generation of
referring expressions was trivial, so this experiment was purely a surface realization task. To achieve
reasonable performance, we only generated planning operators for those elementary trees for which
all predicate symbols in the semantic representation also appeared in the knowledge base.
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Figure 8: Experimental GIVE world configurations.

Figure 7 reports the runtimes we measured in this experiment for FF, Metric FF, and the
SPUD reimplementation. We do not report runtimes for SGPLAN, because we could not recompile
SGPLAN as a 64-bit binary, and the 32-bit version ran out of memory very quickly. We also do not
report runtimes for our Java implementation of GraphPlan, because it was unusably slow for serious
problem instances: for k = 1 and n = 3, it already took over two minutes and exceeded its memory
limit of 16 GB for n > 3. However, we note that this may be a limitation of our näıve implementation
rather than the GraphPlan algorithm itself.

Nonetheless, there are a number of observations we can make in this experiment. First, the
experiment confirms that FF’s Enforced Hill-Climbing search strategy works very well for the
sentence generation task: although we are now generating sentences with a large grammar, FF
produces a 39-word sentence (k = 1, n = 6) in under a second of search time. This level of efficiency
is a direct result of using this particular search strategy: for k = 1 and n > 6, FF 2.3 (but not Metric-
FF) fell back to the best-first search strategy, which causes a dramatic loss of search efficiency. It is
also encouraging that Metric-FF still performs comparably to SPUD in terms of pure search time.
We believe that FF’s technique of evaluating actions by estimating the distance to a goal state for
the relaxed problem essentially picks out the same evaluation function as SPUD’s domain-specific
heuristic, and the enforced hill-climbing strategy needs to backtrack very little in this domain and
thus performs similarly to SPUD’s greedy search. However, SPUD’s incompleteness manifests itself
in this experiment by its inability to find any plan for k > 1 and n > 1, whereas FF and its variants
still (correctly) find these plans.

Second, FF’s runtime is still dominated by the preprocessing stage. For instance, Metric-FF
spends about 10 seconds on search for k = 1, n = 10, compared to its total runtime of about 65
seconds. This effect becomes more pronounced as we increase k: for k = 2, we reach 65 seconds of
total runtime at n = 4, but here Metric-FF only spends about a second on search. For k = 3, neither
FF nor Metric-FF were able to solve any of the input instances within their memory limit. This is
consistent with the observation that the planning operators for the verbs have k+ 2 parameters (see
Fig. 3), and thus the number of action instances grows by a factor of the universe size every time
we increase k by one. A planner which computes all ground instances of the operators thus takes
exponential time in k for preprocessing.

4.3. Experiment 3: Minimal GIVE worlds

We now turn our attention to a set of experiments arising from the GIVE domain. Besides using
many of the planners from the previous set of experiments (FF, Metric-FF, and SGPLAN), we also
expand our testing to include the FF(ha) (Keyder and Geffner 2008), LAMA (Richter and Westphal
2008), and C3 (Lipovetzky et al. 2008) planners. Each of these additional planners competed in
the deterministic “sequential, satisficing” track of the 2008 International Planning Competition; all
planners performed well on the competition domains, with LAMA the overall winner of the track.7

In the first GIVE experiment, we construct a series of grid worlds, similar to the one illustrated
in Figure 8(a). These worlds consist of a N = 2n by h grid of positions, such that there are buttons
at positions (2i− 1, 1) and (2i, h) for 1 6 i 6 n. The player starts in position (1, 1) and must press
all the buttons to successfully complete the game. (The actions in this domain are similar to the

7See http://ipc.informatik.uni-freiburg.de/ for details of the 2008 IPC.
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Figure 9: Results for the unordered and ordered minimal GIVE domains with grid height h = 20.
The horizontal axis is the grid width, N . The vertical axis is the total runtime in seconds.

PDDL actions in Figure 5.) We consider two variants of this problem in our tests. In the unordered
problem, the player is permitted to press the buttons in any order to successfully achieve the goal. In
the ordered version of the problem, the player is unable to initially move to any grid cell containing
a button, except for the cell containing the first button, u1. Pressing u1 releases the position of
the next button, l1, allowing the player to move into this cell. Similarly, pressing button l1 frees
button u2, and so on. The end result is a set of constraints that forces the buttons to be pressed in
a particular order to achieve the goal. As a concrete example, the following is a minimal plan (in
either variant of the problem) for the case of a 2 by 2 grid with 2 buttons (i.e., n = 1, h = 2):

(1) move(pos 1 1, pos 1 2, north),
(2) manipulate-button-off-on(u1, pos 1 2),
(3) turn-right(north, east),
(4) move(pos 1 2, pos 2 2, east),
(5) turn-right(east, south),
(6) move(pos 2 2, pos 2 1, south),
(7) manipulate-button-off-on(l1, pos 2 1).

Results for the h = 20 case, with the grid width N ranging from 1 to 40, are shown in Figure 9. In
the unordered case (Figure 9(a)), the most obvious result is that some of the planners tested—Metric-
FF, FF(ha), and C3—are unable to solve any problems beyond N = 24 on our experimentation
machine within the memory limit of 2 GB.8 While FF, LAMA, and SGPLAN are able to solve
all problem instances up to N = 40, the total runtime varies greatly between these planners. For
instance, FF takes almost 35 seconds to solve the N = 40 problem, while LAMA takes around 6.5
seconds. SGPLAN shows impressive performance on N = 40, generating a 240 step plan in well
under a second. In the ordered case (Figure 9(b)), we again have the situation where Metric-FF,
FF(ha), and C3 are unable to solve all problem instances. Furthermore, both SGPLAN and LAMA,
which performed well on the unordered problem, now perform much worse than FF: FF takes 39
seconds for the N = 40 case, while SGPLAN takes 50 seconds and LAMA takes 90 seconds. In real
NLG systems, where response time is essential, runtimes over a few seconds are unacceptable.

Preprocessing time (i.e., parsing, grounding, etc.) generally plays less of a role in GIVE, com-
pared with the sentence generation domain; however, its effects still contribute significantly to the
overall runtime of a number of planners. Figure 10 shows the grounding time for FF, LAMA, and
SGPLAN on the minimal GIVE problems, compared with the total runtime. In the unordered variant
of the minimal GIVE domain (Figure 10(a)), the grounding time in LAMA and SGPLAN accounts

8All runtimes in Sections 4.3 and 4.4 were measured on a single core of an Intel Xeon CPU running at

3GHz, under Linux. All runtimes are averaged over three runs of the planners. Only 32-bit versions of the

planners were used for testing in each case.
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Figure 10: Comparison of the total runtime and grounding time for selected planners in the h = 20
minimal GIVE domain. The horizontal axis is the grid width, N . The vertical axis is the runtime in
seconds.

for a significant fraction of the total runtime: SGPLAN spends around 40% of its total runtime
on preprocessing; for LAMA, this number rises to at least 80% for our test problems. For FF, the
preprocessing time is much less important than the search time, especially for large problem instances.
In the ordered case (Figure 10(b)), the actual time spent on preprocessing is essentially unchanged
from the unordered case, and search time dominates the total runtime for all three planners. Overall,
however, FF is now much better at controlling the search, compared with the other planners and its
performance on the unordered variant of the problem.

4.4. Experiment 4: GIVE worlds with extra grid cells

In our last set of experiments, we vary the structure of the GIVE world in order to judge
the effect that universe size has on the resulting planning problem. Starting with the GIVE world
described in Experiment 3, we extend the world map by adding another w by h empty cell positions
to the right of the minimal world, as shown in Figure 8(b). These new positions are not actually
required in any plan, but extend the size of the state space and approximate the situation in the
actual GIVE domain where most grid positions are never used. We leave the initial state and goal
untouched and, again, consider both unordered and ordered variants of the problem.

Results for the h = 20, n = 10 case with w ranging from 1 to 40 are shown in Figure 11. As in
Experiment 3, a number of planners again fail to solve all the problems: Metric-FF, FF(ha), and C3

solve only a few instances, while FF only scales to w = 23. In the unordered version of the domain,
SGPLAN easily solves inputs beyond w = 40 in well less than a second. LAMA is also reasonably
successful on these problems; however, its runtimes grow more quickly than SGPLAN, with LAMA
taking almost 5 seconds to solve the w = 40 problem instance. In the ordered case, we again see
behaviour similar to that of Experiment 3: for the problem instances FF is able to solve, it performs
significantly better than LAMA and SGPLAN. (SGPLAN’s long term runtime appears to be growing
at a slower rate than FF’s, and so even if FF could be scaled to larger problem instances, it seems
possible that SGPLAN might overtake FF as the better performer.) However, the overall planning
times for most of these instances are concerning since times over a couple seconds will negatively
impact the overall response time of an NLG system, which must react in real time to user actions.

Finally, we also performed a set of experiments designed to investigate the tradeoff between
grounding time and search time on certain grid configurations. For these experiments, we initially
fixed the size of the grid and then varied the number of buttons b in the world, thereby creating
a series of “snapshots” of particular extra-cell GIVE domains. Figure 12 shows the results of these
experiments for the FF and SGPLAN planners, for a fixed size grid of height 20 and width 40, and
the number of buttons b ranging from 1 to 40. In each case, the amount of time a planner spends on
grounding is relatively unchanged as we vary the number of buttons in a grid, while the search time
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Figure 11: Results for the unordered and ordered GIVE domains with h = 20 and n = 10. The
horizontal axis is the extra grid width w. The vertical axis is the total runtime in seconds.
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Figure 12: Results for the GIVE domains with a fixed grid size of height 20 and width 40. The
horizontal axis is the number of buttons b. The vertical axis is the runtime in seconds (log scale).

continues to rise (sometimes quite dramatically), as b increases. (We saw a similar effect for other grid
configurations we tried.) This observation has important consequences for the design of our GRID
worlds: changing the underlying domain structure, even minimally, may result in significant—and
often unexpected—performance differences for the planners that must operate in these domains.

5. DISCUSSION

We can draw both positive and negative conclusions from our experiments about the state
of planning for modern NLG applications. On the one hand, we found that modern planners are
very good at dealing with the search problems that arise in the NLG-based planning problems we
investigated. In the sentence generation domain, FF’s Enforced Hill-Climbing strategy finds plans
corresponding to 25-word sentences in about a second. It is hard to compare this number to a baseline
because there are no shared benchmark problems, but FF’s search performance is similar to that of
a greedy, incomplete special-purpose algorithm, and competitive with other sentence generators as
well. Thus, research on search strategies for planning has paid off; in particular, the Enforced Hill-
Climbing heuristic outperforms the best-first strategy to which FF 2.3 switches for some problem
instances. Similarly, SGPLAN’s performance on the GIVE domain is very convincing and fast enough
for many instances of this application.
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On the other hand, each of the off-the-shelf planners we tested spent substantial amounts of time
on preprocessing. This is most apparent in the sentence generation domain, where the planners spent
almost their entire runtime on grounding the predicates and operators for some problem instances.
This effect is much weaker in the GIVE domain, which has a much smaller number of operators
and less interactions between the predicates in the domain. However, our GIVE experiments also
illustrate that altering the structure of a domain, even minimally, can significantly change a planner’s
performance on a problem. For instance, in some of our GIVE experiments with extra grid positions,
increasing the number of buttons in the world, while keeping the dimensions of the grid fixed, resulted
in a significantly larger search time while the preprocessing time remained essentially unchanged.

While the GIVE domain can be defined in such a way that the number of operators is minimized,
this is not possible for an encoding of a domain in which the operators model the different commu-
nicative actions that an NLG system can use. For instance, in the sentence generation domain, the
XTAG planning problem for k = 2 and n = 5 consists of about 1000 operators for the different lexicon
entries for all the words in the sentence, some of which take four parameters. It is not unrealistic
to assume a knowledge base with a few hundred individuals. All this adds up to trillions of ground
instances: a set which is completely infeasible to compute näıvely.

Of course, it would be premature to judge the usefulness of current planners as a whole, based on
just two NLG domains. Nevertheless, we believe that the structure of our planning problems, which
are dominated by large numbers of operators and individuals, is typical of NLG-related planning
domains. This suggests that while current planners are able to manage many of the search problems
in the domains we looked at, they are still largely unsuitable for practical NLG applications because
of the time they spend on preprocessing.

We are also aware that the time a planner invests in preprocessing can pay off during search, and
that such techniques have been invaluable in improving the overall running time of modern planners.
However, we still suggest that the inability of a planner to scale to larger domains limits its usefulness
for applications beyond NLG as well. Furthermore, we feel that the problem of preprocessing receives
less research attention than it deserves: if the problem is scientifically trivial then we challenge the
planning community to develop more efficient implementations that address the concerns raised in
our experiments; otherwise, we look forward to future publications on this topic. To support this
effort, we offer our planning domains as benchmarks for future research and competitions.9

Finally, we found it very convenient that the recent International Planning Competitions provide
a useful entry point for selecting and obtaining current planners. Nevertheless, our experiments
exposed several bugs in the planners we tested, which required us to change their source code to
make them scale to our inputs. We also found that different planners that solve the same class of
planning problems (e.g., STRIPS, ADL, etc.) sometimes differ in the variants of PDDL that they
support. These differences range from fragments of ADL that can be parsed, to sensitivity in the
order of declarations and the use of “objects” rather than “individuals” as the keyword for declaring
the universe. We propose that the case for planning as a mature technology with professional-quality
implementations could be made more strongly if such discrepancies were harmonized.

6. CONCLUSION

In this paper, we investigated the usefulness of current planning technology to natural language
generation, an application area with a long tradition of using automated planning that has recently
experienced a renewed interest in such techniques from NLG researchers. In particular, we evaluated
the performance of several off-the-shelf planners on a series of planning domains that arose in the
context of sentence generation and situated instruction generation.

Our results were mixed. While some of the planners we tested—in particular, FF and SGPLAN—
did an impressive job of controlling the complexity of the search, we also found that all of the off-the-
shelf planners we tested spent significant amounts of time on preprocessing, thereby limiting their
usefulness for real-world NLG problems. For instance, in the sentence generation domain, FF spent

9The PDDL problem generators for our NLG domains are available at http://www.coli.uni-saarland.

de/~koller/projects/crisp.
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90% of its runtime on computing the ground instances of the planning operators; in the instruction-
giving domain, which is very similar to Gridworld, a similar effect happened for certain combinations
of grid sizes and buttons. As a result, this overly long preprocessing time makes these planners an
inappropriate choice for NLG applications, in any but the smallest problem instances. Users who
come to planning from outside the field, such as NLG researchers, treat planners as black boxes.
This means that search efficiency alone is not helpful when other modules of the planner are slow.
From this perspective, we believe that more effort should be spent on optimising the preprocessing
components of new and existing planners, with similar vigour as research into the search problem
itself. We propose that one line of research might be to investigate planning algorithms that do not
rely on grounding out all operators prior to the search, but instead selectively perform this operation
when needed. In particular, recent work aimed at analyzing the performance of FF in the sentence
generation domain has resulted in a set of minor enhancements to FF’s preprocessor and search
options, leading to significant performance improvements (often several orders of magnitude better)
on this problem (Koller and Hoffmann 2010), compared to the original version of FF tested here.

NLG and planning have a long history in common. The recent surge in NLG-as-planning research
presents valuable opportunities for both disciplines. Clearly, NLG researchers who apply planning
technology will benefit directly from any improvements in planner efficiency. Conversely, NLG may
also be a worthwhile application area for planning researchers to keep in mind. Domains like GIVE
highlight certain challenges, such as plan execution monitoring and plan presentation (i.e., sum-
marisation and elaboration), but also offer a platform on which such technologies can be evaluated
in experiments with human users. Furthermore, although we have focused on classical planning
problems in this work, research related to reasoning under uncertainty, resource management, and
planning with knowledge and sensing, can also be investigated in these settings. As such, we believe
our domains would provide interesting challenges for planners entered in future editions of the IPC.
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Learning action effects in partially observable domains
Kira Mourão and Ronald P. A. Petrick and Mark Steedman 1

Abstract. We investigate the problem of learning action effects
in partially observable STRIPS planning domains. Our approach is
based on a voted kernel perceptron learning model, where action and
state information is encoded in a compact vector representation as
input to the learning mechanism, and resulting state changes are pro-
duced as output. Our approach relies on deictic features that assume
an attentional mechanism that reduces the size of the representation.
We evaluate our approach on a number of partially observable plan-
ning domains, and show that it can quickly learn the dynamics of
such domains, with low average error rates. We show that our ap-
proach handles noisy domains, conditional effects, and that it scales
independently of the number of objects in a domain.

1 INTRODUCTION AND MOTIVATION

Acquiring a domain model automatically through learning and ex-
perience gives an agent greater flexibility to handle unexpected sit-
uations, and avoids the need for a predefined world model. Existing
approaches either work within the space of transition rules to find a
“good” set, or all consistent sets, of rules [2, 3, 12, 15], or they op-
erate at the sensor level by constructing transition rules from actions
and robot sensor data coded as sets of objects or raw sensor readings,
and predicates derived from this data [7, 10]. The former, high-level,
methods have been applied to partially observable [2, 15] or non-
deterministic [12] domains, but are not applicable to domains which
are both noisy and partially observable; few are also able to learn
conditional effects. The latter, low-level, methods can learn in noisy,
partially observable domains, but the domains are much simpler,
without relations between objects, and sometimes without objects at
all. Here, we extend our previous work on learning action models in
noiseless, fully observable domains [11]. Our method learns the ef-
fects of STRIPS actions [4], extended to admit conditional effects,
in deterministic, noisy and partially observable versions of the more
complex domains typical of the high-level approaches.

2 REPRESENTATION

We learn action models from sequences of interleaved actions and
state observations. Each observation initially encompasses as much
of the world state as the agent is able to detect, with some parts of
the state potentially unobserved or corrupted by noise. We reduce
the size of each observation by only considering objects which can
be identified by a deictic reference [1], and then transform each ob-
servation into a vector to use as input to the learning model.

A deictic representation maintains pointers to objects of interest in
the world, with objects coded relative to the agent or current action.

1 University of Edinburgh, UK, email: kira.mourao@ed.ac.uk,
{rpetrick,steedman}@inf.ed.ac.uk

Figure 1. Computing deictic references: an example from the BlocksWorld
domain, in which an agent can manipulate a set of blocks on a table. Given
the action stack (A, B), i.e., stack block A on top of block B, the initial set

of objects of interest is {A, B}. The only object related to A or B is C,
since B is on C. Therefore the full set of objects of interest is {A, B, C}.

We take a similar approach to previous work applying deictic repre-
sentations to learn domain dynamics [3, 12]. For a given action in-
stance we construct the set of objects of interest, consisting of the set
of objects which are parameters of the action, and the objects which,
in the current state, are related to any object in the action parameters
(see Figure 1). This single step computation is in contrast to previous
approaches, where the set of objects under consideration is the full
transitive closure under all relations among objects. Also, whereas
previous approaches ignored objects if they were not uniquely de-
fined by deictic reference, we allow deictic references to any set of
objects that are indistinguishable relative to the action parameters.

An input vector representing the reduced state space is then con-
structed by assigning a bit for each action, 0-ary fluent, and for each
possible relation involving only the objects in the reduced state space.
The value of a bit is 1 (−1) if the corresponding fluent is true (false),
or if the corresponding action is (not) the current action. Bits for un-
observed or unused fluents are set to an arbitrary value N, which is
ignored during learning.

Vectors representing an action’s effects on a state are identical in
form to the input vectors, except that actions are excluded from the
vector, and bits are set to 1 (−1) if the corresponding fluent changes
(does not change). Bits corresponding to unobserved or unused flu-
ents are set to N.

3 LEARNING MODEL
The task of the learning mechanism is to learn the deterministic as-
sociations between action-state pairs and their effects. It is assumed
that the number and type of parameters of each action, predicate and
function are known. Action preconditions and effects are not known,
and effects may be conditional. Disjunctive effects are not allowed.
Instead, all effects are conjunctions of predicates, meaning it is suffi-
cient to learn the rule for each predicate separately. Using the vector
representation defined above, state transitions can be learnt using a
bank of classifiers, one for each bit of the output vector.

To address our learning problem we construct a variant of the
perceptron algorithm [13], using the voted perceptron [5], which is
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Figure 2. Results of learning action models in standard planning domains. Error bars are 95% confidence intervals. In noiseless, fully observable domains,
models fully predict all test cases after less than 200 examples (results not shown). While observing only a small fraction of the state, without noise, the learning
model completely predicts the test set after 20000 examples, in many of the test cases: with 15% of the state observable, the F-score is not significantly different
from 1 (t-tests, p > 0.05) in any of our domains. With noise, the learnt models are clearly poorer, but some aspects of each domain are still learnt: with 15% of

the state observable, the F-score is significantly different from 1 for ZenoTravel (p = 0.004) and Briefcase (p = 0.046), but not for Depots (p > 0.05).

noise-tolerant [8] and computationally efficient, producing perfor-
mance close to the best performing maximal-margin classifiers (e.g.
SVMs) on similar problems. We use the DNF kernel [14], which al-
lows the perceptron to run over the feature space of all possible con-
junctions of bits in the input space, i.e., the space of possible rules.

4 EXPERIMENTS
We tested the learning model on standard planning domains from the
3rd International Planning Competition (IPC): Depots, ZenoTravel
and DriverLog; a standard BlocksWorld domain; and Briefcase, a
domain with conditional effects. Sequences of random actions and
resulting states were generated from PDDL domain descriptions [9]
and used as training and testing data.2 Specific problems from the
IPC were used to set the sizes of the initial states for each sequence.
The actual initial states were generated at random using the IPC3
problem generator and a Briefcase state generator [6].

To determine error bounds on our results, we used 10 different
randomly generated training and testing sets. Each training set con-
sisted of 1000-20000 actions and matching state observations. Par-
tial observability was simulated by randomly selecting a fraction (5-
20%) of bits to retain in each state vector, and setting the remaining
bits to N. Sensor noise at 10% was simulated by flipping each bit
in the state vector with probability 0.1. Each test set was a fully ob-
servable, noiseless sequence of 2000 actions and observations. We
measured the performance on our test sets by considering the fluents
which our model predicted would change versus the fluents which
did change, and calculating the balanced F-measure, the harmonic
mean of precision and recall (true positives/predicted changes and
true positives/actual changes, respectively). Selected results of the
experiments are shown in Figure 2.

5 CONCLUSIONS AND FUTURE WORK
We have presented a method for learning deterministic action models
which is fast, scalable and handles noise and partial observability of
the world state. Furthermore, the error rate of the predictions made
by the model is low. The speed, scalability and accuracy make the
approach highly suitable for use in planning applications.

Additionally, our approach can learn conditional effects. Note that
the success or failure of an action, which depends on its precondi-

2 All data was generated using the Random Action Generator 0.5 available at
http://magma.cs.uiuc.edu/filter/.

tions, is a form of conditional effect (the action has a null effect un-
less the preconditions are satisfied). Therefore action preconditions
can also be learnt, if examples of action failures as well as action
successes are provided.

A key step in future work will be to extract STRIPS-style rules
from the sets of ordered pairings of entire states presently learnt by
the model, so that the learning model can be integrated with standard
planning software. We also plan to apply our method to intrinsically
noisy and partially observable real-world robot environments.
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Abstract

We investigate the problem of learning action effects in par-
tially observable STRIPS planning domains. Our approach is
based on a voted kernel perceptron learning model, where ac-
tion and state information is encoded in a compact vector rep-
resentation as input to the learning mechanism, and resulting
state changes are produced as output. Our approach relies on
deictic features that embody a notion of attention and reduce
the size of the representation. We evaluate our approach on
a number of partially observable planning domains, adapted
from domains used in the International Planning Competi-
tion, and show that it can quickly learn the dynamics of such
domains, with low average error rates. Furthermore, we show
that our approach handles noisy domains, and scales indepen-
dently of the number of objects in a domain, making it suit-
able for large planning scenarios.

Introduction and motivation
An agent operating in a real-world domain often needs to
do so with incomplete information about its environment.
In particular, an agent must often act or make decisions with
only partial or noisy information about the state of the world.
Automated planning systems are effective at controlling the
behaviour of agents in a variety of domains. However, such
tools require a model of the domain in which the agent will
operate. In real-world domains, such models may not be
readily available, nor be sufficiently detailed to account for
the subtleties inherent in complex environments.

Acquiring a domain model automatically through learn-
ing and experience gives an agent greater flexibility to han-
dle unexpected situations, and avoids the need for a pre-
existing model of the world. Learning the dynamics of a do-
main can be a challenging problem, however, especially in
domains where an agent only has partial access to the world
state, or external sensors that are susceptible to noise. Fur-
thermore, since a learnt action model may be subsequently
used for planning, the resulting learning method should be
as accurate, fast, and scalable as possible.

Using machine learning techniques to induce action mod-
els is not a new idea, with the literature divided between
two main approaches: high-level, logical approaches and
low-level, sensor-driven approaches. High-level approaches
work within the space of transition rules (Wang 1995;
Gil 1994; Amir and Chang 2008; Pasula, Zettlemoyer, and

Kaelbling 2007; Benson 1996) to find either a “good” set or
all consistent sets of rules. These methods attempt to exploit
relational structure in order to improve speed and general-
isation performance. Such approaches have also been ap-
plied to partially observable (Amir and Chang 2008) or non-
deterministic (Pasula, Zettlemoyer, and Kaelbling 2007) do-
mains. Alternatively, low-level methods operate closer to
the sensor level. Such approaches construct transition rules
from actions and robot sensor data coded as sets of objects
or raw sensor readings, and predicates derived from this
data (Metta and Fitzpatrick 2003; Holmes and Isbell 2005;
Doǧar et al. 2007; Modayil and Kuipers 2008). Although
many of these methods have had limited success at learning
aspects of particular domains, few of them fully address the
problem of learning partially observable domains, and fewer
still are capable of handling noise.

In this paper we consider the problem of learning the ef-
fects of an agent’s actions, that is, the transition rules be-
tween world states. We focus on learning the effects of
STRIPS actions (Fikes and Nilsson 1971) in deterministic
and partially observable domains. In particular, we consider
actions which affect a subset of the propositional features
that make up the world state. Following (Pasula, Zettle-
moyer, and Kaelbling 2007; Benson 1996), we use deictic
features that embody a notion of attention to produce a com-
pact representation of the domain.

This paper builds on our previous work (Mourão, Pet-
rick, and Steedman 2008) which also used deictic coding to
generate a compact vector representation of the world state,
and learnt action effects as a classification problem. How-
ever, the method only applied to fully observable domains,
as the kernel perceptron classifier used there performs badly
with noisy or partially observable data. Additionally, the ap-
proach was only tested on a single synthetic domain with
simulated states which were not necessarily reachable by a
sequence of actions in the domain.

Here we extend this work to partially observable (and
noisy) domains using kernelised voted perceptrons (Aizer-
man, Braverman, and Rozoner 1964; Freund and Schapire
1999) to learn action transitions in the domains. Such meth-
ods are particularly useful since they provide good perfor-
mance, in terms of both the training time and the quality
of the learnt models. Furthermore, we test our approach
against a set of standard planning domains taken from the

Page 77 of 99

Appendix D



3rd International Planning Competition,1 demonstrating that
our method is fast, accurate, and scales independently of the
number of objects in the world, thereby making it suitable
for large planning scenarios.

Domain learning
Definitions
The action representations we will use are based on the log-
ical representations typically found in planning systems. A
domain D is defined as a tuple D = 〈O,P,A〉, where O is a
finite set of world objects, P is a finite set of predicate (rela-
tion) symbols, and A is a finite set of actions. Each predicate
and action also has an associated arity. Predicates of arity 0
are referred to as object independent properties, while those
of arity at least 1 are object dependent properties.

A fluent is an expression p(c1, c2, . . . , cn), where p ∈ P ,
n is the arity of p, and each ci ∈ O. A state is any set of
fluents, and S is the set of all possible states. For any state
s ∈ S, a fluent p is true at s iff p ∈ s. The negation of a
fluent, ¬p, is true at s (also, p is false at s) iff p 6∈ s.

Each action a ∈ A is defined by a set of preconditions,
Prea, and a set of effects, Effa. Prea can be any set of fluents
and negated fluents. In STRIPS actions each effect e ∈ Effa
has the form add(p) or del(p), where p is any fluent. Action
preconditions and effects can also be parameterised. An ac-
tion with all of its parameters replaced with objects from O
is said to be an action instance.

Action instances are state transforming. Given a state s
and an action instance A, A is applicable (or executable) at
s iff each precondition p ∈ PreA is true at s. An applicable
action produces a new state s′ that is identical to s, but up-
dated with the effects of A as follows: for each e ∈ EffA, (i)
if e is an effect add(p) then p is added to s′, and (ii) if e is
an effect del(p) then p is removed from s′.

Learning model
The task of the learning mechanism is to learn the associ-
ations between action-precondition pairs and their effects,
that is, rules of the form 〈A,PreA〉 → EffA. As a result of
the form of the planning actions we allow, effects of rules
are assumed to be deterministic and disjunctive effects (i.e.,
effects of the form “either p1 or p2 changes”) are not al-
lowed. Instead, all effects are simply conjunctions of pred-
icates, meaning it is sufficient to learn the rule for each ef-
fect predicate separately. Thus, we can treat the learning
problem as a set of binary classification problems, with one
problem for each effect predicate.

To address our particular learning problem we use the
perceptron (Rosenblatt 1958), a simple yet fast binary clas-
sifier. The perceptron maintains a weight vector w which
is adjusted at each training step. The i-th input vector
xi ∈ {0, 1}n in a class y ∈ {−1, 1} is classified by the per-
ceptron using the decision function f(xi) = sign(〈w ·xi〉).
If f(xi) is not the correct class then w is set to w + yxi;
if f(xi) is correct then w is left unchanged. Provided the

1See http://ipc.icaps-conference.org/.

data is linearly separable, the perceptron algorithm is guar-
anteed to converge on a solution in a finite number of steps
(Novikoff 1963; Minsky and Papert 1969). If the data is not
linearly separable then the algorithm oscillates, changing w
at each misclassified input vector.

One solution for non-linearly separable data is to map the
input feature space into a higher-dimensional space where
the data is linearly separable. However, an explicit map-
ping may lead to a massive expansion in the number of fea-
tures, making the classification problem computationally in-
feasible. Instead, an implicit mapping is achieved by apply-
ing the kernel trick to the perceptron algorithm (Freund and
Schapire 1999), by noting that the decision function can be
written in terms of the dot product of the input vectors:

f(xi) = sign(〈w · xi〉) = sign(
n∑

j=1

αjyj〈xj · xi〉),

where αj is the number of times the j-th example has
been misclassified by the perceptron. By replacing the dot
product with a kernel function k(xi,xj) which calculates
〈φ(xi) · φ(xj)〉 for some mapping φ, the perceptron algo-
rithm can be applied in higher dimensional spaces without
ever requiring the mapping to be explicitly calculated.

We represent each state s as a vector (see below) and
learn state transitions using a bank of kernel perceptrons,
one for each output bit, corresponding to a single predicate
p. Since in general the problem of learning action effects
is not linearly separable, the kernel perceptron is an appro-
priate choice for this problem. Kernel perceptrons obtain
reasonable accuracy at acceptable training and prediction
speeds, allowing us to use this approach in practical plan-
ning applications. Alternative non-linear classifiers, such as
SVMs (Boser, Guyon, and Vapnik 1992), can be substan-
tially slower (Surdeanu and Ciaramita 2007) while perfor-
mance is not guaranteed to be better (Graepel, Herbrich, and
Williamson 2000). To improve the speed of the classifier we
use a variant of the kernel perceptron, the voted perceptron
(Freund and Schapire 1999), which is computationally effi-
cient and produces performance close to the best performing
maximal-margin classifiers on similar problems. Prelimi-
nary tests using SVMs on our problem give similar results
with longer computation times.

The kernel is chosen to allow the perceptron algorithm
to run over conjunctions of features in the original input
space, as this permits a more accurate representation of the
exact conjunction of features (action and preconditions) cor-
responding to a particular effect. We use the polynomial
kernel of degree 3, k(x, y) = (x.y+1)3 so that feature con-
junctions of up to three features make up the feature space.

Representation
We compute a reduced form of the input state space for each
action using deictic coding (Agre and Chapman 1987). A
deictic representation maintains pointers to objects of inter-
est in the world, with objects coded relative to the agent or
current action. Objects which cannot be indexed in this way
are excluded from the reduced state for the current action.
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Figure 1: Action stack (A,B) results in objects A, B, and
C being attended to, while unrelated objects D, E and F
are ignored. Objects A, B, and C are referred to by the
variables obj1, obj2 and obj3, respectively, in the vector
representation shown in Figure 2.

For instance, such a deictic representation might arise from
an attentional mechanism (Ballard et al. 1997).

For a given action instance A we construct the set of ob-
jects of interest OA, by combining a primary set of objects,
given by the parameters of the action, and a secondary set
of objects which are directly related to the primary set, in
the current state. We define a direct relation between ob-
jects ci and cj to exist in state s ∈ S if ∃p ∈ P such that
p(c1, c2, . . . , cn) ∈ s and ci, cj ∈ {c1, c2, . . . , cn}

The related objects are identified via deictic references,
e.g., if a particular action grasps an object x, then the pri-
mary set of objects consists of the “grasped-object” x, and
the secondary set might consist of the “object-under-the-
grasped-object” y; other objects which are not directly re-
lated to x are not represented. We define M = maxA |OA|
to be the maximum possible number of objects of interest
for any action instance.

Figure 1 presents an example from the BlocksWorld do-
main, in which an agent can manipulate a set of blocks on a
table. Given the action stack (A, B), i.e., stack block A on
top of block B, the primary set of objects is {A, B}. The
only object related to A or B is C, since B is on C. There-
fore the full set of objects of interest is {A, B, C}.

An input vector representing the state space is constructed
as follows. Each action a ∈ A, and each 0-ary predicate,
is represented by a bit. Then for each object o ∈ OA, all
the possible relations between o and all other objects in OA

must be represented. This requires at most
(
M−1
n

)
bits for

each n-ary predicate, for each object in OA. The value of a
bit is 1 (−1) if the corresponding predicate is true (false), or
if the corresponding action is (not) the current action. If a
bit corresponds to an unobserved predicate, the value is set
to 0. When |OA| < M for some action instance A, bits for
unused predicates are set to 0. Figure 2 shows the vector
representation of the state in Figure 1.

The form of the output vectors representing an action’s
effects on a state are identical to the input vectors, except

Input vector Corresponding action/predicate

−1 pickup(obj1)
−1 putdown(obj1)
1 stack(obj1, obj2)

−1 unstack(obj1, obj2)

9>=>; Actions

−1 armempty
. . .

ff
Object independent
properties

1 holding
−1 ontable
−1 clear
−1 on-obj1
−1 on-obj2
−1 on-obj3

. . .

9>>>>>>>=>>>>>>>;
Properties of obj1

−1 holding
−1 ontable
1 clear

−1 on-obj1
−1 on-obj2
1 on-obj3

. . .

9>>>>>>>=>>>>>>>;
Properties of obj2

−1 holding
1 ontable

−1 clear
−1 on-obj1
−1 on-obj2
−1 on-obj3

. . .

9>>>>>>>=>>>>>>>;
Properties of obj3,
included as obj3 is
related to obj2

Figure 2: Input vector representation of the (fully observ-
able) BlocksWorld stack action and prior state from Figure
1. The first 4 bits correspond to the 4 domain actions. The
bit for stack is set to 1 since it is the current action. The
0-ary predicate armempty is represented by a single bit, set
to -1 since the gripper is holding object A. The first set of
object predicates represented in the vector are those for ob-
ject A since it is the first parameter of stack. The second
set of object predicates relate to object B, as the second pa-
rameter of stack, and finally the third and last set of object
predicates relate to object C, as it is related to object B by
the on predicate. If object B were being stacked on object
A the predicates for object B would precede those for object
A instead.

that the actions themselves are excluded from the vector, and
bits are set to 1 if the corresponding predicate changes, −1
if the corresponding predicate does not change, and 0 if the
corresponding predicate was not observed either before or
after the current action. During learning, only examples with
a known change, i.e. values 1 or −1, are used to train the
kernel perceptrons. The ordering of object representations in
the vectors is constrained so that two objects with the same
role in the same action, but in two different instances of the
action, must always be represented at the same position in
the vectors.

Deictic coding has a number of benefits. It greatly re-
duces the size of the input for an algorithm learning to pre-
dict action effects, as information is discarded about objects
unrelated to the action or its parameters. As a consequence,
scalability is improved, because the size of the representa-
tion does not increase with the size of the universe.
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The size of the representation required for relations be-
tween objects is also reduced. Firstly, any relations includ-
ing discarded objects can be ignored. More importantly, de-
ictic coding means that objects are represented by variables
rather than by constants, and so whether we grasp object A
sitting on object B, or grasp object C sitting on object D,
the “on” relation is always represented as “the-object-I-will-
grasp is on the-object-under-the-object-I-will-grasp”. Thus,
if the representation considers M objects of the possible |O|
in the state space, the number of instances of each binary
relation which needs to be represented drops from O(|O|2)
to O(M2). M < |O| but is otherwise unrelated to |O|, and
instead typically depends on the complexity of the domain
(M < 8 for the domains considered here). Finally, deictic
coding creates a strong bias for generalisation.

Experiments
We tested the learning model on standard planning domains
from the 3rd International Planning Competition (IPC): De-
pots and ZenoTravel, as well as a standard BlocksWorld do-
main. The domains are described in PDDL (McDermott et
al. 1998), the standard representation language of the IPC.
BlocksWorld is a very simple domain with 4 actions (maxi-
mum 2 parameters) and 5 predicates (maximum arity 2). All
objects are blocks. The maximum possible number of ob-
jects of interest, M , is 3. Depots and ZenoTravel are more
complex. Depots has 5 actions (maximum 4 parameters), 6
predicates (maximum arity 2) and 6 types of objects (rep-
resented as predicates of arity 1). ZenoTravel has 5 actions
(maximum 6 parameters), 8 predicates (maximum arity 2)
and 4 types of objects (again represented as predicates of
arity 1). M = 5 and M = 7 for Depots and ZenoTravel
respectively.

Sequences of random actions and resulting states were
generated from PDDL domain descriptions and used as
training and testing data.2 The number of objects in the state
space was higher in the test data than in the training data, to
demonstrate that the learnt models could be applied across
different instances of the same domain. Specific problems
from the IPC were used to set the sizes of the initial states for
each sequence.3 BlocksWorld was initialised with 13 blocks
for training and 30 blocks for testing. The actual initial states
were generated at random using the IPC3 problem genera-
tor and a BlocksWorld state generator (Slaney and Thiébaux
2001).

Partial observability was simulated by randomly selecting
a number of predicates from the world to observe after each
action. The remaining predicates were discarded and the re-
duced state vector was generated from the observed fluents.
The number of observed predicates was set to approximately
5-20% of the total number of predicates (including nega-
tions) required to fully describe the state (BlocksWorld: 209,
ZenoTravel: 2116, and Depots: 1764).

2All data was generated using the Random Action Generator
0.5 available at http://magma.cs.uiuc.edu/filter/.

3Depots problem 5, and ZenoTravel problem 9 for training; De-
pots problem 19 and ZenoTravel problem 14 for testing.

To determine an error bound on our results, 10 runs with
different randomly generated training and testing sets were
used. Our testing environment was a 2.4 GHz quad-core
system with 4 Gb of RAM. All experiments were run on
a single CPU. Each training set consisted of sequences of
actions and state observations of lengths ranging from 1000-
20000, and each test set was a sequence of length 2000.

Results
Using our representation, learning in fully observable do-
mains is easy. Accordingly, the action models in all three
domains were learnt in under 250 examples, which was suf-
ficient to fully predict the 2000 test examples (Figure 3(a)).

Partial observability reduces the number of useful exam-
ples which can be learnt from, and also reduces the number
of useful bits in each example. Substantially more examples
are therefore needed to learn the action model. Furthermore,
the variance of the errors on the test set is much higher than
in the fully observable case. The higher variance is due to
the small number of observed predicates during training. Al-
though the test case is fully observable, only a fraction of the
state is used for prediction. This can cause the learner to mis-
take one action for another (a form of perceptual aliasing)
and wrongly predict every instance of the action, resulting
in a high number of errors on the test set.

In the BlocksWorld domain, observing 30 randomly cho-
sen predicates from the full state description (approximately
15% of the state) over 9000 examples is sufficient to fully
predict all the test sets of 2000 examples (Figure 3(b)). Ob-
serving fewer predicates also produces good results: training
on 9000 examples is sufficient to fully predict eight of the ten
test sets for both 10 and 20 observations at each time step.
The failures are all instances of the stack action. Most in-
correctly predict all instances of stack , resulting in approx-
imately 25% error on each test set. One case wrongly pre-
dicts the results of the stack action only when the block be-
ing stacked upon is already stacked on top of another block,
producing an 8% error.

In the ZenoTravel domain, 300 observations at each step
(again, approximately 15% of the state) allows for complete
prediction of the test set in three of the ten test cases. Of the
remaining test sets, five have only 1 or 2 prediction errors,
while the last three wrongly predict every case of the refuel
action (by not predicting the deletion of the fluent specifying
the initial fuel level), resulting in approximately 27% errors
on each test set. By increasing the number of observations
at each step to 400, eight of the ten test sets can be fully
predicted, with only one error and two errors respectively
on the remaining test sets (Figure 3(c)). The Depots domain
is more challenging for our method and 300 observations at
each step (approximately 17% of the state) are only suffi-
cient to completely predict the test set in half the test cases.
The other test sets have around 15% error as every case of
the load action is wrongly predicted. However, with 400 ob-
servations at each step, after 14000 steps, all of the test sets
are fully predicted (Figure 3(d)).

The poorly predicted test cases in the three domains are
all instances of the perceptual aliasing problem discussed
above. The problem can be resolved by supplying an exam-
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ple to the learner which it would predict incorrectly, so that a
new prediction function can be learnt. With a randomly gen-
erated sequence of actions, many additional examples could
be required before such an example was generated. How-
ever, in a planning scenario the necessary example could be
identified from a plan execution failure and used to improve
the prediction.

Scalability
Our empirical results demonstrate the effectiveness of our
approach in a number of standard planning domains. Our
approach can also be shown to scale, making it suitable for
more complex problems in domains with large numbers of
actions and objects. In particular, our approach takes time
proportional to a measure of the complexity of the domain,
and the number of mistakes made during learning.

For a reduced state vector of length l, there are l − |A|
voted perceptrons each computing one bit of the output vec-
tor. In the fully observable case, each voted perceptron
learns in time proportional to the number of training ex-
amples n, the length of the reduced state vector l, and k,
the number of mistakes made so far (k ≤ n). Thus, the
complexity of the learning algorithm is O(l2n2). Predictions
are made in time O(l2n). The same analysis applies to the
partially observable case, however many more observations
are needed, firstly because many observations will not con-
tain the necessary information about whether a predicate has
changed as a result of an action, and secondly because there
is less information in the partially observed world state from
which to learn. The former is mitigated by the fact that the
kernel perceptrons only train on “useful” training examples
where the change in a predicate is known, and only these
examples incur significant computational cost.

Recall that M is the maximum possible number of ob-
jects of interest for any action instance. Additionally, we
define Pi = {p ∈ P : arity(p) = i} and m =
maxp∈P(arity(p)). Then the length of the reduced state
vector is given by l = |A| + |P0| + M

∑m
i=1

(
M−1

i

)
|Pi|.

Thus, l depends on the number and arity of predicates in
the domain, and the maximum possible number of objects
of interest. Intuitively it makes sense that more complex
domains with more predicates and more inter-relations be-
tween objects should require more time to learn and predict.
In particular, M does not depend on the number of object
instances in the domain. For the planning domains consid-
ered here, which only have predicates with arity below 3, M
is typically not very large (M < 8).

When the domain is fully observable, the number of ob-
servations n required by our method to learn the action
model does not depend on the number of objects in the
world. However, this is not the case for partially observ-
able domains. An observation is only useful to the learning
process if it contains fluents relating to the set of objects
of interest, and at least one which was observed immedi-
ately before the current action, so that it is known whether a
change occurred. Under partial observability, the probability
of observing ‘useful’ fluents decreases as the number of ob-
jects in the world increases, as the number of ‘useful’ fluents

remains constant while the total number of fluents increases.
Thus the number of observations needed to learn the domain
increases with the number of objects in the world. However
we can learn in a smaller state space and apply the results to
a larger one, since the representation is not dependent on the
number of objects in the world.

The complexity can be reduced by limiting the number of
vectors the voted perceptron stores, which has the effect of
fixing k to be constant, and reduces the learning complex-
ity by a factor of n to O(l2n). However, the reduction of
the state to a vector of length l by the deictic representation
remains crucial. Accuracy may also be affected if k is too
small. Furthermore, our solution is embarrassingly paral-
lel, since the learning and prediction of each output bit is
independent of the others. Running the calculations for each
output bit in parallel would further reduce the complexity of
learning and prediction, by a factor of l.

Currently our approach does not directly support typed
domains. Instead, types are represented by adding new flu-
ents to the domain description. As with the introduction of
new objects, these additional fluents increase the number of
observations needed to learn the domain. However, by sup-
porting typed domains, we could also significantly improve
the performance of our approach.

Discussion
Our method is dependent on the existence of a structured
parametric representation, abstracted from the grounded
sensory manifold itself. In particular, actions must be speci-
fied whose parameters are exactly those objects acted on, so
that the correct set of objects is passed into the reduced state
vector. We anticipate such information would be provided
by an attentional model applied to a visual scene which picks
out the necessary actions and their parameters. Such a model
exists (Satish and Mukerjee 2008), and could be used to pro-
vide grounded parameterised actions.

Our method also depends on the use of a deictic represen-
tation, which both introduces a bias for generalisation and
limits the number of objects considered by the learning and
prediction process. Deictic representations have previously
been applied to learning domain dynamics. (Benson 1996)
converts the first-order logic description of the state space
into a propositional description by representing objects with
deictic variables. Our use of deictic variables is essentially
the same. However (Benson 1996) uses the transitive clo-
sure of the relations among objects rather than the single step
computation which we use. Similarly, (Pasula, Zettlemoyer,
and Kaelbling 2007) use deictic references to objects to pro-
vide a generalisation bias and to reduce the search space of
transition rules.

Our training and testing data was generated to mimic data
collected by an agent exploring the world, and corresponds
to sequences of actions and observations taken from random
walks through the state space. In some domains (e.g. Grid,
Freecell) certain actions occur infrequently, if at all, under
these conditions, and so learning of such actions may fail. A
more guided exploration of the state space may be necessary
to learn in these domains. In particular, we do not use exam-
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Figure 3: Results of learning action models in standard planning domains

ple plans as training data, since this presupposes an existing
model of the domain which is to be learnt.

Tractability is a significant issue in learning action models
in partially observable domains: methods such as HMMs,
Dynamic Bayes Nets and Reinforcement Learning scale
poorly (Amir and Chang 2008). More tractable methods
use schema learning (Holmes and Isbell 2005), build a
CNF representation of all possible transition models (Amir
and Chang 2008), or convert the problem into a weighted
MAXSAT problem (Yang, Wu, and Jiang 2007). In terms of
tractability, our approach is competitive with these methods.
A direct comparison is not straightforward as our method
currently does not produce explicit rules which could be
compared.

We learn action models in partially observable noiseless
domains. Our approach also performs well in fully observ-
able noisy domains (submitted). Figure 4 shows the results
of our method applied to learning the ZenoTravel domain
with 5% and 10% uniform noise, under full observability.
We believe our approach will extend to learning in noisy par-
tially observable domains. Future work will investigate this
claim. Some earlier work learns action models in probabilis-
tic, partially observable, noisy domains using schema learn-
ing (Holmes and Isbell 2005). However, the action models

apply to sensor values rather than features of the domain,
and so objects and relations between objects are not mod-
elled. Other work uses noiseless domains (Amir and Chang
2008; Yang, Wu, and Jiang 2007), and these methods have
not been shown to work in noisy domains.

The form of partial observability can also vary. We follow
(Amir and Chang 2008) where a fixed number of randomly
chosen fluents are observed after each action in a random se-
quence of actions. Additionally, (Amir and Chang 2008) do
not require knowledge of an initial state, fluents, or the size
of the domain in their approach. In contrast, our method
currently requires prior knowledge of the fluents and objects
in the domain in order to build the state vector representa-
tion. (Yang, Wu, and Jiang 2007) describe a different form
of partial observability, where the full state is observed at in-
tervals after a fixed number of actions in a plan are executed,
in combination with knowledge of the initial state and goal
state. Since we rely on observing state changes before and
after action application, our approach is not directly appli-
cable to this form of partial observability.

We also believe the form of partial observability we use
allows our model to be extended to sensing actions. While
prior approaches (including ours) have primarily focused
on learning the effects of ordinary actions—actions which
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Figure 4: Learning results in noisy and fully observable ver-
sions of the ZenoTravel domain. Noise at level p% was sim-
ulated by flipping each bit in the state vector with probabil-
ity p (for p = 0%, p = 5% and p = 10%). The test sets
were noiseless, fully observable sequences of observations
and actions, of length 2000.

change both the world state as well as the agent’s knowl-
edge state—they have ignored the role of sensing actions
in partially observable domains. Sensing actions are partic-
ularly useful since they provide an agent with information
about the state of the world, thereby changing the agent’s
knowledge state, but without necessarily changing the world
state. We admit sensing actions into our account by assum-
ing such actions have parameters (fluents and parameters of
the fluents) and that these actions only alter knowledge re-
lating to those parameters, or objects directly related to the
parameters of the fluents. Furthermore we disallow sens-
ing actions which are non-deterministic or have disjunctive
effects. Then a reduced knowledge state vector can be con-
structed in the same manner as the reduced world state vec-
tor. In the input, the value of each bit indicates whether the
corresponding fluent is known or not, and in the output in-
dicates changes to the knowledge state. The learning model
can then operate on both the knowledge and world state vec-
tors. Standard actions are learnt as before, with effects now
including changes to the knowledge state. Sensing actions
are learnt in the same way, but changes to the world state
will have to be ignored, since these are unpredictable. The
addition of sensing actions would allow our method to be in-
tegrated with knowledge-based representations such as those
used by the PKS planner (Petrick and Bacchus 2004).

Finally, the relative difficulty of learning action models
in different domains is not well understood. For example,
from the domain description, the Depots domain appears to
be simpler than the ZenoTravel domain since the maximum
number of parameters of any action is lower, and there are
fewer predicates. Our results show that Depots is harder to
learn, however, at least for our learning method. In fact, the
method presented in (Yang, Wu, and Jiang 2007) also pro-

duces more errors in the Depots domain than in the Zeno-
Travel domain, suggesting that the additional difficulty may
be a feature of the Depots domain rather than the learning
method. In general, further investigation of the relative diffi-
culties of learning different domains is important for further
research in this area.

Conclusions and Future Work
We have presented a method for learning deterministic ac-
tion models which is fast, scalable and handles partial ob-
servability of the world state. Furthermore, the error rate
of the predictions made by the model is low. The speed,
scalability and accuracy make the approach highly suitable
for use in planning applications. It is straightforward to ex-
tend our method to learn the effects of sensing actions. Our
method also performs well in noisy domains, and a key step
will be to apply it to partially observable noisy domains.

In future work we plan to link our learning mechanism
to a planning system applied to more complex domains,
such as the problem of learning and planning actions for the
ARMAR-III humanoid robot (Asfour et al. 2006) in a real-
world robot environment. We also plan to extend the mech-
anism to learn more sophisticated action representations be-
yond STRIPS, such as those requiring functions.
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Abstract

We describe an approach to robot control in real-world en-
vironments that integrates a cognitive vision system with a
knowledge-level planner and plan execution monitor. Our
approach makes use of a formalism called an Object-Action
Complex (OAC) to overcome some of the representational
differences that arise between the low-level control mecha-
nisms and high-level reasoning components of the system.
We are particularly interested in using OACs as a formalism
that enables us to induce certain aspects of the representation,
suitable for planning, through the robot’s interaction with the
world. Although this work is at a preliminary stage, we have
implemented our ideas in a framework that supports object
discovery, planning with sensing, action execution, and fail-
ure recovery, with the long term goal of designing a system
that can be transferred to other robot platforms and planners.

Introduction and Motivation
A robot operating in a real-world domain must typically rely
on a range of mechanisms that combine both reactive and
planned behaviour, and operate at different levels of repre-
sentational abstraction. Building a system that can effec-
tively perform these tasks requires overcoming a number of
theoretical and practical challenges that arise from integrat-
ing such diverse components within a single framework.

One of the crucial aspects of the integration task is repre-
sentation: the requirements of robot controllers differ from
those of traditional planning systems, and neither represen-
tation is usually sufficient to accommodate the needs of an
integrated system. For instance, robot systems often use
real-valued representations to model features like 3D spa-
tial coordinates and joint angles, allowing robot behaviours
to be specified as continuous transforms of vectors over time
(Murray, Li, and Sastry 1994). On the other hand, planning
systems tend to use representations based on discrete, sym-
bolic models of objects, properties, and actions, described in
languages like STRIPS (Fikes and Nilsson 1971) or PDDL
(McDermott 1998). Overcoming these differences is essen-
tial for building a system that can act in the real world.

In this paper we describe an approach that combines a
cognitive vision system with a knowledge-level planner and
plan execution monitor, on a robot platform that can manip-
ulate objects in a restricted, but uncertain, environment. Our
system uses a multi-level architecture that mixes a low-level

robot/vision controller for object manipulation and scene
interpretation, with high-level components for reasoning,
planning, and action failure recovery. To overcome the mod-
elling differences between the different system components,
we use a representational unit called an Object-Action Com-
plex (OAC) (Geib et al. 2006; Krüger et al. 2009), which
arises naturally from the robot’s interaction with the world.
OACs provide an object/situation-oriented notion of affor-
dance in a universal formalism for describing state change.

Although the idea of combining a robot/vision system
with an automated planner is not new, the particular com-
ponents we use each bring their own strengths to this work.
For instance, the cognitive vision system (Krüger, Lappe,
and Wörgötter 2004; Pugeault 2008) provides a powerful
object discovery mechanism that lets us induce certain as-
pects of the representation, suitable for planning, from the
robot’s basic “reflex” actions. The high-level planner, PKS
(Petrick and Bacchus 2002; 2004), is effective at construct-
ing plans under conditions of incomplete information, with
both ordinary physical actions and sensing actions. More-
over, OACs occur at all levels of the system and, we believe,
provide a novel solution to some of the integration problems
that arise in our architecture.

This paper reports on work currently in progress, cen-
tred around OACs and their role in object discovery, plan-
ning with sensing, action execution, and failure recovery in
uncertain domains. This work also forms part of a larger
project investigating perception, action, and cognition, and
combines multiple robot platforms with symbolic represen-
tations and reasoning mechanisms. We have therefore ap-
proached this work with a great deal of generality, in order
to facilitate the transfer of our ideas to robot platforms and
planners with capabilities other than those we describe here.

Hardware Setup and Testing Domain
The hardware setup used in this work (see Figure 1) con-
sists of a six-degree-of-freedom industrial robot arm (Stäubli
RX60) with a force/torque (FT) sensor (Schunk FTACL 50-
80) and a two-finger-parallel gripper (Schunk PG 70) at-
tached. The FT sensor is mounted between the robot arm
and gripper and is used to detect collisions which might oc-
cur due to limited knowledge about the objects in the world.
In addition, a calibrated stereo camera system is mounted in
a fixed position. The AVT Pike cameras have a resolution
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Figure 1: Hardware setup.

of up to 2048x2048 pixels and can produce high-resolution
images for particular regions of interest.

To test our approach, we use a Blocksworld-like object
manipulation scenario. This domain consists of a table with
a number of objects on it and a “shelf” (a special region of
the table). The robot can view the objects in the world but,
initially, does not have any knowledge about those objects.
Instead, world knowledge must be provided by the vision
system, the robot’s sensors, and the primitive actions built
into the robot controller. The robot is given the task of clear-
ing the objects from the table by placing them onto the shelf.
The shelf has limited space so the objects must be stacked in
order to successfully complete the task. For simplicity, each
object has a radius which provides an estimate of its size. An
object A can be stacked into an object B provided the radius
of A is less than that of B, and B is “open.” Unlike standard
Blocksworld, the robot does not have complete information
about the state of the world. Instead, we consider scenarios
where the robot does not know whether an object is open or
not and must perform a test to determine an object’s “open-
ness”. The robot also has a choice of four different grasping
types for manipulating objects in the world. Not all grasp
types can be used on every object, and certain grasp types
are further restricted by the position of an object relative to
other objects in the world. Finally, actions can fail during
execution and the robot’s sensors may return noisy data.

Basic Representations and OACs
At the robot/vision level, the system has a set Σ of sensors,
Σ = {σ1, σ2, . . . , σn}, where each sensor σi returns an ob-
servation obs(σi) about some feature of the world, repre-
sented as a real-valued vector. The execution of a robot-level
action, called a motor program, may cause changes to the
world which can be observed through subsequent sensing.
Each motor program is typically executed with respect to
particular objects in the world. We assume that initially the
robot/vision system does not know about any objects and,
therefore, can’t execute many motor programs. Instead, the
robot has a set of object-independent basic reflex actions
which it can use in conjunction with the vision system for
early exploration and object discovery.

At the planning level, the underlying representation is

based on a set of fluents, f1, f2, . . . , fm: first-order predicates
and functions that denote particular qualities of the world,
robot, and objects. Fluents typically represent high-level
versions of some of the world-level properties the robot is
capable of sensing, where the value of a fluent is a function
Γi of a set of observations returned by the sensor set, i.e.,
fi = Γi(Σ). However, in general, not every sensor need map
to some fluent, and we allow for the possibility of fluents
with no direct mapping to robot-level sensors.

Fluents may be parametrized and instantiated by high-
level counterparts of the objects discovered at the robot
level. In particular, for each robot-level object objr we de-
note a corresponding high-level object by objp. A state is
a snapshot of the values of all instantiated fluents at some
point during the execution of the system, i.e., { f1, f2, . . . , fm}.
States represent an intersection between the low-level and
high-level representations and are induced from the sensor
observations (the Γi functions) and the object set.

The planning level representation also includes a set of
high-level actions, α1, α2, . . . , αp, which are viewed as ab-
stract versions of some of the robot’s motor programs. Since
all actions must ultimately be executed by the robot, each ac-
tion is decomposable to a fixed set of motor programs Π(αi),
where Π(αi) = {mp1,mp2, . . . ,mpl}, and each mp j is a mo-
tor program. As with fluents, not every robot-level motor
program need map to a high-level action.

Although the robot/vision and planning levels use quite
different representations (i.e., real-valued vectors versus log-
ical fluents), the notions of “action” and “state change” are
common among these components. To capture these simi-
larities, we model our actions and motor programs using a
structure called an Object-Action Complex (OAC) (Geib et
al. 2006; Krüger et al. 2009). Formally, an OAC is a tu-
ple
〈
I,T S ,M

〉
, where I is an identifier label for the OAC,

T : S → S is a transition function over a state space S , and
M is a statistic measure of the accuracy of the transition.
OACs provide a universal “container” for encapsulating the
relationship between actions (operating over objects) and the
changes they make to their state spaces. Each OAC also
has an identical set of predefined operations (e.g., compo-
sition, update, etc.), providing a common interface to these
structures. Since robot systems may have many components,
OACs are meant to provide a standard language for describ-
ing action-like processes (including continuous processes)
within these components, and to simplify the exchange of
information between different components.

OACs exist at each level of our system. We encode each
motor program on the robot/vision level and each action at
the planning level as a separate OAC, with OACs at each
level having a different underlying state space. By assigning
an accuracy metric to each OAC we also capture the non-
deterministic nature of our actions in the real world. Fur-
thermore, since every interaction of the robot with the world
provides the robot with an opportunity to observe a small
portion of the world’s state space (interpreted with respect
to the state space of a particular OAC), we can make use
of this information to refine or improve the accuracy of the
OACs at all levels of our system.
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Typically, we consider OACs that are formed from partial
state descriptions, which may have low reliability. Such de-
scriptions arise since the robot cannot always sense the sta-
tus of all objects and properties in the world (e.g., occluded
or undiscovered objects). Furthermore, the robot’s sensors
may be noisy and, thus, there is no guarantee that sensor ob-
servations are always correct. Certain sensors also have as-
sociated resource costs (e.g., time, energy, etc.) which limit
their execution. For instance, our robot can perform a test to
determine whether an object is open by “poking” the object
to check its concavity. Such operations are only initiated on
demand at the discretion of the high-level planning system.

Finally, our system includes a middle level component
that mediates between the robot and planning levels. This
component is responsible for mapping between OACs at dif-
ferent levels of the system (i.e., implementing the Γi and Π
functions) in order to ensure that observation/state and motor
program/action information passing between levels is trans-
lated into a form that the destination level understands.

In the remainder of this paper we will look at the main
components of our system in greater detail, and describe the
current (and future) role of OACs in our framework.

Vision-Based Object Discovery
The visual representation used by the lower level of our sys-
tem is delivered by an early cognitive vision system (Krüger,
Lappe, and Wörgötter 2004; Pugeault 2008) which creates
sparse 2D and 3D features, so-called multi-modal primitives,
along image contours from stereo images. 2D features rep-
resent a small image patch in terms of position, orientation,
phase, colour and optical flow. These are matched across
two stereo views, and pairs of corresponding 2D features
permit the reconstruction of an equivalent 3D feature. 2D
and 3D primitives are then organized into perceptual groups
in 2D and 3D. The procedure to create visual representations
is illustrated in Figure 2. We note that the resulting represen-
tation not only contains appearance information (e.g., colour
and phase) but also geometrical information (i.e., 2D and 3D
position and orientation).

Initially, the system lacks knowledge of the objects in a
scene and so the visual representation is unsegmented: de-
scriptors that belong to one object are not explicitly dis-
tinct from the ones that belong to other objects, or the back-
ground. To aid in the discovery of new objects, the robot is
equipped with a basic reflex action (Aarno et al. 2007) that
is elicited by specific visual feature combinations in the un-
segmented world representation (e.g., see Figure 3(a)–(c)).
The outcome of these reflexes allows the system to gather
knowledge about the scene, which is used to segment the vi-
sual world into objects and identify basic affordances. We
consider a reflex where the robot tries to grasp a planar sur-
face in the scene. Each time the robot executes such a re-
flex, haptic information allows the system to evaluate the
outcome: either the grasp was successful and the gripper is
holding something, or it failed and the gripper simply closed.

With physical control, the system visually inspects an ob-
ject from a variety of viewpoints and builds a 3D represen-
tation (Kraft et al. 2008). Features on the object are tracked
over multiple frames, between which the object moves with

Right Image

Left Image

(a)

(b)

(c)

(d)

(e)Right Image

Left Image

Early Vision Early Cognitive Vision

Figure 2: An overview of the visual representation. (a)
Stereo image pair, (b) Filter responses, (c) 2D primitives,
(d) 2D contours, (e) 3D primitives.

a known motion. If features are constant over a series of
frames they become included in the object’s representation;
otherwise they are assumed to not belong to the object. (See
Figure 3(d)–(f) and (Kraft et al. 2008) for a more detailed
explanation.) The final description is labelled and recorded
as an identifier for a new object class, along with the success-
ful reflex (now a motor program). Using this new knowl-
edge, the system then reconsiders its interpretation of the
scene: using a representation-specific pose estimation algo-
rithm (Detry, Pugeault, and Piater 2009) all other instances
of the same object class are identified and labelled. By re-
peating this process, the system constructs a representation
of the world objects, as instances of symbolic classes that
carry basic affordances, i.e., particular reflex actions that
have been successfully applied to objects of this class.1 This
relationship can also be interpreted as a new low-level OAC.

The object-centric nature of the robot’s world exploration
process has immediate consequences for the high-level rep-
resentation. First, newly discovered objects are reported to
the planning level and added to its representation. At this
level, objects are simply labels that act as indices to the ob-
ject information stored at the robot level. Such a represen-
tation means that the planner can avoid reasoning about cer-
tain types of real-valued information (e.g., 3D coordinates,
orientation vectors, etc.) and instead refer to objects by their
labels (e.g., obj1p may denote a particular red cup on the ta-
ble). Second, the planner can immediately use such objects
during plan generation. Since we assume that object names
do not change over time, plans with object references will be
understandable to the lower system levels. Finally, the iden-
tification of new objects will cause the robot/vision system
to start sending regular updates about the state of objects and
their properties to the planning level. In particular, low-level
observations resulting from subsequent interactions with the
world will contain state information about these objects, pro-

1We have recently completed the technical implementation of
the pose estimation algorithm. Prior to this, a circle detection algo-
rithm was developed (Başeski, Kraft, and Krüger 2009) to recog-
nise cylindrical objects. Four grasp templates were used to define
the primitive reflex actions in an object-centric way (where con-
crete grasps were generated based on the object pose). Although
this approach negates the need for the general pose estimation al-
gorithm, the conclusions drawn from experiments in this limited
scenario are still easily transferable to the general case.
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(a)
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Figure 3: (a)–(c) Initial grasping behaviour: (a) A Scene, (b) Definition of a possible grasp based on two contours, (c) Repre-
sentation of the scene with contours generating a grasp. (d)–(f) Accumulation process (“birth of the object”): (d) One step in
the process. The dots on the image show the predicted structures. Both spurious primitives, parts of the background that are not
confirmed by the image, and the confirmed predictions are shown, (e) Images of objects, (f),(g) Extracted models.

vided they can be sensed by the robot.

Knowledge-Level Planning with Sensing
The high-level planner constructs plans that direct the be-
haviour of the robot to achieve a set of goals. Plans are built
using PKS (“Planning with Knowledge and Sensing”) (Pet-
rick and Bacchus 2002; 2004), a conditional planner that can
operate with incomplete information and sensing actions.
Like other symbolic planners, PKS requires a goal, a de-
scription of the initial state, and a list of the available actions.
Unlike classical planners, PKS operates at the knowledge
level by explicitly modelling what the planner knows and
does not know about the state of the world. PKS can reason
efficiently about certain restricted types of knowledge, and
make effective use of features like functions, which often
arise in real-world scenarios.

PKS is based on a generalization of STRIPS (Fikes and
Nilsson 1971). In STRIPS, a single database represents the
world state; actions update this database in a way that cor-
responds to their effects on the world. In PKS, the plan-
ner’s knowledge state is represented by five databases, each
of which stores a particular type of knowledge. Actions de-
scribe the changes they make to the database set and, thus,
to the underlying knowledge state. PKS also supports ADL-
style conditional action effects (Pednault 1989), numerical
reasoning, and a set of program-like control structures.

Table 1 shows an example of some of the PKS ac-
tions available in the testing domain. As in standard plan-
ning representations, like PDDL, actions in PKS are de-
scribed by their preconditions and effects. Actions may be
parametrized (e.g., graspA(x)), with an action’s parameters
replaced with references to specific world objects when an
action is instantiated in a plan. As we described above, ob-
jects at the planning level are labels to actual objects identi-
fied by the robot/vision system.

Preconditions and effects are specified in terms of a set of
high-level predicates and functions, i.e., fluents that model

particular qualities of the world, robot, and objects. For in-
stance, the actions in Table 1 include references to fluents:
• open(x): object x is open,
• gripperEmpty: the robot’s gripper is empty,
• onTable(x): object x is on the table,
• isIn(x, y): object x is stacked in object y,
• radius(x) = y: the radius of object x is y, and
• reachableX(x): object x is reachable using grasp type X,
among others. While most high-level properties abstract
the information returned by the robot-level sensors (e.g.,
onTable requires data from a set of visual sensors con-
cerning object positions), some properties correspond more
closely to individual sensors (e.g., gripperEmpty closely
models a low-level sensor that detects whether the robot’s
gripper can be closed without contact).

One significant difference between PKS and other plan-
ners is that all actions in PKS are modelled at the knowledge
level: preconditions denote conditions that must be true of
the planner’s knowledge state while effects describe changes
to what the planner knows. For instance, precondition ex-
pressions of the form K(φ) denote a knowledge-level query
that asks “does the planner know φ to be true?” while an ex-
pression like Kw(φ) asks “does the planner know whether φ is
true or not?” Effect expressions of the form add(D, φ) assert
that φ should be added to database D, while del(D, φ) means
that φ should be removed from database D. In Table 1, Kf
refers to a database that models the planner’s definite knowl-
edge of facts, while Kw is a specialized database that stores
the results of sensing actions that return binary information.

In our robot scenario, high-level actions represent coun-
terparts to some of the motor programs available at the robot
level. For instance, the planner has access to actions like:
• graspA(x): grasp x from the table using grasp type A,
• graspD(x): grasp x from the table using grasp type D,
• putInto(x, y): put x into y on the table,
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Action Preconditions Effects
graspA(x) K(reachableA(x)) add(Kf , inGripper(x))

K(gripperEmpty) add(Kf ,¬gripperEmpty)
K(onTable(x)) add(Kf ,¬onTable(x))
K(clear(x))
K(radius(x) ≥ minA)
K(radius(x) ≤ maxA)

graspD(x) K(reachableD(x)) add(Kf , inGripper(x))
K(gripperEmpty) add(Kf ,¬gripperEmpty)
K(onTable(x)) add(Kf ,¬onTable(x))
K(radius(x) ≤ maxD)

putInto(x, y) K(x , y) add(Kf , gripperEmpty)
K(inGripper(x)) add(Kf , isIn(x, y))
K(open(y)) add(Kf , clear(y))
K(clear(y)) add(Kf ,¬inGripper(x))
K(onTable(y))
K(radius(y) > radius(x))

putAway(x) K(inGripper(x)) add(Kf , onShelf(x))
K(shelfSpace > 0) add(Kf , gripperEmpty)

add(Kf ,¬inGripper(x))
add(Kf , shelfSpace –= 1)

findout-open(x) ¬Kw(open(x)) add(Kw, open(x))
K(onTable(x))

Table 1: PKS actions in the testing domain.

• putAway(x): put x away onto a shelf space, and

• findout-open(x): determine whether x is open or not,

among others. Some actions like “grasp” are divided into
multiple actions (e.g., graspA, graspD, plus actions for grasp
types B and C). The object-centric nature of these actions
means they do not require 3D coordinates, joint angles, or
similar real values but, instead, include parameters that can
be instantiated with specific objects. Actions like putInto
and putAway account for different object/location configura-
tions, although the motor programs that implement these ac-
tions do not necessarily make such distinctions. (The com-
plete action list has a larger set of such actions.) The findout-
open action is an example of a high-level sensing action that
directs the robot to gather information about the world state
that is not normally provided as part of its regular sensing
cycle. From the planner’s point of view, an action’s sensory
effects are assumed to only change the planner’s knowledge
state, while leaving the world state unchanged.

Each planning level action is treated as an individual OAC
with its own identifier and transition function corresponding
to the action’s preconditions and effects. All planning level
OACs share a common state space consisting of the high-
level predicates and functions. Each OAC also maintains a
measure, M, of its reliability, which is updated by the plan
execution monitor (see below). Currently, PKS does not use
this information (or any probabilistic measures) during plan
generation, but instead relies on its ability to reason about
incomplete information and replan from action failure.

As an example, consider the situation in the testing do-
main where two unstacked and open objects obj1p and obj2p

are on a table, the planner can construct the following plan

for clearing all open objects from the table:
graspD(obj2p),
putInto(obj2p, obj1p),
graspD(obj1p),
putAway(obj1p).

In this plan, obj2p is grasped from the table using grasp type
D (an overhand grasp) and put into obj1p, before the stacked
objects are grasped and removed to the shelf.

The planner can also build more complex plans using
sensing actions. For instance, if the planner is given the goal
of removing the open objects from the table in the example
scenario, but does not know whether object obj3p is open or
not, then it might construct the conditional plan:

findout-open(obj3p),
branch(open(obj3p))
K+ :

graspA(obj3p),
putAway(obj3p)

K− :
nil.

This plan senses the truth value of the predicate open(obj3p)
using findout-open and reasons about the possible outcome
of this action. As a result, two branches are included in the
plan denoting potential execution paths: if open(obj3p) is
true (the K+ branch) then obj3p is grasped and put away; if
open(obj3p) is false (the K− branch) then no action is taken.

State Generation and OAC Interaction
From an integration point of view, the robot/vision system is
linked to the planning level through a component which me-
diates between the state spaces and OACs used by the two
levels of the system. Since the planner is not able to han-
dle raw sensor data as a state description, or directly con-
trol the robot, the low-level observations generated by the
robot/vision system must be abstracted into a language the
planner understands, and planned actions must be converted
into appropriate robot-level motor programs.

For state space information, sensor data is “wrapped” and
reported to the planner in the form of a fluent-based sym-
bolic state representation that includes predicates and func-
tions. Currently, the mappings between certain sensor com-
binations and the corresponding high-level fluents (i.e., the
Γi functions) are simply hardcoded. For example:
• inGripper, gripperEmpty: Initially the gripper is empty

and the predicate gripperEmpty is formed. As soon as the
robot grasps an object (objXr), and confirms that the grasp
is successful by means of the gripper not closing up to
mechanical limits, the system knows that it has the object
in its hand and can form a predicate inGripper(objXp).
Releasing the object returns the gripper to an empty state.

• reachableX : Based on the position of a circle forming the
top of a cylindrical object in the scene we can compute
possible grasp positions (for the different grasp types) for
each object. Using standard robotics path planning meth-
ods we then compute whether or not there is a collision-
free path between the start position and the gripper pose
needed to reach the object for a particular grasp.
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• open: Objects are not assumed to be “open.” Unlike the
above properties which are determined directly from or-
dinary sensor data, the robot must perform an explicit test
to determine an object’s openness. In this case, the robot
attempts to use its gripper to “poke” inside the potential
opening of an object. If the robot encounters a collision
(determined by the FT sensor), the object is assumed to
be closed. Otherwise, we assume the object is open.

To compute these predicates, the mediator interacts with
the robot/vision system to maintain a snapshot of the cur-
rent world state which, besides the state information neces-
sary for the planner, also contains information needed for
consistency and action computations. In particular, object
positions are represented here. To cope with sensor noise
(especially the vision-based information about the number
and location of circles) a simple mechanism to avoid spuri-
ous object disappearance and appearance is employed.

From the planner’s point of view, it begins operation with-
out any information about the state of the world. After an
initial exploration of the environment, the robot/vision sys-
tem begins to gather observations and generate (partial) state
reports about the current set of objects it believes to be in the
world, along with the properties it senses for those objects.
This observation set (converted into a fluent-based represen-
tation) is then sent to the planner and used as its initial (in-
complete) knowledge state: the predicate and function in-
stances are treated as known state information, with all other
state information considered to be unknown. Subsequent
state reports are interpreted by the plan monitor (see below)
and used to update the reliability of high-level OACs.

High-level planning actions, in the form of OACs, must
also be mapped to their appropriate low-level counterparts,
for execution by the robot system in the real world. We cur-
rently assume that the set of action schema is supplied to the
planner as part of its input, as are the mappings from plan-
ning actions to robot motor programs (the Π function).

For instance, the high-level OAC graspD is realised on the
lowest level as a mapping to an object-independent OAC,
graspDr.2 This low-level OAC requires the object position
(retrieved using the object label as an index) as an input to
computing suitable grasping positions. The preconditions
of this OAC require that there be a grasping position on
the brim of the object for which a collision free path from
the current position to the grasp position exists. The mo-
tor program associated with this OAC is a motion sequence
that first completely opens the gripper’s fingers, followed
by a movement of the arm along the joint trajectory and,
lastly, closes the fingers and lifts the arm. After the motor
program has been executed the expected outcome state ex-
presses that the fingers should no longer be totally open nor
totally closed. In this case, closed fingers indicate that the
action failed and no object has been grasped.

Plan Execution and Failure Recovery
Once a plan is generated, the planning level interacts with
the robot/vision level (through the mid-level mediator) to ex-

2In general, a high-level OAC may be realised by multiple
robot-level OACs.

(a) graspD(obj2p) (b) putInto(obj2p, obj1p)

(c) graspD(obj1p) (d) putAway(obj1p)

Figure 4: Executing a high-level plan to clear a table.

ecute the plan. Actions are sent to the robot one at a time,
where they are converted into motor programs and executed
in the world. A stream of observations is also generated,
arising from the executed motor programs, and processed
into high-level state information. Upon action completion
the robot/vision level returns this information to the higher
reasoning levels, along with an indication of the success or
failure of the action which are used to update the reliabil-
ity measure M of the high-level OACs. The execution cycle
then continues. For instance, Figure 4 shows the execution
of the four step plan described above for clearing a table.

An essential component in this process is the plan execu-
tion monitor, which assesses action failure and unexpected
state information resulting from feedback provided to the
planner from the execution of planned actions at the robot
level. The execution monitor operates in conjunction with
the planner and mid-level mediator, and is responsible for
controlling replanning and resensing activities in the system.
In particular, the difference between predicted and observed
states are used to decide between (i) continuing the execu-
tion of an existing plan, (ii) asking the vision system to re-
sense a portion of a scene at a higher resolution in the hope
of producing a more detailed state report, and (iii) replan-
ning from an unexpected state using the current state report
as a new initial planning state. The plan execution moni-
tor also has the important task of managing the execution of
plans with conditional branches, resulting from the inclusion
of high-level sensing actions. In each case, the decision of
the monitor depends on the type of action being processed
and the state information returned by the robot.
Continuing a plan’s execution During plan execution, ac-
tions are delivered to the lower control levels for execution
on the robot. After the execution of each action, a state re-
port representing the observed state of the world is returned
to the plan monitor and compared against the planner’s pre-
dicted state as constructed during planning, to determine
if plan execution should continue or resensing/replanning
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(a) Object is not open (b) Object is open

Figure 5: Testing the openness of an object.

should be activated. Since states in our testing domain tend
to be partial, we currently use a limited horizon lookahead
method, that attempts to verify that the preconditions for the
next n actions in the plan are satisfied in the current (partial)
state, and the states that follow when the predicted effects
of those actions are applied. (In our testing domain n = 1
is often sufficient to ensure good performance.) This means
that it is possible for an action to only achieve some of its
effects and for the plan to continue, provided the action did
not report that it outright failed, and the state is sufficiently
correct to ensure the execution of the next action in the plan.
(Thus, we defer possible replanning over plan continuation
if possible.) If a state match is successful, the monitor then
proceeds with the current plan. Otherwise, resensing is con-
sidered as a secondary test before replanning (see below).

Sensing actions and conditional plan execution The plan
execution monitor also has the added task of managing the
execution of plans with sensing actions and associated con-
ditional plan branches. When a high-level sensing action is
encountered in a plan it is sent to the robot/vision level like
any other action and executed on the robot (as determined
by the Π mappings). The actual execution of a sensing ac-
tion is left to the lower control level which can make more
informed decisions about motor program execution. For in-
stance, the findout-open action in our example domain is
executed at the robot level as a combination of “physical”
action (e.g., “poking” an object to determine its openness)
and “observational” action (i.e., observing the result); as far
as the planner is concerned, the action is executed under the
assumption that it is knowledge producing and will return an
expected piece of information. (Figure 5 shows the execu-
tion of findout-open by the robot in the case where (a) an
object is not open and (b) an object is open.) The sensing re-
sult will subsequently be observed by the robot system and
returned to the planner as part of the state update cycle.

Plans may also have conditional branch points resulting
from sensing actions. When faced with a branch in a plan,
the plan execution monitor makes a decision as to the correct
plan branch it should execute, based on its current knowl-
edge state. If only partial state information is available, but
the required information needed for branch determination is
missing (e.g., due to a failure at the robot/vision level), re-
sensing or replanning is triggered. For instance, the exam-
ple conditional plan given above includes the branch point
branch(open(obj3p)), i.e., branch on the truth of the fluent
open(obj3p). If open(obj3p) is true according to the plan-
ner’s knowledge state then the “positive” (K+) branch of
the plan is followed and the next action is considered; if

(a) (b)

Figure 6: Resensing the scene using the region of interest
capabilities of the high resolution cameras.

¬open(obj3p) is true then the “negative” (K−) branch is fol-
lowed. If the planner has no information about open(obj3p)
then replanning or resensing is activated. It is important
to note that the robot/vision system will never be aware of
the conditional nature of a plan, and will never receive a
“branch” action. From the point of view of the robot, it will
only receive a sequential stream of actions.

Resensing at the monitoring level Sensing also plays a role
during plan monitoring as a strategy for improving the moni-
tor’s accuracy. When the monitor has determined an action’s
predicted effects do not match the observed state, resensing
is considered. At this point, the accuracy of the action’s pre-
dictions are checked by comparing the M component of the
high-level OAC, weighted together with the M components
of the OACs of the underlying motor programs which imple-
ment this action (the Π mapping), against a threshold value.
If the accuracy measure falls below the threshold (i.e., the
predictions are considered too spurious), then replanning is
activated; otherwise, resensing is performed.

When resensing is required, the plan monitor provides the
vision system with a list of the objects considered relevant
to the execution of the action that is reported to have failed,
based on the parameters in the high-level action description.
This information lets the vision system use its high reso-
lution camera to target particular regions of interest in the
scene with greater resolution, to reevaluate the sensors that
provide information about these objects. New state informa-
tion returned by this operation may help the monitor decide
between continuing a plan’s execution and replanning.

For instance, Figure 6(a) shows the state of the world be-
fore the graspD(obj2p) action in our example plan for clear-
ing a table is executed and obj2p is grasped; both objects in
the scene are correctly detected and identified. After ex-
ecuting graspD(obj2p), however, it is possible that obj1p

may no longer be detected, leading the monitor to resense
both obj1p and obj2p since the next action in the plan,
putInto(obj2p, obj1p), depends on these two objects. In Fig-
ure 6(b), the old position of obj1p is resensed, leading to a
rediscovery of the object. The old position of obj2p is also
resensed to confirm that it is no longer on the table. In this
case, the conditions in the state are sufficient for the monitor
to decide that the next action in the plan can be executed.

Replanning When the monitor determines that an action
has failed based on the available (resensed) state informa-
tion, a new plan is constructed for the given goal using the
current state as the planner’s new initial knowledge state. We
use rapid replanning techniques, rather than plan repair, due
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to the success of planners like FF-Replan (Yoon, Fern, and
Givan 2007). This technique also provides a way of over-
coming PKS’s inability to work with probabilistic represen-
tations: if a plan fails we direct PKS to construct an alternate
plan for achieving the goal. So far this technique has proven
to be effective during testing in our example domain.

Discussion and Conclusions
We believe OACs provide a useful tool for overcoming some
of the challenges surrounding the representation of affor-
dances, actions, and state change in real-world robot sys-
tems: OACs facilitate the description of different system
components in terms of a common representation and com-
mon set of interfaces. Although we have grounded many of
our system components in terms of the OAC concept, and
can describe processes like object discovery and action ex-
ecution in terms of OACs, our work is preliminary and we
have not used this representation to its full potential.

For instance, while our OACs maintain a measure of re-
liability (i.e., the M measure), this property is not signifi-
cantly used in our system. We are currently exploring how
to improve the reliability of lower-level OACs based on state
observations, which could in turn “refine” related higher-
level OACs. Closely related to OAC update is the idea of
learning completely new OACs. To this end, we are inves-
tigating how high-level action schema (i.e., planning level
OACs) can be learned directly from (partial) state snapshots
provided by the robot level (Mourão, Petrick, and Steedman
2008). Furthermore, we would also like to automatically in-
duce the mapping between OACs at different levels. Thus,
the OACs in this paper are not as fully featured as those of
(Krüger et al. 2009) and implementing the full set of OAC
properties remains a future goal of this work.

The robot/vision components of our system are also be-
ing improved. After a recent significant increase in the fre-
quency at which the robot/vision level can provide state up-
dates, we are exploring a more sophisticated mechanism to
cope with the sensor noise using multiple consecutive up-
dates. In the future we will also investigate whether a prob-
abilistic framework can increase the reliability of the infor-
mation provided to the planning level. More work is also
needed to properly compare our approach to other existing
architectures in the literature.

Although this work is preliminary, we have implemented
a framework with all the control mechanisms described here.
This has enabled us to test our system in a domain similar to
the one described in the paper, but with more actions, more
objects, and more complex plans. While the results of our
initial experiments look promising, we are also in the pro-
cess of transferring some of our ideas to a humanoid robot
that can operate in a real-world kitchen with real-world ob-
jects and appliances. This will provide us with a challenging
environment to test the scalability of our system and, in par-
ticular, our approach to planning and plan execution.
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Abstract

Many planners model planning domains with “primitive ac-
tions,” where action preconditions are represented by sets of
simple tests about the state of domain fluents, and action ef-
fects are described as updates to these fluents. Queries and
updates are typically combined in only very limited ways, for
instance using logical operators and quantification. By com-
parison, formalisms like Golog permit “complex actions,”
with control structures like if-else blocks and while
loops, and view actions as programs. In this paper we explore
the idea of planning directly with complex actions and pro-
grams. We describe the structure of a simple planner based on
undirected search, that generates plans by simulating the exe-
cution of action programs before they are added to a plan. An
initial evaluation compares this approach against a classical
heuristic planner using a domain whose program structures
have been compiled into ordinary PDDL actions. Initial re-
sults illustrate that in certain domains, planning directly with
programs can lead to a significant performance improvement.
This work offers a baseline planner to compare against alter-
nate approaches to planning with programs.

Introduction and Motivation
A recent trend in modern planning research has focused on
the problem of planning with complex expressions, con-
trol structures, and programs—representations that are more
complicated compared with traditional formalisms based on
PDDL (McDermott 1998), the standard language for mod-
elling planning domains. While recent additions to PDDL
(e.g., constraints, preferences, durative actions, and numer-
ical fluents) have extended its expressiveness, PDDL re-
mains inherently STRIPS-like (Fikes and Nilsson 1971) in
its structure. Primitive actions form the basis of a domain
specification: action preconditions are defined by simple
tests about the state of domain fluents, and action effects
capture the (conditional) changes made to these fluents. Flu-
ent tests and updates are often combined in very limited
ways, using standard logical connectives and quantification.

By comparison, attempts to plan with complex actions ad-
mit actions with control flow blocks (e.g., sequence, iter-
ation, and conditionals) and other procedural operators in-
spired by imperative programming languages. In practice,
complex actions operate more like programs and are often
distinct from primitive actions, with the latter defining the

fluent-level state changes and the former acting as a wrap-
per around sets of primitive actions. While complex actions
add more flexibility to the expressiveness of the representa-
tion language, most planners cannot directly construct plans
with such actions. In this paper we present a simple planner
that is capable of manipulating such structures.

The idea of mixing procedural constructs with planning is
not new. For instance, much work has addressed the problem
of automatically constructing macro operators, which com-
bine useful sequences of actions in an attempt to improve
plan generation efficiency (e.g., (Botea, Müller, and Scha-
effer 2007; Coles and Smith 2007)). HTN planning (e.g.,
(Sacerdoti 1975; Nau et al. 2003)) also has a procedural
flavour: HTN domains abstract the action space into high-
level tasks and methods for decomposing those tasks into
more primitive subtasks, with the lowest-level subtasks cor-
responding to ordinary planning operators. More formally,
Levesque (1996) generalizes the planning problem in terms
of a universal programming language R, which includes se-
quence, branch, and loop constructs operating over actions.
Levesque (2005) also uses a variant of R to investigate the
problem of automatically generating plans with loops.

More closely related to the focus of this paper, one of
the most popular approaches to planning with programs
has been to compile complex actions into primitive ac-
tions, written in ordinary PDDL, which can then be used
in conjunction with ordinary off-the-shelf planners. For in-
stance, McIlraith and Fadel (2002) formalize an approach
that transforms certain classes of programs written in Golog
(Levesque et al. 1997)—a high-level programming language
based on the situation calculus (McCarthy and Hayes 1969;
Reiter 2001)—into PDDL. These programs allow procedu-
ral structures like action sequencing, if-else blocks, and
a bounded while loop, among others. Baier and McIl-
raith (2006) build on this work by considering Golog pro-
grams with sensing actions (i.e., knowledge-producing ac-
tions that observe the state of the world without necessarily
changing it) and translate these domains into a form usable
by planners that support sensing actions, but not complex ac-
tions. Similarly, Baier, Fritz, and McIlraith (2007) compile
procedural domain control knowledge into PDDL domains,
modelled in a language based on Golog.

There are two potential drawbacks of the compilation ap-
proaches. First, new fluents and actions are generally intro-
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duced into the resulting planning domain as a consequence
of the compilation process, thereby increasing the size of
the state space. Second, the rich control knowledge explic-
itly represented in structures like loops is discarded during
compilation. Instead, the behaviour of such structures must
be “rediscovered” through search, by appropriately guiding
the planner’s search through the resulting primitive actions,
to mimic the effects of the original complex actions. While
modern planners can often cope with the first drawback, the
second is more problematic. For instance, the number of
states a planner must visit can quickly become large when
loops are permitted. As we will see, even the best heuristic
planners do not always work well with compiled domains.

As an alternative to the compilation approaches, we ex-
plore the notion of planning directly with complex actions
and programs, by simulating their execution within action
blocks. We describe the implementation of a simple planner
that supports a set of procedural constructs, including if-
else blocks and unbounded while loops. During plan
construction our planner simulates the application of an ac-
tion by “running” its precondition or effects program, in
a manner not unlike Golog. While we do not aim to be
competitive with off-the-shelf planners in terms of speed
(e.g., our initial implementation uses blind search), our plan-
ner nevertheless shows good performance compared against
Metric-FF (Hoffmann 2003) on a toy domain, and provides
a useful baseline to compare against alternative approaches.
Overall, this work is a first step in a research agenda aimed
at designing new planners that can search and plan directly
with procedural control structures.

Example: Compiling while Loops into PDDL
As motivation for this work, consider the toy action in Fig-
ure 1. This action is similar in form to a primitive action, but
includes a while loop. The intent here is to “loop while i is
less than or equal to the value of the function size(?d),”
adding i to the value of count and 1 to i each time through
the loop. Although PDDL does not directly support actions
with while loops, we can transform this action into a valid
PDDL form that achieves a similar effect.1

Figure 2 shows three PDDL actions that encode the be-
haviour of the action in Figure 1: processDataset
models the effects of the original action up to the start of
the while loop, processDataset-inLoop simulates
one iteration through the loop, and processDataset-
endLoop encodes the effects following the loop. The first
action contains the preconditions of the original action. The
new predicate context-loop acts as a guard, controlling
access to the body of the compiled loop. A second new pred-
icate, context-loop-params, tracks the parameters of
the original action. (If the domain contained additional ac-
tions their preconditions would also be updated with refer-

1We have implemented a compiler for transforming actions
with simple program structures into PDDL, in order to compare
our approach against such compilation methods. The example in
Figure 2 was generated by our compiler and is characteristic of the
kinds of actions we can produce. In general, we use the ADL sub-
set of PDDL but our example here also requires numerical fluents.

action processDataset(?d)
precondition:

dataset(?d) and
not(processedDataset(?d))

effect:
i = 1 ;
while (i <= size(?d))

count = count + i ;
i = i + 1

endWhile ;
processedDataset(?d)

endAction

Figure 1: A simple action with a while loop

ences to context-loop to prohibit their application dur-
ing the execution of this loop.)

In this case, the correct behaviour of the compiled ac-
tions results from the planner’s ability to order these ac-
tions appropriately during its search. For instance, once
processDataset has been applied, the only action
subsequently permitted according to its preconditions is
processDataset-inLoop, which can be continually
applied until the loop conditions are false. At this point the
only permissible action is processDataset- endLoop,
which completes the execution of the original action.

Although this example is extremely simple, we note two
potential drawbacks. First, two actions and two predicates
are added to the domain, increasing the size of the state
space. Second, and more worrying, is the prospect that each
iteration of the while loop is now an action instance. Thus,
a loop with 100 iterations requires a sequence of 102 actions,
and the rich control knowledge explicitly represented by the
original while loop must be implicitly rediscovered by the
backend PDDL planner during preprocessing and search.

Representing Actions as Programs
As an alternative to the compilation approach, we describe
the structure of a simple planner called ProgPlan (abbrevi-
ated P2), which supports actions with program constructs,
and simulates their execution during plan search.

Symbols We assume a planning scenario whose symbols
are defined as in an ordinary PDDL planning problem. Thus,
we include a set of fluent symbols representing the proper-
ties of the domain that can change as a result of action, in-
cluding both predicates and functions. (We also allow equal-
ity and standard numerical relations like <.) A set of con-
stants denoting the objects in the domain is also defined.

The representation language used by P2 is built around the
notion of an expression and a program.

Expressions An expression in our representation is simi-
lar to the form of the preconditions used by ordinary clas-
sical, deterministic planners (e.g., the preconditions in Fig-
ure 2). Expressions can use the connectives and, or, not,
exists, and forall, plus arithmetic expressions and flu-
ent tests about the value of relations and functions.

We define a complex expression as follows:
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(:action processDataset
:parameters (?d)
:precondition
(and (not (context-loop))

(dataset ?d)
(not (processedDataset ?d)))

:effect
(and (assign (i) 1)

(context-loop)
(context-loop-params ?d)))

(:action processDataset-inLoop
:parameters (?d)
:precondition
(and (context-loop)

(context-loop-params ?d)
(<= (i) (size ?d)))

:effect
(and (increase (count) (i))

(increase (i) 1)))

(:action processDataset-endLoop
:parameters (?d)
:precondition
(and (context-loop)

(context-loop-params ?d)
(not (<= (i) (size ?d))))

:effect
(and (processedDataset ?d)

(not (context-loop))
(not (context-loop-params ?d))))

Figure 2: Compiled PDDL actions simulating a while loop

expression ::= expression and expression |
expression or expression |
not ( expression ) | ( expression ) |
forall ( parameters ) expression |
exists ( parameters ) expression |
arithmetic-expression |
fluent-test.

We note that expressions “ground out” with ordinary arith-
metic expressions (which include a large set of expressions
from the C programming language) and fluent queries.

Programs A program is a set of control structures which
operate over fluent updates and expressions.

program ::= program ; program |
if expression then

program else program endIF |
while expression do

program endWhile |
forall(parameters)

program endForall |
exists(parameters) expression then

program else
program endExists |

arithmetic-assignment |
fluent-update | nil.

We follow ordinary program syntax in using ; as the stan-
dard sequence operator for chaining program statements to-
gether. The if-else block is a standard conditional test

which allows a choice as to which program should be exe-
cuted, depending on the outcome of the test (the first pro-
gram on success, the second on failure). Similarly, while
is a standard while loop that repeats the execution of a pro-
gram as long as the test expression is true. The forall
and exists control structures introduce a special type of
“quantified” program statement. forall is a loop that re-
peatedly executes a program; each time through the loop
a new binding from the set of domain constants is chosen
and assigned to the specified parameters. exists is a con-
ditional nondeterministic choice statement that attempts to
find a binding for the specified parameters so that the test
expression evaluates as true. If found, the first program
block is executed; otherwise, the second program block is
executed. In both types of quantified structures, the “bound”
parameters may be used in the body of the control block.
Finally, a program can also be an empty program nil, an or-
dinary fluent update, or an arithmetic assignment statement.
For arithmetic assignments, we not only allow simple cal-
culations whose results are assigned to functions but also a
rich selection of C-style numerical expressions.

Actions Actions are structured in a similar way to ordinary
actions, with names, parameters, preconditions, and effects.
Parameters are ordinary action variables which are bound to
produce action instances. (Such variables may occur in an
action’s preconditions or effects.) In our case, preconditions
are defined to be expressions and effects are programs, i.e.,

action A ( parameters )
preconditions: expression
effects: program

endAction

Action preconditions and effects have the same intuitive
meaning as ordinary planning actions: during plan construc-
tion an action’s preconditions must be true before it’s effects
can be applied. In particular, we do not distinguish between
“primitive” and “complex” actions in our representation.2

For instance, Table 3 shows a set of actions taken from
an e-mail application domain, which give a flavour of the
types of actions we can model with our representation. The
read(m) action marks a particular message m as “read”,
provided it is in the user’s inbox. In this case there are
two effects: a fluent update marking m as read, and a sec-
ond update increasing the count of the function numread
which tracks the number of messages marked as read. The
markAllRead action has the effect of marking all known
messages in the user’s inbox as read. In this case, the ef-
fects are modelled with an outer forall block and an inner
if-then block, which tests each message and ensures only
those messages in the user’s inbox are appropriately marked.
The functions numread and numunread denote the number
of read and unread messages, respectively. The findUnread
action uses the exists structure to find a message in the
user’s inbox which has not been read and sets the function
current as this message. In the case no such message ex-
ists, current is set to a special constant none. Finally, the

2We are currently adding a “procedure call” to our representa-
tion, allowing one action to execute another action. This construct
will let us specify actions with more complex control flow.
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action markRead(?m)
precondition: inbox(?m)
effect:

read(?m) ;
numread = numread + 1

endAction

action markAllRead
precondition: true
effect:

numread = 0 ;
numunread = 0 ;
forall(?m)

if inbox(?m) then
read(?m) ;
numread = numread + 1

endIf
endForall

endAction

action findUnread
precondition: true
effect:

exists(?m)
(inbox(?m) and not(read(?m)))
then current = ?m
else current = none

endExists
endAction

action countRange
precondition: from <= to
effect:

count = 0 ; skipped = 0 ;
i = from ;
while i <= to do

if read(msg(i)) then
count = count + 1

else
skipped = skipped + 1

endIf ;
i = i + 1

endWhile
endAction

Figure 3: Actions from an e-mail application domain

countRange action is used to count the number of messages
in a particular range that are marked as read. The function
msg(i) maps a message number i to a particular message.
The while loop ensures we only consider the range de-
fined by the functions from and to. The function count tracks
the number of messages that are counted in the range, while
skipped denotes the number of messages in the range that we
ignore. The expression read(msg(i)) illustrates a permissi-
ble fluent test, with a nested function as an argument.

Planning by Simulating Program Execution
We now turn our attention to evaluating expressions and pro-
grams with respect to our representation.

Expression evaluation A state is a snapshot of the values
of all fluents defined in a domain. For expressions, we de-
fine a procedure EvalExpr(e, S) which evaluates whether a

compound expression e is true at a state S by recursively
unwinding the expression down to its component parts (i.e.,
fluent tests), which are then evaluated at S. A special func-
tion EvalArithExpr(e, S) evaluates arithmetic expressions
by reducing all arithmetic expressions (which may contain
functions) to a number. Following C programming style, an
arithmetic expression is “true” if it evaluates to a non-zero
value. We have the following evaluation function.

Definition 1 Let S be a state let e, e1, and e2 be expressions.
EvalExpr(e, S) = true if

1. e has the form “e1 and e2” and EvalExpr(e1, S) = true
and EvalExpr(e2, S) = true,

2. e has the form “e1 or e2” and EvalExpr(e1, S) = true or
EvalExpr(e2, S) = true,

3. e has the form “not( e1)” and EvalExpr(e1, S) = false,
4. e has the form “(e1)” and EvalExpr(e1, S) = true,
5. e has the form “forall(~x) e1” and

EvalExpr(e1(~x/~c), S) = true for every substitution
~c of ~x in e1,

6. e has the form “exists(~x) e1” and
EvalExpr(e1(~x/~c), S) = true for some substitution
~c of ~x in e1,

7. e is an arithmetic expression and EvalArithExpr(e, S) 6=
0,

8. e is a fluent query and IA(e, S) = true.
Otherwise, EvalExpr(e, S) = false.

EvalExpr recursively deconstructs a complex expression
into simpler components. In (1) – (4), the standard and,
or, and not connectives, plus expression precedence, are
evaluated in a straightforward way. In (5) and (6), EvalExpr
considers possible substitutions of the quantified parame-
ters. The notation e1(~x/~c) indicates that all occurrences of
~x in e1 should be syntactically replaced with ~c, where ~c is
taken from the set of defined constants. (I.e., the expres-
sion is rewritten before it is recursively evaluated.) In (7),
the special function EvalArithExpr evaluates an arithmetic
expression against a state S, by attempting to reduce the ex-
pression to a number. (Space prohibits us from describing
this process in detail.) We follow C programming style here
and consider an arithmetic expression to be “true” at S if it
evaluates to a non-zero value. In (8), the truth of a fluent
query e is determined by a function called IA which checks
the fluent’s value in state S. IA is also responsible for eval-
uating queries with references to nested functional fluents.

Program simulation In traditional planning, a set of ordi-
nary fluent updates, when applied to a state S, transforms
S to produce a new state S′. We extend this notion to pro-
grams by simulating the run of a given program at a state S.
All fluent updates that arise during program execution are
applied to the current state, generating a sequence of new
states. (Each fluent update could produce a new state.) Upon
program termination, we disregard any “intermediate” states
and return the final resulting state S′.

A procedure called RunProg(p, S) simulates the execu-
tion of a program p starting in a state S, and returns a
state S′ on completion of the program run. In general,
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proc ProgPlan(S,G,A, P )
if EvalExpr(G,S) = true then return P
else if

choose(a ∈ A) : EvalExpr(pre(a), S) = true then
S′ = RunProg(eff(a), S) ;
return ProgPlan(S′, G,A, P + a)

else return fail
endIf

endProc

Figure 4: Pseudocode for the P2 planning algorithm

RunProg operates as a program interpreter, stepping its way
through a given program. A program counter tracks the
current program statement being executed, which is up-
dated after its completion. Depending on the type of pro-
cedural construct under evaluation, the interpreter runs a
small control program to evaluate its outcome. For instance,
evaluating a sequence construct involves running two pro-
grams in turn, with the second program executing from the
state resulting from the execution of the first program, i.e.,
RunProg(p1 and p2, S) := RunProg(p2,RunProg(p1, S)).
For a while loop, the interpreter runs the control program

RunProg(while e do p endWhile, S) :=
while EvalExpr(e, S) = true do

S = RunProg(p, S)
endWhile ; return S.

Here, EvalExpr evaluates the truth of expression e in each
iteration of the loop. (The underlined control structures are
part of the interpreter’s control program for simulating the
while loop.) S is updated each time through the loop and
the final S is returned on completion. One important danger
of this approach is that programs aren’t guaranteed to ter-
minate: since we simulate actual programs, we also inherit
the problems of ordinary program design, including the pos-
sibility of infinite loops. Similar control programs are de-
fined for the other control structures in our representation
language. When RunProg encounters a fluent update, it ap-
plies it to the existing state an an ordinary update.

Planning A planning problem is specified by a set of actions
A, an initial state S, and a set of goal conditions G. The ini-
tial state can be any state (as in ordinary PDDL) and a goal
is any expression. Figure 4 shows the pseudocode describ-
ing the main operation of our program planner, P2. Plans are
built in a simple forward-chaining manner, starting from the
initial state. The planning algorithm attempts to grow a plan
by searching over the space of applicable actions and choos-
ing a ground action instance a whose preconditions pre(a)
(an expression) are satisfied in the current state S accord-
ing to EvalExpr. If such an action exists, its effects eff(a)
(a program) are applied to S by RunProg to produce a new
state S′. Action a is concatenated to the end of the current
plan and planning continues until a state is reached where
the goal is satisfied, or the plan cannot be extended.

Initial Evaluation
We have implemented an initial version of our planner in
C++ as a simple forward-chaining planner using undirected

size(d1) Metric-FF P2

100 0.01 0.01
1000 0.33 0.01
2500 2.03 0.01
5000 8.07 0.01

10000 32.41 0.01
25000 202.62 0.02
50000 >3000.00 0.05

Table 1: Running time in seconds on the example domain

n Test-1 Test-2 Test-3 Test-4

100 0.01 0.02 0.02 0.03
1000 0.07 0.11 0.14 0.21

10000 0.71 0.90 1.20 1.94
100000 7.02 8.82 13.08 19.30

Table 2: Running time in seconds of benchmark tests on
while loop programs of n iterations and length 100 plans

depth-first search and breadth-first search.3 Our expression
evaluator implements the expressions described above and a
large subset of the numerical expressions available in C.

Although our planner has not been optimized in any sub-
stantial way, we have applied it to a series of experiments
in some small planning domains. In the first set of experi-
ments, we compare P2 using the action in Figure 1 against
Metric-FF (Hoffmann 2003) using the compiled PDDL ac-
tions in Figure 2. In each case we consider a problem with
the goal of processing a single dataset d1 of varying size
size(d1). The results of this experiment are shown in
Table 1. (All tests were performed on a Linux system with
a single CPU running at 1.86 GHz and 2Gb of RAM.) Our
prototype planner performs significantly better than Metric-
FF. This is not surprising since Metric-FF must build a plan
of length n+2 using the compiled domain, for each while
loop with n iterations. (It is also not altogether bad, and a
tribute to modern search heuristics, that Metric-FF can build
a plan with 2500 steps in 2 seconds.) By comparison, simu-
lating the execution of the while loop means that P2 solves
each problem instance with a plan of length 1.

We also ran a number of benchmark experiments designed
to test the efficiency of the program simulator running at the
core of our planner. In these tests, we construct a planning
domain with a single action that does not have any precon-
ditions. This action’s effects consist of a while loop of
n iterations, forming the outermost control block. We then
vary the contents of the while loop in each test case to
evaluate the performance of different program structures. In
Test-1, a single fluent update is added within the while
loop. In Test-2, an if-then statement is added which con-
ditionally performs a fluent update. In Test-3, a forall
statement is added which ranges over a domain of 50 ob-
jects, performing a fluent update each iteration through the
loop. Finally, in Test-4, a forall statement ranges over

3The source code for P2 is available from http://
homepages.inf.ed.ac.uk/rpetrick/research/p2.
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100 objects. Each task has the common goal of chaining
100 actions together into a plan. The results of the four tests
are shown in Table 2. Our initial experiments are encourag-
ing, at least as far as program simulation is concerned. For
instance, the n = 10000 case in Test-1 means that the pro-
gram simulator is running 1 million loop iterations and fluent
updates in under 1 second. However, these experiments are
also quite simple and more work is needed to improve the
planner’s search procedure: blind search is only effective in
small domains and there are many instances where off-the-
shelf heuristic planners using compiled program actions will
outperform our current implementation.

Discussion
Our approach differs from the complex-to-primitive action
compilation methods since we’re primarily interested in
working with program structures directly at the planning
level. However, for some types of control structures we
can also make use of the compiled form, especially when
it is well understood how to plan with such structures. (For
instance, if-else blocks are a special case of ADL-style
context-dependent effects (Pednault 1989).) For more com-
plex structures, such as loops, we want to develop tech-
niques for searching the state spaces arising from such struc-
tures, and use the rich procedural control information these
structures provide. As a first step, we are interested in adapt-
ing the state relaxation technique used by FF during its pre-
processing phase, as a distance estimate from a state to the
goal, for instance by simulating program execution while
ignoring delete lists. We are initially focusing on subsets of
our representation for which this technique can be easily ap-
plied, to assess its effect on performance. In general, more
study is needed since complications can make this method
more difficult to apply (e.g., the continuation/exit conditions
of a while loop might depend on the deletion of a fluent
from the current state; failure to do so could result in poor
reachability estimates or non-terminating loops).

While our approach to simulating program execution is
similar to that of Golog, we differ from those approaches
aimed at integrating Golog with off-the-shelf planners. For
instance, Röger, Helmert, and Nebel (2008) compare the ex-
pressiveness of Golog and ADL (Pednault 1989), and iden-
tify a maximal subset of the situation calculus that can be
equivalently expressed in ADL. Claßen et al. (2007) sep-
arate certain procedural parts of Golog from the classical
planning task, by using FF as a blackbox planner which is
invoked when certain “achieve” statements are encountered
in a Golog program. In contrast, we take a more tightly cou-
pled view and treat program constructs as part of the plan-
ning problem. (In this way we are much closer to (McIlraith
and Fadel 2002) than (Claßen et al. 2007).) However, one
of Golog’s strengths is its clean semantics, built on the situ-
ation calculus—an approach we are sympathetic with. (For
instance, our informal procedural semantics could be rede-
fined more formally in terms of Golog programs.) In future
work we plan to evaluate our approach against (Claßen et al.
2007), as well as related approaches like (Baier and McIl-
raith 2006), which uses sensing actions.

Our current planner is not meant to be competitive with

current off-the-shelf planners. Instead, it is a first step in an
ongoing research programme aimed at developing practical
planners that can operate in more complex state spaces. As
such, we offer our present planner to the community as a
baseline tool for evaluating alternative approaches and ad-
vancing research into planning with programs.
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Prediction function T

Measure of success M

Partial state
description S

Predicted state
changes S'

Object-Action Complexes (OACs)

ARMAR humanoid robot platform

Planning with Knowledge and Sensing (PKS)
High-level plans are built using PKS [3], a conditional 
planner that operates with
incomplete information
and sensing actions.
PKS operates at the 
"knowledge level" by 
explicitly modelling
what the planner knows,
and does not know,
during plan generation.

A humanoid robot operating in a real-world domain typically 
requires a collection of decision making and control mechanisms, 
combining low-level sensorimotor systems with high-level 
action/reasoning engines. Building such systems requires 
overcoming the theoretical and practical challenges that arise 
from integrating such diverse components in a single framework.

Motivation

Our system uses the ARMAR humanoid robot 
platform [1] featuring a 7-degree-of-freedom (DOF) 
head with foveated vision, a 3-DOF torso, two 

7-DOF arms, and two
5-finger hands, each
with tactile sensors
and 8 DOFs. ARMAR
also includes a number
of sensorimotor
processes that enable it
to act autonomously in
complex environments.

Task planning and execution are connected using Object-
Action Complexes (OACs) [2], a universal representation 
usable at all levels of a cognitive architecture. OACs 
combine ideas from STRIPS, the object/situation-oriented 
concept of affordance, and logical formalisms like the 
event calculus. Planning-level operators and robot-level 
tasks/skills are modelled using OACs. 

System architecture and component interaction

Using Object-Action Complexes for task planning and execution

References

object(?o)
location(?l)
hand(?h)
¬toppled(?o)
robotLocation=?l
objLocation(?o,?l)
gripperEmpty(?h)

  Preconditions   Effects

ingripper(?o,?h)
¬gripperEmpty(?h)
¬objLocation(?o,?l)

Low level

place-upright(cup1,sideboard,righthand)
grasp(cup1,sideboard,righthand)
move(sideboard,dishwasher)
open(dishwasher,lefthand)
put-in(cup1,dishwasher,righthand)
close(dishwasher,righthand)

The Ice (Internet Communications Engine) middleware facilitates 
the exchange of information between system levels/components.

Execution

Generate plan,
replan, continue,
or resense

Update state/OAC

Transmit action

High level

High-level OAC representation of grasp(?o,?l,?h)
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