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Author(s): Leon Bodenhagen, Norbert Krüger, Justus Piater, Renaud Detry, Emre Baseski, Pascal
Haazebroek, Bernhard Hommel, Saskia van Dantzig, Florentin Wörgötter, Kai Huebner, Danica
Kragic, Alexander Bierbaum, Tamim Asfour, Rüdiger Dillmann
Participant(s): UL, SDU, ULg, BCCN, KTH, UniKarl
Work package contributing to the deliverable: WP1,WP2,WP4
Nature: R
Version: Final
Total number of pages: 11
Start date of project: 1st Feb. 2006 Duration: 48 month

Project co-funded by the European Commission within the Sixth Framework Programme (2002–2006)
Dissemination Level

PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Abstract:
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1. Introduction

The decomposition of scenes and objects into parts is important to formalize generalization processes across
objects in contexts such as object recognition and affordance learning. Here parts are understood as re-
occuring structures of lower complexity than objects but higher complexity than individual entities such
as individual edges, contours or surfaces. They allow for structuring the scene and to generalize actions
associated to parts across objects. Also we note that parts are not necessarily only visual entities but the
concept of parts can also be applied to tactile or auditory information.

We have approached the part learning problem on multiple levels. For object recognition, we have realised
an incremental learning process in which a multi-part, viewpoint-invariant model is generated from a set
of roughly segmented, unregistered views, by sequentially registering and fusing the views with the incre-
mental model (Section 2.1). Moreover, we have made use of parts based on contours related by their 3D
geometry and appearance to perform object recognition (Section 2.2).

Based on grasping data gained by exploration (see D4.1.4 and [2]), we have made statistical investigations
on regularities of grasp-part associations (Section 3). For this, we again made use of contour relations as
used also for object recognition in Section 2.2. Complementarily to a contour based approach, we also
made use of 3D surface primitives (box decomposition) for affordance learning (Section 4). Haptic part
grasp associations are learned by detailed physical simulations as described in Section 5.

The decomposition of complex action sequences in terms of spatial-temporal events is done in Section 6.
Re-occuring spatial-temporal events are then used to interpret action sequences and find commonalities
between those. Finally, in Section 7, two computational models are presented which are based on cognitive
theories of feature-related learning. The first model focuses on learning how actions are associated with the
perceptual features of their effects (action-effect learning). The second model focuses on how experiences
are stored into long-term memory to form mental concepts that represent particular categories of objects or
actions (concept learning).

2. Using Parts for Object Recognition

For the task object recognition parts are learned based on two different feature types (point clouds in Section
2.1 and multi–modal contours in Section 2.2).

2.1 Probablistic Part Learning

In [G] we present a 3D, probabilistic object-surface model, along with mechanisms for constructing a model
from unregistered 2.5D views and segmenting model instances in cluttered scenes. We model object parts
probabilistically with smooth surface-point distributions obtained through kernel density estimation on 3D
point clouds. A multi-part, viewpoint-invariant model is learned incrementally from a set of roughly seg-
mented, unregistered views, by sequentially registering and fusing the views with the incremental model
(examples are shown in Figure 1). Registration is conducted by nonparametric inference of maximum-
likelihood model parameters, using Metropolis-Hastings Markov chain Monte Carlo methods (MCMC)
with simulated annealing. This mechanism is robust to clutter, and avoids direct model-to-scene correspon-
dences. The learning of viewpoint-invariant models and the applicability of our method to pose estimation,
object detection, and object recognition is demonstrated on 3D-scan data, providing qualitative, quantitative
and comparative evaluations.
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Figure 1: Object points obtained from the registration of sequences of 66 views. Color indicates learned
parts; the bunny and deodorant bottle are made up of a single part, whereas the dinosaur yields a two-part
model (legs and body).

2.2 Using feature relations for Object Recognition

In [C] the use of second-order relations between local and semi-global 3D edge features for object identi-
fication in visual scenes is investigated. Relations between 3D features have the inherent property of being
pose-invariant, and therefore allow for direct comparison without knowledge of object pose. We define his-
tograms of relations such as coplanarity, distance, and color difference between local 3D edge descriptors
and semi-global groups thereof, and use them to encode higher–level object structure corresponding to parts
(see Figure 2). Histogram intersection is then used to identify a set of low-textured objects that are poorly
described by classical feature descriptors. Moreover, the relation histograms are shown to describe struc-
tural properties of the objects, and the histogram similarities between objects reflect structural similarities
between them.

normal distance

Figure 2: An example for a 3-dimensional histogram of primitive relations (top) and the primitives that
created specific bins of the histogram (bottom). The blobs represent the locations of histogram bins. Their
brightness and size are proportional to the value stored in the bins (a high count is represented as a big and
bright blob).
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3. Learning feature relations Grasp Association

In [E] we investigate what feature relations trigger grasps which are likely to be successful (P1) and how
a complete set of grasping affordances for a concrete object can be learned in a fast way during an active
exploration process making use of generic grasp knowledge (P2). The two problems stated above are closely
related since knowledge about feature-relations and associated grasp success likelihoods can be used in an
active exploration process in which knowledge about concrete grasping experience is available. For both
problems we utilize the evaluated grasps which have been recorded in [2]. This provides us with large sets
of evaluated grasps for three different objects for which accumulated representations are available.

The first problem (P1) is addressable in a relatively straightforward way. Given two visual features F1, F2,
we define a predicted grasp: predictGrasp(F1,F2). For all combinations of features (3D contours in this
context) grasps are predicted and their likelihood for being successful is estimated by comparing them with
the tried grasps — we assume that when the predicted grasp has a similar pose like a tried one, it is likely to
be successful. Subsequently it is investigated if certain relations between the contours give an indication of
successful predictions.

The second problem (P2) is more complex as it involves the investigation of the impact of a variation of the
6D pose of a grasp on its likelihood for being successful. Therefore we define two subproblems, P2.1 and
P2.2. In P2.1 we do initial investigations of the impact of small changes of the pose of a tried grasp. This
may lead to the replacement of the isotropic kernel used for the learning of object specific grasp densities in
[1] with an anisotropic, learned one.

In P2.2 we compute the global impact of grasping experiences depending on concrete relations between the
3D contours of the object model. We address this problem by transferring a physically tried grasp from its
associated contour to another contour. Subsequently we investigate which relations between contours can
indicate if such a transferred grasp is still likely to be successful.

Basket Kni f e Pan Combined

0 0.5 1
0

0.5

1

Coplanarity

C
oc

ol
ou

rit
y

0 0.5 1
0

0.5

1

Coplanarity

C
oc

ol
ou

rit
y

0 0.5 1
0

0.5

1

Coplanarity

C
oc

ol
ou

rit
y

0 0.5 1
0

0.5

1

Coplanarity

C
oc

ol
ou

rit
y

0 0.5 1
0%

100%

Coplanarity

A
m

ou
nt

 o
f g

oo
d 

pr
ed

ic
tio

ns

0 0.5 1
0%

100%

Coplanarity

A
m

ou
nt

 o
f g

oo
d 

pr
ed

ic
tio

ns

0 0.5 1
0%

100%

Coplanarity

A
m

ou
nt

 o
f g

oo
d 

pr
ed

ic
tio

ns

0 0.5 1
0%

100%

Coplanarity

A
m

ou
nt

 o
f g

oo
d 

pr
ed

ic
tio

ns

Figure 3: Top row shows amount of good predictions with respect to coplanarity and cocolourity, bottom
row only for coplanarity. The fourth column is the sum over all objects, giving each object the same overall
impact.

First results give already an indication that an anisotropic kernel is suitable for grasp densities (P1) and that
certain relations, e.g. coplanarity, are important (Figure 3). At the same time it has been discovered that
cocolourity for instance is problematic in the context of object representations which have been accumulated
over multiple frames (see [6]). Still these results also clearly show that more data is required in order to cover
the space defined by the relations. We therefore plan to acquire additional grasp data using a dynamics
simulator.
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4. Part Action Association using box primitives

It has been observed in the literature that the approximation of 3D data by shape primitives, e.g. spheres,
boxes or cones, is a very valuable step for the purpose of grasping. In this context, a focus on a simple
and efficient box approximation technique has further proven to be meaningful for connecting such shape
information with pre-grasp configurations, as proposed in [4]. The output of such an approximation can be
interpreted as a part-description of an object. While its geometric simplicity — a collection of boxes —
not only allows for a tremendous reduction of possible grasp configurations on the object through heuristic
reasoning, it also enables the connection of such representations to successful grasps by learning of contact-
level grasp qualities in the force domain. We use simulation as a helpful tool for learning and evaluating the
stability of grasps. The system embodiment may lead to different strategies to grasp different parts of the
object. Figure 4 exemplifies this: a spherical grasp allows grasps on the slim part of a screwdriver, while
a parallel jaw grasp is more reasonable for grasps on the handle part. A more extensive description of the
whole framework can be found in a confidential journal submission attached to this report [I].

Figure 4: Left: Hierarchical box approximation and decomposition of dense 3D data. Boxes correspond to
intuitive parts, and facets of boxes will spawn grasp hypotheses (grasp approach and orientation). Geomet-
rical heuristics reduce the hypotheses set (green = valid; red = invalid). Right: Dependent on the pre-shape,
a different set of grasp hypotheses is found to be stable force-closure grasps.

5. Haptic Part–Grasp associations

In [D] we address the problem of tactile exploration and subsequent extraction of grasp hypotheses for
unknown objects with a multi-fingered anthropomorphic robot hand. We present extensions on our tactile
exploration strategy for unknown objects based on a dynamic potential field approach resulting in selective
exploration in regions of interest. In the subsequent feature extraction, faces found in the object model are
considered to generate grasp affordances. Candidate grasps are validated in a four-stage filtering pipeline to
eliminate impossible grasps. To evaluate our approach, experiments were carried out in a detailed physics
simulation using models of the five-finger hand and the test objects. One example for the simulation results
is shown in Figure 5.
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(a) (b) (c) (d)

Figure 5: Typical simulation results for a sphere object. Column (a) shows a virtual scene snapshot during
exploration, (b) final point cloud, (c) grasp affordances, (d) best grasp and grasping points.

6. Object–Action Relations from Semantic Scene Graphs

In [A, B] we introduce a novel real-time framework for model-free stereo-video segmentation and stereo-
segment tracking, combining real-time optical flow and stereo with image segmentation running separately
on two GPUs. The computed stereo segments are used to construct 3D segment graphs, from which main
graphs, representing a relevant change in the scene, are extracted via an exact graph-matching technique,
thus providing an event table of the action scene, which allows for the extraction of object-action relations.
The central novelty of this framework is that it is model free and does not need an a-priori representation
neither for objects nor actions. Essentially actions are recognized without requiring prior object knowledge
and objects are categorized solely based on their exhibited role within an action sequence. The method
has potential applications for recognition and categorization of human-activities for example in imitation
learning, in developmental and cognitive robotics reaching beyond PACO-PLUS.

2D 
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3D segments 3D graph
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Figure 6: The architecture of the 3D segment tracking framework.

The architecture of the 3D segment tracking framework is shown in Figure 6. It consists of a stereo camera,
two GPUs, one CPU, and various processing components that are connected by channels in the framework.
Output data of all components can be accessed from any component in the framework. The left and right
images from a stereo camera enter into the framework via channels 1 and 2 respectively. Optical flow and
disparity are computed on GPU 1 using a real-time algorithm, and the results are accessible from channels
3 and 4, respectively. For the images from the left camera, the labels from a previous segmentation are
warped to the current frame using optical flow (channel 3). The new label configuration is used as an
initialization for the real-time segmentation algorithm running on GPU 2. This way, the required time
for label relaxation can be reduced, and, even more importantly, a consistent labeling of the frames can
be achieved, i.e. segments describing the same object part are likely to carry the same label (segment
tracking). The results of the segmentation can be accessed from channel 5 and used to compute the label
initialization for the segmentation of the right frame. This time, the labels are warped using phase-based
disparity information obtained from channel 4. The segmentation result of the right image, which is now
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consistently labeled with respect to the images from the left camera, is stored in channel 6. Segments larger
than a predefined threshold are extracted and stored in channel 7. The stereo-segment correspondences
are used to find the 3D structure of the segments and stored in channel 8. Once 3D segments and depth
information are extracted, we represent the scene by undirected and unlabeled semantic graphs. The graph
nodes are the segment labels and plotted at the center of each segment. The nodes are then connected by an
edge if the segments are neighbors and their depth differences are below a predefined threshold value. We
also define a 3D field of view boundary and ignore segments whose depth value exceeds this boundary. With
this method we create a focus of attention and ignore objects outside the 3D boundary. For 3D segmentation
and graph results of a real image sequence, see Figure 7.

Figure 7: Results for the interleaved sample actions, i.e. “Cutting a salami”, “Making a sandwich”, and
“Putting on a plate”. (a) Original frames from the left image sequence. (b) Extracted segments for frames
of the left sequence. (c) The dense disparity maps obtained for extracted stereo segments. The disparity
values are color-coded from blue (small) to red (large). Areas of low confidence are colored black, i.e., the
uniform and untextured area of the table, for which only poor disparity results could be obtained. (d) Final
3D semantic scene graphs, representing action primitives.

In the temporal domain, 3D scene graphs represent spatial relations between nodes. Unless spatial relations
change, the scene graphs remain topologically the same. The only changes in the graph structures are the
node positions or the edge lengths depending on the object trajectory and speed. Consequently, any change
in the spatial relation between nodes corresponds to a change in the main structure of the scene graphs.
Therefore, those changes in the graphs can be employed to define action primitives. Considering this fact,
we apply an exact graph-matching method in order to extract the main graphs by computing the eigenvalues
and eigenvectors of the adjacency matrices of the 3D graphs. A change in the eigenvalues or eigenvectors
then corresponds to a structural change of the graph. The temporal order by which those main graphs follow
each other defines an “event table”. An event signifies that something has happened in the scene which
caused a true topological change in the graph. This method allows classifying object-action relations by
calculating the similarity between event tables from different scenes. Furthermore, nodes playing the same
role in a classified action sequence can be identified and then be used to categorize objects by returning to
the signal level via image segments.

The developed framework is applied to a real stereo-image sequence that consists of interleaved chained
actions, i.e., “Cutting a salami”, “Making a sandwich”, and “Putting on a plate” (see Figure 7(a)). In this
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sequence two arms are first taking bread from a toaster, putting a piece of a cheese on it, and then cutting off

a slice of salami with a knife. After putting the salami on top of the cheese, the sandwich is being placed on
a plate and the arms are leaving the scene. Image segments of some sample frames from the left sequences
are given in Figure 7(b). Dense disparity maps obtained for extracted stereo segments are given in Figure
7(c). The low-confidence-value area of the table segment is depicted with a black color in the dense disparity
maps. Figure 7(d) illustrates some 3D semantic main graphs. The graphs show that all relevant object parts
in the scene can be represented by unique labels and tracked during the whole image sequence. Moreover,
each graph defines a topological change in the scene.

7. Feature-related learning

According to the Theory of Event Coding (TEC, proposed in [3]) perceptual stimuli and motor actions are
represented by distributed patterns of features, so called event files. Importantly, percepts and actions are
coded in a common representational domain. In other words, the same features can be used to represent
perceptual stimuli and motor actions. This common coding principle allows for direct interactions between
perceptual and action related processes, which may also be mediated by the task context.

In our work, we do not focus on the question how features are extracted from the raw sensory data. Instead,
we focus on how feature codes (parts) are associated to actions (action-effect learning) and how event files
may be stored in long term memory to form concepts that represent particular categories of objects or actions
(concept learning).

7.1 Action-effect learning

In [H], we have developed HiTEC, a computational model based on TEC. In this model (see Figure 8) we
differentiate between modality specific sensory codes (e.g., visual shape or color), abstract motor repre-
sentations (e.g., coding for particular motor actions), common feature codes coding for amodal cognitive
features (e.g., the generic feature left), and task codes that code for different decision alternatives. By asso-
ciating feature codes with task codes, we encode the task rules. Crucially, we assume that motor actions get
their cognitive meaning through their perceptual effects. Therefore, we first let the model perform random
actions and associate them with their perceptual effects. In the experimental stage, we let the model respond
to stimuli (using the associations between feature codes and task codes) by anticipating the desired effect
and by propagating the activation (using the learned associations between feature codes and motor codes)
towards the motor codes. Associations between feature codes and task codes are set by hand, following the
task instruction. Associations between feature codes and motor codes are learned during training trials.

7.2 Concept learning

In [F] we have also developed CONCAT, a connectionist model that forms hierarchical representations
of concepts and contexts. These representations are learned by extracting the statistical regularities over
repeated experiences. Regularities can be detected at different temporal and spatial scales. At a small
scale, features that co-occur in time and space are bound into concept representations. At a coarser scale,
concepts that co-occur in time and space are bound into context representations. Learning of concepts and
contexts is achieved by two Categorizing and Learning Modules (CALM; proposed by [5]). One important
feature of CALM modules is that they display novelty-dependent learning. When a novel input pattern
is presented, elaboration learning takes place, which is characterized by a high learning rate and strong
competition between the uncommitted nodes (those nodes that do not yet represent a pattern). When a
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Figure 8: HiTEC architecture, based on the Theory of Event Coding.

familiar input pattern is presented, activation learning takes place, characterized by a low learning rate and
weak competition between nodes.

8. Links to other Workpackages

Deliverable D4.1.5 is linked to and makes use of work made in a number of workpackages. It is linked to
the software and hardware integration issues dealt with in WP1 and the sub-modules developed in WP2.
Since it describes meta–learning processes, results presented here are only indirectly used in WP8.
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Abstract

A novel real-time framework for model-free stereo-video
segmentation and stereo-segment tracking is presented,
combining real-time optical flow and stereo with image seg-
mentation running separately on two GPUs. The stereo-
segment tracking algorithm achieves a frame rate of 23 Hz
for regular videos with a frame size of 256× 320 pixels and
nearly real time for stereo videos. The computed stereo seg-
ments are used to construct 3D segment graphs, from which
main graphs, representing a relevant change in the scene,
are extracted, which allow us to represent a movie of e.g.
396 original frames by only 12 graphs, each containing only
a small number of nodes, providing a condensed descrip-
tion of the scene while preserving data-intrinsic semantics.
Using this method, human activities, e.g., handling of ob-
jects, can be encoded in an efficient way. The method has
potential applications for human-activity recognition and
learning, and provides a vision-front end for applications
in cognitive robotics.

1. Introduction

Movies contain abundant information about the visual
scene, which, if choosing the raw signals for representa-
tions, render the application of any logic or learning scheme
intractable. This problem occurs for example if we want
to understand and learn both courses and consequences of
manipulations from visual data. A reduced representation
of the scene is urgently required to make such problems
tractable by algorithms operating on a small number of ab-
stract descriptors (symbols). Finding this reduced repre-
sentation without prior knowledge on the data (model free)
thus represents a major challenge in cognitive-vision appli-
cations – this problem is also known as the signal-symbol
gap [12].

In this paper, we present a novel framework for bridg-
ing this gap. We aim at creating a condensed description
of stereo movies by computing the 3D relations between
tracked image segments for generating 3D semantic graphs,
which, in the future, will allow us to encode human actions
in an efficient way. To achieve this goal, three main prob-
lems need to be solved: (i) Stereo images need to be seg-
mented in real time in a consistent way and image segments
need to be tracked along the movie, i.e., segments represent-
ing the same part of an object should carry the same label
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Figure 1. The architecture of 3D segment tracking framework.

all the time. Note that image segmentation represents a log-
ical step towards our goal because redundant information is
thereby grouped and condensed into higher level represen-
tational entities (segments). The method should be entirely
data driven. (ii) The 3D relations of the segments need to
be derived with sufficient accuracy, and graphs need to be
constructed. Then, only the graphs representing a relevant
cha nge in the scene should be extracted, further removing
redundant information. (iii) The algorithms should run in
real time or close to real-time1 to allow the framework to be
used for robotic applications.

Several approaches for video segmentation have been
proposed in the past, where some methods rely on seg-
menting each frame independently, followed by a segment
matching step based on their low-level features [5, 20, 23,
8], while other methods use motion projection to link seg-
ments [16, 28, 26, 14]. It was shown recently that image
segments can be tracked along the frames of a movie in a
model-free way, i.e. without assuming a data model of some
kind, using the method of superparamagnetic clustering of
data [6].

Real-time requirements render the video segmentation
algorithms currently inadequate for most robotic applica-
tions. Furthermore, stereo movies have not been treated by
any of these works. To overcome these limitations, we de-
veloped real-time model-free image segmentation on GPUs
based on a novel parallel method, combined with real-time
phase-based optical flow [17] and stereo [19], executed on
GPU as well, for segment tracking.

The framework will potentially be applicable to a wide
range of problems in the field of action and manipulation
recognition and learning, and may serve as vision-front end
in cognitive robots.

1By real-time we understand processing of a full frame at 25Hz or
faster.

2. 3D segment tracking framework

2.1. Overview

The architecture of the 3D segment tracking framework
is shown in Fig. 1. It consists of a stereo camera, two GPUs,
one CPU, and various processing components that are con-
nected by channels in the framework. Output data of all
components can be accessed from any component in the
framework. The left and right images from a stereo cam-
era enter into the framework via channels 1 and 2 respec-
tively. Optical flow and disparity are computed on GPU 1
using a real-time algorithm [17], and the results are acces-
sible from channels 3 and 4 respectively (see Section 2.3).
For the images from the left camera, the labels from a previ-
ous segmentation are warped to the current frame using op-
tical flow (channel 3). The new label configuration is used
as an initialization for the real-time segmentation algorithm
running on GPU 2 (see Section 2.2-2.4). This way, the re-
quired time for label relaxation can be reduced, and, even
more importantly, a consistent labeling of the frames can
be achieved, i.e. segments describing the same object part
are likely to carry the same label (segment tracking) (see
Section 2.4). The results of the segmentation can be ac-
cessed from channel 5 and used to compute the label initial-
ization for the segmentation of the right frame via channel
5′ (see Section 2.5). This time, the labels are warped us-
ing phase-based disparity information obtained from chan-
nel 4. The segmentation result of the right image, which
is now consistently labeled with respect to the images from
the left camera, is stored in channel 6. Segments larger than
a predefined threshold are extracted and stored in channel
7. The stereo-segment correspondences are used to find the
3D structure of the segments using a recent stereo method
on the CPU [7] and stored in channel 8 (see Section 2.6). In
a final step, relevant information about the 3D structure of
the segments is extracted from the computed disparity map
and used together with the segmentation results to construct
an abstract 3D description of the scene, which is repre-
sented by undirected graphs in which nodes and edges rep-
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resent 3D segments and their neighborhood relations (see
Section 2.7).

2.2. Image segmentation algorithm

The method of superparamagnetic clustering solves the
segmentation problem by finding the equilibrium states of
the energy function of a ferromagnetic Potts model in the
superparamagnetic phase [18, 11, 25, 9, 3, 15, 24]. The
Potts model [18] describes a system of interacting granu-
lar ferromagnets or spins that can be in q different states,
characterizing the pointing direction of the respective spin
vectors. Three phases, depending on the system tempera-
ture, i.e. disorder introduced to the system, are observed:
the paramagnetic, the superparamagnetic, and the ferro-
magnetic phase. In the ferromagnetic phase, all spins are
aligned, while in the paramagnetic phase the system is in a
state of complete disorder. In the superparamagnetic phase
regions of aligned spins coexist. Blatt et al. (1998) applied
the Potts model to the image segmentation problems in a
way that in the superparamagnetic phase regions of aligned
spins correspond to a natural partition of the image data [3].
Finding the image partition corresponds to the computation
of the equilibrium states of the Potts model.

The equilibrium states of the Potts model have been ap-
proximated in the past using the Metropolis-Hastings algo-
rithm with annealing [10] and methods based on cluster up-
dating, which are known to accelerate the equilibration of
the system by shortening the correlation times between dis-
tant spins, such as Swendsen-Wang [22], Wolff [27], and
energy-based cluster updating (ECU) [15, 24]. All of these
methods obey detailed balance, ensuring convergence of the
system to the equilibrium state. Here we achieve efficient
performance using the Metropolis algorithm with annealing
[10], which can be easily parallelized and implemented on
a GPU. The method further has the advantage that results
from a previous segmentation can be utilized by the algo-
rithm to find a consistent segmentation of the next frame
within a small number of Metropolis updates only, drasti-
cally reducing computation time.

The real-time image segmentation algorithm proceeds as
follows. In the Potts model, a spin variable σk, which can
take on q discrete values v1, v2, . . . , vq , called spin states,
is assigned to each pixel of the image. The energy of the
system is described by

E = −
∑
<ij>

Jijδij , (1)

with the Kronecker sign

δij =
{

1 if σi = σj ,
0 otherwise. (2)

where σi and σj are the respective spin variables of two

neighboring pixels i and j. The function

Jij = 1− |gi − gj|/∆ (3)

is a coupling constant, determining the interaction strength,
where gi and gj are the respective color vectors of the pix-
els, and

∆ = α · (
∑

<i,j>

|gi − gj|/
∑

<i,j>

1) (4)

computes the averaged color vector difference of all neigh-
bors < i, j >. The factor α ∈ [0, 10] is a system parameter.

The Metropolis algorithm allows generating spin config-
urations S which obey the Boltzmann probability distribu-
tion [4]

P (S) ∼ exp [−βE(S)] , (5)

where β = 1/kT , T is the temperature parameter, and k is
the Boltzmann constant.

Initially, values are assigned randomly to all spin vari-
ables. According to the Metropolis algorithm, each spin-
update procedure consists of the following steps [13]:

1. The system energy EA of the current spin configura-
tion SA is computed according to Eq. 1.

2. A pixel i with spin variable σi in spin state vl is se-
lected and for each possible move to a new spin state
σi 6= vl the energy EB of the resulting new spin con-
figuration SB is computed according to Eq. 1. The
number of possible moves is (q − 1).

3. Among all new possible configurations we find the
configuration with the minimum energy

Enew = min(E1, E2, . . . , Eq−1) , (6)

and compute the respective change in energy

∆E = Enew − EA . (7)

4. If the total energy of the configuration is decreased by
this move, i.e. ∆E < 0, the move is always accepted.

5. If the energy increased, i.e. ∆E > 0, the probability
that the proposed move will be accepted is given by

PA→B = exp
(
−|∆E|
kTn

)
, (8)

and
Tn+1 = γTn γ < 1 , (9)

where γ is the annealing coefficient. We draw a num-
ber ξ randomly from a uniform distribution in the
range of [0, 1]. If ξ < PA→B , the move is accepted.
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Each spin update involves only the nearest neighbors of the
considered pixel. Hence, spin variables of pixels that are
not neighbors of each other can be updated simultaneously
[2]. Therefore the Metropolis algorithm fits very well to
the GPU architecture. For the first frame of the image se-
quence, a short-cut via a pre-segmentation step, is used to
allow sufficiently fast segmentation. More details can be
found in [1]. In the experiments we will use a large num-
ber of spins, which then serve as a segment label. Note that
these wordings are thus equivalent here.

2.3. Phase-based optical flow and disparity

Since fast processing is a very important issue in our
work, we use the GPU-based real-time optical flow algo-
rithm proposed by Pauwels et al. (2008) [17]. This al-
gorithm belongs to the class of phase-based techniques,
which are highly robust to changes in contrast, orientation
and speed. This particular algorithm integrates the tempo-
ral phase gradient (extracted from five subsequent frames)
across orientation and gradually refines its estimates by
traversing a Gabor pyramid from coarser to finer levels. In
our framework optical flow is computed for the left video
stream only. The algorithm provides a vector, at each pixel
indicating its motion

u(x,y) = (ux(x, y), uy(x, y)) , (10)

This allows us to link pixels of two subsequent frames
{t} and {t+ 1} (see Fig. 2).

In order to link pixels of correspondent left and right
frames displacements for correspondent left and right pix-
els have to be estimated. For this purpose the disparity algo-
rithm can be used. Our system relies on rectified images and
therefore only horizontal disparities need to be determined.
The disparity algorithm that is used in our framework is also
phase-based and operates on phase differences between the
left and right image as opposed to temporal phase gradients
in optical flow algorithm. It is described in more detail in
[19].

2.4. Image-sequence segmentation using optical
flow based label warping

We obtain information about pixel correspondences be-
tween subsequent frames via a phase-based optical flow al-
gorithm applied to the frame sequence, as described in 2.3.
Since we are using a local algorithm, optical flow cannot be
estimated everywhere, for example not in weakly-textured
regions. For pixels in these regions, vertical and horizontal
flows, i.e. uy and ux, do not exist. Thus we make an as-
sumption that these pixels did not change position between
frames {t} and {t + 1}, i.e. uy = 0 and ux = 0. We find
the new label configuration by translating all labels accord-
ing to the derived flow maps.

Suppose frame {t} is segmented and St is its final label
configuration (see Fig. 2(d)). The labels can be transferred
from frame {t} to frame {t+ 1} according to

St+1(xt+1, yt+1) = St(x′t, y
′
t) , (11)

where

x′t = xt+1 − ux(xt, yt) (12)

y′t = yt+1 − uy(xt, yt) . (13)

Labels which did not obtain an initialization via Eq. 11
are then given a randomly chosen label between 1 and q.
Once frame {t + 1} is initialized (see Fig. 2(e)), a relax-
ation process is needed in order to fix erroneous bonds that
can take place during the spin states transfer (see 2.2). We
found that 20 additional Metropolis updating iterations are
sufficient to obtain satisfactory segmentation results (see
Fig. 2(f)).

2.5. Stereo segmentation using disparity-based la-
bel warping

Segmentation of every right frame is obtained in a simi-
lar way. Here, label initialization is obtained by translating
the labels from the segmentation of the left image using the
disparities from phase-based stereo. The stereo algorithm
yields a sparse disparity map D providing information not
for all pixels. For this reason, we make the assumption
that pixels from frame {tL} having no correspondence in
frame{tR} have zero displacement, i.e. D(xt) = 0.

We suppose that the left frame {tL} is segmented and
St

L is its final label configuration (see Fig. 3(d)). Labels are
transferred from frame {tL} to frame {tR} according to

St
R(xt

R, y
t
R) = St

L(x′tL, y
′t
L) , (14)

where

x′tL = x′tR −D(xt
L, y

t
L) (15)

y′tL = y′tR . (16)

Pixels that did not obtain a label initialization this way
are given a randomly chosen label between 1 and q (see
Fig. 3(e)). Once frame {tR} is initialized, again a relaxation
process is needed in order to fix erroneous bonds (see 2.2).
We found that about 50− 100 additional Metropolis updat-
ing iterations are sufficient to obtain satisfactory 3D seg-
mentation results (see Fig. 3(f)).

2.6. Disparity from stereo-segment correspon-
dences

In weakly-textured scenes, segment correspondences can
be used to derive the disparity map of the scene in situations
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Figure 2. Segmentation of two adjacent frames in a sequence. (a) Original frame {t}. (b) Original frame {t + 1}. (c) Estimated optical
flow field from phase-based method (subsampled 16 times and scaled 5 times). (d) Extracted segments St for frame {t}. (e) Initialization
of frame {t + 1} after the spin transfer. (f) Extracted segments St+1 for frame {t + 1}.
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Figure 3. Segmentation of a stereo pair. (a) Original left frame {tL}. (b) Original right frame {tR}. (c) Estimated disparity map from
phase-based stereo. (d) Extracted segments St

L for frame {tL}. (e) Initialization of frame {tR} after the spin transfer. (f) Extracted
segments St

R for frame {tR}.

where texture-based methods are bound to fail [7]. Follow-
ing the method proposed by [7], stereo segments are com-
puted first using our framework, then, reliable disparity es-
timates from segment boundaries and weak inner-segment
texture are extracted together with an occlusion map, which
is derived from the approximate depth ordering of the stereo
segments. Finally the information is fused and a segment-
constrained interpolation algorithm is employed to obtain
a dense disparity map (see Fig. 4(c) and Fig. 5(c)). The
disparity map can then be used to establish 3D relations be-
tween segments in the graphical representation (see 2.7).
We further defined a confidence value for each segment by
summing the input confidence values (before interpolation

- see [7]) for the respective segment and dividing it by the
total size of the segment. Large segments for which little
inner-segment disparities or edge disparities could be found
will receive a lower confidence than smaller segments for
which, e.g., the disparities are known along the whole seg-
ment boundary. Using this approach, we found that for the
large white table of the sequences shown in Fig. 4(a) and
Fig. 5(a), disparities could be interpolated only with very
low confidence. This is because most of the boundaries of
the table are cut off by the frame boundaries and because
the table has no texture. As a consequence, stereo cannot
provide sufficient depth information here.
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2.7. 3D Semantic Scene Graphs

Once 3D segments are extracted, we represent the scene
by undirected and unlabeled semantic graphs. The graph
nodes are the segment labels and plotted at the center of
each segment. The nodes are then connected by an edge
if the segments are neighbors and their depth differences
are less than a predefined threshold value (see Fig. 4(d) and
Fig. 5(d)). We also define a 3D field of view boundary and
ignore segments whose depth value does not exceed this
boundary. With this method we create a focus of attention
and ignore objects outside the 3D boundary.

In the temporal domain, 3D scene graphs represent
spatial relations between nodes. Unless spatial relations
change, the scene graphs remain topologically the same.
The only changes in the graph structures are the node posi-
tions or the edge lengths depending on the object trajectory
and speed. Consequently, any change in the spatial relation
between nodes corresponds to a change in the main struc-
ture of the scene graphs. Therefore, those changes in the
graphs can be employed to define action primitives. Consid-
ering this fact, we apply an exact graph-matching method in
order to extract the main graphs by computing the eigenval-
ues and eigenvectors of the adjacency matrices of the 3D
graphs [21]. A change in the eigenvalues or eigenvectors
then corresponds to a structural change of the graph. As
experimental data we use two real stereo-image sequences
(see Section 3). The total frame number of the first im-
age sequence “Making a sandwich” is 396, however, after
extracting the main graphs, only 12 frames are left, each
defining a single action primitive. Due to page limitations
Fig. 4(d) shows only 7 of the main graphs. In the second
image sequence we have interleaved chained actions, i.e.,
“Cutting a salami”, “Making a sandwich”, and “Putting on
a plate”, making a total of 2977 frames. In Fig. 5(d), 6
sample main graphs are shown, each representing an action
primitive.

2.8. Experimental environment

As hardware platforms for our 3D segment tracking
framework we use one NVIDIA card GeForce GTX 295
(with 896 MB device memory) consisting of two GPUs
each of which has 30 multiprocessors and 240 processor
cores in total and CPU 2.2GHz AMD Phenom Quad 9550
(using a single core) with 2 GB RAM.

We use the first GPU of the card to calculate optical flow
and disparity. The second GPU is mainly used for frame-
wise image segmentation. Using two GPUs allows us to
run some parts of the framework physically in parallel and
achieve better processing time as compared to having one
GPU only.

3. Experimental Results

The developed framework is applied to two real stereo-
image sequences: “Making a sandwich” (see Fig. 4(a)) and
a sequence consisting of interleaved chained actions, i.e.,
“Cutting a salami”, “Making a sandwich”, and “Putting on
a plate” (see Fig. 5(a)). In the first example (see Fig. 4(a))
two arms are appearing in the scene, putting the salami and
cheese slices on a piece of bread, and then leaving the scene.
The second sequence (see Fig. 5(a)) consists of two arms
that are first taking a bread from a toaster, putting a piece
of a cheese on it, and then cutting off a slice of salami with
a knife. After putting the salami on top of the cheese, the
sandwich is being placed on a plate and the arms are leav-
ing the scene. Respective image segments of some sam-
ple frames from the left sequences are given in Fig. 4(b)
and 5(b). Dense disparity maps obtained for extracted
stereo segments are given in Fig. 4(c) and 5(c). The low-
confidence-value area of the table segment is depicted with
a black color in the dense disparity maps (see Section 2.6).
Fig. 4(d) and 5(d) illustrate 3D semantic scene graphs of
the selected frames. The graphs show that all relevant ob-
ject parts in the scene can be represented by unique labels
and tracked during the whole image sequence. Moreover,
each graph defines a topological change in the scene. For
instance, in frame number 112 of the first image sequence
(see Fig. 4(d)) we observe that the arm represented by graph
node number 113 has an edge only with the table (graph
node number 3). In 2D, the arm would have an edge with
the cheese since their respective segments are 2D neighbors,
but this edge is ignored because the depth difference be-
tween the arm and the cheese is too large. In the next main
graph (frame number 167) an edge connects the arm (node
number 113) with the salami (node number 247) because
the segments are touching in 3D.

For mono-image sequences with a frame size of 256 ×
320 pixels a processing time of 23 Hz was achieved that
demonstrates the applicability of the framework to mono-
video processing tasks in real-time or close to real-time.
However, for sequences containing weakly-textured regions
more additional Metropolis updating iterations are needed
in order to achieve a final stable configuration (see 2.4). For
the stereo video segmentation with the same frame size the
maximum processing time that can be achieved for the mo-
ment is 10 Hz. However this is not the case for all stereo-
image sequences.

4. Discussion

In this work we presented a novel highly parallel frame-
work for deriving a condensed 3D semantic representation
of visual scenes based on a near real-time segment tracking
procedure implemented in parallel on GPUs. We achieved
(i) stereo image-sequence segmentation and segment track-
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Figure 4. Results for the sample action “Making a sandwich”. (a) Original frames from the left image sequence. (b) Extracted segments
for frames of the left sequence. (c) The dense disparity maps obtained for extracted stereo segments. The disparity values are color-coded
from blue (small) to red (large). Areas of low confidence are colored black, i.e., the uniform and untextured area of the table, for which
only poor disparity results could be obtained. (d) Final 3D semantic scene graphs, representing action primitives.

Figure 5. Results for the interleaved sample actions, i.e. “Cutting a salami”, “Making a sandwich”, and “Putting on a plate”. (a) Original
frames from the left image sequence. (b) Extracted segments for frames of the left sequence. (c) The dense disparity maps obtained for
extracted stereo segments. The disparity values are color-coded from blue (small) to red (large). Areas of low confidence are colored black,
i.e., the uniform and untextured area of the table, for which only poor disparity results could be obtained. (d) Final 3D semantic scene
graphs, representing action primitives.

ing in near real time using a highly parallel architecture in-
volving two GPUs, and, in a subsequent step, (ii) to build
3D semantic graphs using a recent stereo method for defin-
ing the 3D segment relations and exact graph matching for
the extraction main graphs (action primitives). Algorith-

mic parts for (ii) are implemented on CPU and are not yet
running in real-time, but potential parallel solutions are cur-
rently investigated. The main contribution of this work is
the provision of a novel framework for representing image
sequences in an efficient way, which may serve as vision-

7



front end for cognitive robots in the future. Most impor-
tantly, the segment tracking is entirely data driven (model-
free) and thus does not require prior data models to be pro-
vided, making the method more robust and more widely ap-
plicable.

To our knowledge, the quite extensive framework pre-
sented in this paper is the first of its kind. Although video
segmentation has been proposed before, the methods used
therein are often model based, or not running real time
[5, 20, 23, 8, 16, 28, 26, 14, 6]. Furthermore, our segment
tracking procedure is developed for a specific goal, i.e. the
construction of 3D semantic graphs, which has not been at-
tempted in this way before.

The proposed framework has been applied to several real
stereo-image sequences. Obtained results demonstrate sta-
bility of the segment tracking procedure both for mono-
image sequences and for stereo-image sequences. For the
segmentation of mono-image sequences with a frame size
of 256 × 320 pixels we obtained processing time sufficient
for real-time or close to real-time applications. Stereo-
image sequence segmentation is not real time yet, but the
developed framework is sufficiently fast for being applica-
ble to robot-real-time 3D applications.

The algorithm has some weak points. At the moment,
relaxation times increase if two previously disjoint regions
ought to be joined. The processing time of stereo-video seg-
mentation also depends on texture information and the size
of occluded areas. For sequences with weakly textured ar-
eas and relatively large occlusions a longer relaxation pro-
cess is required to label those areas. Currently, we are de-
veloping an improved parallel Metropolis procedure to cope
with these challenges.

Furthermore, problems arise for scenarios with relatively
high complexity. By high complexity we mean actions that
entail splitting, e.g., cutting actions. In this case some parts
become new independent segments, so new labels have to
be assigned to them. Clearly, these problems cannot be re-
solved on the pixel level. A high level procedure is needed
for the detection of object splittings. We are currently in-
vestigating this problem in more detail.

In the future, we aim to apply the developed framework
to tasks in cognitive robotics. Since each main graph rep-
resents an action primitive and also the respective object
relations, we are planning to use this information to recog-
nize and classify the actions and categorize objects based
on their role during the action.
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Categorizing Object-Action Relations from Semantic Scene Graphs

Eren Erdal Aksoy, Alexey Abramov, Florentin Wörgötter, and Babette Dellen

Abstract— In this work we introduce a novel approach
for detecting spatiotemporal object-action relations, leading to
both, action recognition and object categorization. Semantic
scene graphs are extracted from image sequences and used
to find the characteristic main graphs of the action sequence
via an exact graph-matching technique, thus providing an
event table of the action scene, which allows extracting object-
action relations. The method is applied to several artificial
and real action scenes containing limited context. The central
novelty of this approach is that it is model free and needs a
priori representation neither for objects nor actions. Essentially
actions are recognized without requiring prior object knowledge
and objects are categorized solely based on their exhibited role
within an action sequence. Thus, this approach is grounded in
the affordance principle, which has recently attracted much
attention in robotics and provides a way forward for trial
and error learning of object-action relations through repeated
experimentation. It may therefore be useful for recognition
and categorization tasks for example in imitation learning in
developmental and cognitive robotics.

I. INTRODUCTION

One central goal for humanoid robotics is to imitate,
understand, and learn from human behavior. Part of this prob-
lem is to relate a manipulation to its manipulated object. The
difficulty lies here in the fact that individual manipulations
even when “doing the same thing” can take vastly different
forms just due to changes in posture, action sequence, and/or
differences in the general (visual) context surrounding the
core manipulation. Nonetheless humans have no problem in
classifying manipulation types, such as “moving an object”,
“closing a book” or “making a sandwich”, and to link objects
with actions. The goal of this paper is to devise a method
which can, at least to some degree, do the same and thereby
classify manipulation types.

Recently, these questions have been approached in an
abstract way by the concept of object-action complexes
(OACs) [1], [2], claiming that objects and actions are insepa-
rably intertwined. This is linked to the way humans perceive
the world by relating objects with actions. The OAC concept
proposes such a human-like description by which an object
is identified considering both its (visual) properties and the
actions that have been performed with it. The OAC concept
attaches the performed actions to the objects as attributes.
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This approach is therefore related to the affordance principle
[3], which especially in the recent years has had increasing
influence in robotics [4]. Take, for example, a cup, which
is an entity for filling and drinking. However, not only this
single specific cup but any other cylindrical, hollow object
could be used for the same actions. Thus, objects, which
are supporting common actions, can be considered similar.
Filling creates the object-type “container”! Consider now
an inverted cup, which cannot be filled. Now the former
container has become a pedestal on which you could put
something. While physically the same thing, a “pedestal” is
a different object type altogether. In cognitive vision, many
new approaches for object recognition from 3D models have
been introduced [5], [6], [7]. However, these model-based ap-
proaches cannot identify object-action relations. In this work,
we introduce a novel approach for detecting spatiotemporal
object-action relations using semantic scene graphs, leading
to both action recognition and object categorization. Using
this method, objects are connected to recognized actions
considering their roles within a scenario.

The approach relies on a front-end algorithm which allows
for the continuous tracking of scene segments using super-
paramagnetic clustering, which proven convergence proper-
ties [8], [9], [10]. The presented core algorithm, used for
recognition and classification, then relies on the sequence
of neighborhood relations between those segments, which
for a given action will always be “essentially” the same.
Hence different from feature based (or model based) ap-
proaches our system operates on object-part relations without
presupposing assumptions about the structure of object and
action. Thus, it is model free. This leads to a high degree
of invariance against position, orientation, etc. but we need
to make sure that segment tracking is stable, which is
currently achieved by several means described elsewhere
[11]. Furthermore, at this stage we show examples from a
2D (projected) domain. True 3D tracking is currently being
implemented for difficult action sequences like “making a
complete breakfast”.

Therefore, we would like to emphasize that the core
contribution of this work is the novel categorization method.
The computer vision front end is a required prerequisite,
but other tracking methods could be used here as well and
improvements are possible.

The structure of the paper is as follows. In Section II
we discuss related works. In Section III, we introduce the
action classification and the object categorization algorithm.
In Section IV experimental results with real images are
presented. Finally, in Section V, the results are discussed
and directions for future research are given.



II. RELATED WORK

Action recognition and object categorization have received
increasing interest in the Artificial Intelligence (AI) and
cognitive-vision community during the last decade. The
problem of action recognition has been addressed in previous
works, but only rarely in conjunction with object categoriza-
tion. Modayil et al. (2008) presented a framework focusing
on the recognition of activities in daily living [12]. In order
to detect the activities, the test subject (e.g. human) was
equipped with Radio Frequency Identification (RFID) reader
and tags. The types of actions and used objects were recorded
by the RFID reader to learn a model that recognizes the
activities performed during observations, and an Interleaved
Hidden Markov Model (HMM) was used to increase the
accuracy of the learned model. Similar to this study, Liao
et al. (2005) provided an approach to perform location-
based activity recognition by using Relational Markov Net-
works [13]. This work also covered high-level activities,
e.g. working, shopping, dining out, during long periods of
time. The system used data from a wearable GPS location
sensor and considered time, place of action, and sequence of
action, which were extracted from the GPS sensor. Although
those kinds of sensor-based multitasking-activity-recognition
approaches provide promising results, they do not cover
object-categorization issues and have handicaps like limited
coverage area. Hongeng (2004) introduced a Markov network
to encode the entire event space for scenes with limited
context but without considering object classification [14].
Sridhar et al. (2008) showed that objects can also be catego-
rized by considering their common roles in actions, resulting
however in large and complex activity graphs, which have to
be analyzed separately [15]. Our framework provides a novel
approach that represents scenes by semantic graphs which
hold spatiotemporal object-action relations. By analyzing
semantic scene graphs, we not only recognize actions but
also categorize objects based on their action roles.

III. METHODS

A. Overview of the Algorithm

In the current study, we analyze movies of scenes con-
taining limited context. Fig. 1 shows the block diagram of
the algorithm. As a first processing step, image segments
are extracted and tracked throughout the image sequence,
allowing the assignment of temporally-stable labels to the
respective image parts [9], [11]. The scene is then described
by semantic graphs, in which the nodes and edges represent
segments and their neighborhood relations, respectively. For
segmentation and graph examples of real images, see Fig. 2.
Graphs can change by continuous distortions (lengthening or
shortening of edges) or, more importantly, by discontinuous
changes (nodes or edges can appear or disappear). Such a
discontinuous change represents a natural breaking point: All
graphs before are topologically identical and so are those
after the breaking point. Hence, we can apply an exact
graph-matching method after a breaking point and extract
the next following topological main graph. The sequence of

these main graphs thus represents all structural changes in
the scene. The temporal order by which those main graphs
follow each other defines an “event table”. An event signifies
that something has happened in the scene which caused a
true topological change in the graph. This method allows
classifying object-action relations by calculating the similar-
ity between event tables from different scenes. Furthermore,
nodes playing the same role in an classified action sequence
can be identified and then be used to categorize objects by
returning to the signal level via image segments.

B. Segmentation and Tracking

We use an image-segmentation method in which segments
are obtained trough a 3D linking process [9], [11], [10].
First, a spin variable σi is assigned to each pixel i of
the stereo image. To incorporate constraints in form of
local correspondence information, we distinguish between
neighbors within a single frame (2D bonds) and neighbors
across frames (3D bonds). We create a 2D bond (i, k)2D
between two pixels within the same frame with coordinates
(xi, yi, zi) and (xk, yk, zk) if |(xi−xk)| ≤ 1, |(yi−yk)| ≤ 1,
and zi = zk. Across frames, we create a 3D bond (i, j)3D
between two spins i and j if |(xi + dxij − xj)| ≤ 0.5,
|(yi + dyij − yj)| ≤ 0.5, zi 6= zj , and aij = 1. The values
dxij and dyij are the shifts of the pixels between frames
zi and zj along the axis x and axis y, obtained from an
initial optic flow map. The parameters aij are the respective
amplitudes (or confidences). However, since the images in
the examples given in this paper are changing only little
from frame to frame, we will assume that the flow is zero
everywhere. Hence the values dxij and dyij are zero, and
aij = 1 everywhere.

The spin model is now implemented such that neighboring
spins with similar color have the tendency to align. We use
a q-state Potts model [16] with the Hamiltonian

H = −
∑
〈ik〉2D

Jikδσi,σk
−

∑
〈ij〉3D

Jijδσi,σj
, (1)

with Jij = 1−4/4̄ and4ij = |gi−gj |, where gi and gj are
the gray (color) values of the pixels i and j, respectively. The
mean distance 4̄ is obtained by averaging over all bonds.

Here, 〈ik〉2D and 〈ij〉3D denote that i, k and i, j are
connected by bonds (i, k)2D and (i, j)3D, respectively. The
Kronecker δ function is defined as δa,b = 1 if a = b and
zero otherwise. The segmentation problem is then solved by
finding clusters of correlated spins in the low temperature
equilibrium states of the Hamiltonian H . The total number
M of segments is then determined by counting the computed
segments. It is usually different from the total number q
of spin states, which is a parameter of the algorithm (here
q = 10).

We solve this task by implementing a clustering algorithm.
In a first step, “satisfied” bonds, i.e. bonds connecting spins
of identical spins σi = σj , are identified. Then, in a second
step, the satisfied bonds are “frozen” with a some probability
Pij . Pixels connected by frozen bonds define a cluster, which
are updated by assigning to all spins inside the same clusters



Fig. 1. Block diagram of the algorithm.

the same new value [17]. In the method of superparamagnetic
clustering proposed by [18] this is done independently for
each cluster. In this paper, we will employ the method of
energy-based cluster updating (ECU), where new values are
assigned in consideration of the energy gain calculated for a
neighborhood of the regarded cluster [8], [19]. The algorithm
is controlled by a single “temperature” parameter, and has
been shown to deliver robust results over a large temperature
range. After a 100 iterations, clusters are used to define
segments.

In this paper, we segment always two consecutive frames
of the image sequence at the same time, i.e. frame i and i+1,
then, we segment the next pair, i.e. i+1 and i+2, where the
last image of the first pair is identical with the first image
of the second pair. Then, consecutive pairs are connected by
identifying the identical segments in the overlapping images.
This strategy allows handling long motion image sequences
[11].

C. Semantic Scene Graphs

Once the image sequence has been segmented and seg-
ments have been tracked, we represent the scene by undi-
rected and unweighted labeled graphs. The graph nodes are
the segment labels and plotted at the center of each segment.
The nodes are then connected by an edge if segments touch
each other.

Fig. 2 shows original frames with respective segments and
semantic scene graphs from three different real action types:
Moving Object, Opening Book, and Making Sandwich. In
the Moving Object action a hand is putting an orange on a
plate while moving the plate together with the orange (see
Fig. 2(a-c)). The Opening Book action represents a scenario
in which a hand is opening a book (see Fig. 2(d-f)). In the
Making Sandwich action two hands are putting pieces of
bread, salami, and cheese on top of each other (see Fig. 2(g-
i)).

D. Main Graphs and Event Tables

In the following we will first use simpler scenes to describe
the remaining parts of the algorithm (to the right of the
dashed line in Fig. 1). Fig. 3(a-b) depicts original frames with
respective segments of an artificial Moving Object action
(sample action 1) in which a black round object is moving
from a yellow vessel into a red vessel.

In the temporal domain, scene graphs represent spatial
relations between nodes. Unless spatial relations change,
the scene graphs remain topologically the same. The only
changes in the graph structures are the node positions or the

Fig. 2. Three different real action types. (a) Original images from the
Moving Object action. (b) Respective image segments. (c) Semantic scene
graphs. (d) Original images from the Opening Book action. (e) Respective
image segments. (f) Semantic scene graphs. (g) Original images from the
Making Sandwich action. (h) Respective image segments. (i) Semantic scene
graphs.

edge lengths depending on the object trajectory and speed.
Consequently, any change in the spatial relation between
nodes corresponds to a change in the main structure of the
scene graphs. Therefore, those changes in the graphs can
be employed to define action primitives. Considering this
fact, we apply an exact graph-matching method in order to
extract the main graphs by computing the eigenvalues and
eigenvectors of the adjacency matrices of the graphs [20]. A
change in the eigenvalues or eigenvectors then corresponds to
a structural change of the graph. The whole image sequence
of the sample Moving Object action has 92 frames, however,
after extracting the main graphs, only 5 frames are left, each
defining a single action primitive (see Fig. 3(c)).

Following the extraction of the main graphs, we analyze
the spatial relations between each pair of nodes in the main
graphs. We denote the spatial relations by ρi,j in which i and
j are the nodes of interest. Note that the spatial relations are
symmetric, i.e. ρi,j = ρj,i.

Possible spatial relations of each node pair are absence
(A), no connection (N), overlapping (O), and touching (T).
We define those relations by calculating the number of edges
of both currently considered nodes i and j in each main
graph. As an example, all possible spatial relations between



Fig. 3. Simple example of the Moving Object action (sample action 1). (a)
Original images. (b) Respective image segments. (c) Semantic scene graphs.
(d) Event table.

the black object and yellow vessel are illustrated in Fig. 4.
Since those objects are represented by graph nodes 4 and 2,
we write the relation as ρ4,2. The relation absence means
that one of the considered nodes is not observed in the
scene, i.e. the black object node 4 does not exist in the
graph (see Fig. 4(a)). In the case of no connection, the
considered nodes have no edge between them (see Fig. 4(b)).
In the overlapping relation one of the considered nodes is
completely surrounded by the other node. Therefore, the
surrounded node has only one edge (see Fig. 4(c)). The
touching relation represents the situation in which segments
touch each other and both considered nodes have more than
one edge (see Fig. 4(d)). More complex spatial relations
between nodes are currently not considered but could be
included in the future.

The total number of spatial relations is defined as

ρtotal =
n−1∑
i=1

(n− i) , (2)

where n is the total number of objects. For the sample

Fig. 4. Possible spatial relations between black object and yellow vessel
which are represented by graph nodes 4 and 2, respectively. (a) The relation
absence. (b) The relation no connection. (c) The overlapping relation. (d)
The touching relation.

Moving Object action mentioned above we have n = 4
(yellow and red vessels, a black moving object, and a green
background) and therefore ρtotal = 6. Those relations are
ρ2,1, ρ3,1, ρ4,1, ρ3,2, ρ4,2, and ρ4,3.

All existing spatial node relations in the main graphs are
saved in the form of a table where the rows represent spatial
relations between each pair of nodes. Since any change in
the spatial relations represents an event that defines an action,
we refer to this table as an event table (ξ). Fig. 3(d) shows
the event table of the action above. However, the fourth row
of the event table does not hold any change in the sense of
a changing spatial relation since the yellow and red vessels
never move. For this reason, we ignore the fourth row. For
the sake of simplicity, we substitute numbers -1, 0, 1, and 2
for possible spatial relations A, N, O, and T. The final event
table of sample action 1 is given in Table 1.

E. Similarity Measure

So far we showed how to represent a long image sequence
by an event table the dimensions of which are related to
the spatial node relations in the main graphs. Next we will
discuss how to calculate the similarity of two actions. To
this end we created one more sample for the Moving Object
action. Fig. 5 depicts the main graphs of sample action 2 in
which a red rectangular object is moving from a blue vessel
into a yellow vessel following a different trajectory with
different speed as compared to the first sample. Moreover,
the scene contains two more objects which are either sta-
tionary (red round object) or moving randomly (black round
object). Following the same procedure, the event table for
the second sample is calculated and given in Table 2. Note
that even though the second sample contains more objects,
the dimension of the event tables is accidentally the same.
This makes explanations simpler, but, as we will see later,

ρ2,1 2 2 1 1 1
ρ3,1 1 1 1 2 2
ρ4,1 0 2 1 2 0
ρ4,2 1 2 0 0 0
ρ4,3 0 0 0 2 1

TABLE I
EVENT TABLE (ξ1) OF THE FIRST SAMPLE ACTION. SPATIAL RELATIONS

BETWEEN THE NODES OF SAMPLE ACTION 1.

Fig. 5. Different version of the simple Moving Object action (sample action
2). (a) Original images. (b) Respective image segments. (c) Semantic scene
graphs.



ρ2,1 1 1 1 2 2
ρ3,1 0 2 1 2 0
ρ6,1 2 2 1 1 1
ρ3,2 0 0 0 2 1
ρ3,6 1 2 0 0 0

TABLE II
EVENT TABLE (ξ2) OF THE SECOND SAMPLE ACTION. SPATIAL

RELATIONS BETWEEN THE NODES OF SAMPLE ACTION 2.

the dimensions of the event tables are not important and can
even be different between two cases.

Similarity measurement of actions is based on the com-
parison of the event tables. Basically, each row of the first
event table (ξ1) is compared with each row of the second
event table (ξ2) in order to find the highest similarity. (For
event tables with different dimensions, sub-matrices need to
be used.) Considering this simple rule we start determining
the similarity with the first rows of ξ1 and ξ2, giving [ 2
2 1 1 1 ] and [ 1 1 1 2 2 ], respectively. Those lines are
written one below the other. Next, the amount of equal digits
(equal relations!) are counted and divided by total number of
digits. Since only one digit (third digit) out of five digits is
the same, the similarity of those two rows is 20%. Once all
rows have been compared with each other, the determined
similarity values are saved in the form of a table where rows
and columns give the similarity relations between ξ1 and ξ2.
The resulting table is called similarity table (ζ) and shown
in Table 3.

The final similarity measure is determined by calculating
the arithmetic mean value of the highest values in each
row of ζ. Consequently, our two sample actions have 100%
similarity.

In case of having event tables with different dimensions,
we apply a window-based search algorithm to the bigger
table in order to find out a region that has the highest
similarity with the smaller table. In this case, the number
of total search is defined as

stotal = (|r1 − r2|+ 1)(|c1 − c2|+ 1) , (3)

where r1, r2, c1, and c2 are the row and column numbers
of the first and second event tables. The final similarity
measurement is the highest similarity observed during this
total search. If the dimensions are inconsistent in size to
decide which one is smaller (such as r1 < r2 and c1 > c2

PPPPPPξ1

ξ2 ρ2,1 ρ3,1 ρ6,1 ρ3,2 ρ3,6

ρ2,1 20% 40% 100% 20% 20%
ρ3,1 100% 40% 20% 20% 0%
ρ4,1 40% 100% 40% 40% 40%
ρ4,2 20% 40% 20% 20% 100%
ρ4,3 20% 40% 20% 100% 20%

TABLE III
SIMILARITY TABLE (ζ). SIMILARITY VALUES BETWEEN ξ1 AND ξ2 .

or r1 > r2 and c1 < c2), the event table with less columns
is extended by adding the last column until it has the same
number of columns as the bigger table. This sort of operation
does not affect the action content since we do not change
spatial node relations in the temporal domain.

As a result we can now measure how similar the two
actions are and we find 100%. Thus, these actions are of
the same type (“type-similar”).

F. Object Categorization
The similarity table also implicitly encodes the similarity

of the nodes between the two different examples. Intrigu-
ingly, this can be used to extract nodes with the same action
roles in type-similar actions. For this we first list all relations
ρ of both actions with highest individual similarity. For
instance, the relation between nodes 2 and 1 (ρ2,1) in the
first row has a 100% similarity with the relation between
nodes 6 and 1 (ρ6,1) in the third column. Doing this for all
relations, we find the following maximal similarities in ζ:

ρ2,1 ⇐ 100%⇒ ρ6,1

ρ3,1 ⇐ 100%⇒ ρ2,1

ρ4,1 ⇐ 100%⇒ ρ3,1

ρ4,2 ⇐ 100%⇒ ρ3,6

ρ4,3 ⇐ 100%⇒ ρ3,2 .

Those similarity values represent the correspondences be-
tween manipulated nodes in ξ1 and ξ2. In order to determine
these correspondences, we analyze which node number in ξ1
is repeating in conjunction with which node number in ξ2.
We start with node number 1 in ξ1, and obtain

ρ2,1 ⇐ 100%⇒ ρ6,1

ρ3,1 ⇐ 100%⇒ ρ2,1 ⇒ 1 ≈ 1 .
ρ4,1 ⇐ 100%⇒ ρ3,1

While 1 is repeating three times in ξ1, the same node
number 1 in ξ2 is also repeating three times. However, node
numbers 2, 3, and 6 in ξ2 occur only once. Therefore, we
conclude that graph nodes 1 in both ξ1 and ξ2 had the
same roles. In fact, both graph nodes represent the green
background which plays same role in both actions.

We continue the spatial node relation analysis with node
number 2 in ξ1, and obtain

ρ2,1 ⇐ 100%⇒ ρ6,1 ⇒ 2 ≈ 6 .
ρ4,2 ⇐ 100%⇒ ρ3,6

Node number 2 in ξ1 is repeating twice with node number
6 in ξ2. Those graph nodes represent the yellow and blue
vessels within which the moving objects are initially located
and from which they then move away.

For the case of node number 3 in ξ1 we obtain

ρ3,1 ⇐ 100%⇒ ρ2,1 ⇒ 3 ≈ 2 .
ρ4,3 ⇐ 100%⇒ ρ3,2

Node number 3 in ξ1 corresponds to node number 2 in
ξ2 because both of them are repeating twice. Those graph
nodes define the destination vessels for the moving objects.



The last node number 4 in ξ1 is obtained as

ρ4,1 ⇐ 100%⇒ ρ3,1

ρ4,2 ⇐ 100%⇒ ρ3,6 ⇒ 4 ≈ 3 .
ρ4,3 ⇐ 100%⇒ ρ3,2

As node number 4 in ξ1, node number 3 in ξ2 is also
repeating three times. In fact, both graph nodes represent
the moving objects which are the round black object in ξ1
and the rectangular red object in ξ2.

In the case of having a similarity table which has the
same highest value more than once in a column, e.g. having
two times 100% similarity values in the same column, the
object categorization section leads to ambiguous results, i.e.
one object corresponds to two different objects. Since this
sort of correspondence is not allowed in the framework, the
final similarity value is calculated again by taking the second
highest values into account. This way we can get rid of any
kind of mismatching in the object categorization process.

IV. RESULTS WITH REAL IMAGES

We applied our framework to three different real action
types: Moving Object, Opening Book, and Making Sandwich
(see Fig. 2). For each of these actions, we recorded four
movies with different trajectories, speeds, hand positions,
and object shapes. All those twelve movies were recorded
by a stable camera that was focused on the hands and the
manipulated objects.

In Fig. 6, some sample frames for the other versions of all
three action types are shown. In this version of the Moving
Object action a hand is appearing in the scene, taking an
apple from a plate, and leaving the scene (see Fig. 6(a)). The
other version of the Opening Book action type represents a
scenario in which a hand is closing a book (see Fig. 6(b)).
In another version of the Making Sandwich action two hands
are putting pieces of bread and cheese on top of each other
in different order (see Fig. 6(c)).

Sample images for each action type are shown in Fig. 7(a-
c) to give an impression of the level of complexity, i.e.
amount of texture, reflections, and shadows, of the images
used here.

Event tables of each real test data are compared with each
other. The resulting similarity values are given in Fig. 8.
Each test data has at least 69% similarity with the other
versions of its type-similar action (see close to diagonal). In
general the similarity between type-similar actions is for all

Fig. 6. Different versions of the real action types. (a) Moving Object. (b)
Opening Book. (c) Making Sandwich.

Fig. 7. Sample images taken from each real action type. (a) Moving Object.
(b) Opening Book. (c) Making Sandwich.

Fig. 8. Action-classification results. Similarity values between event tables
of the real test data set.

scenes much bigger than the similarity between non-type-
similar actions, except in one case. For the fourth version of
Making Sandwich and the fourth version of Moving Object
we receive a large similarity of 57%. This may happen in
some cases when action primitives are quite similar and, in
addition, noise in the data leads to a few spurious nodes and
false tracking.

Moreover, the results showed that the manipulated objects
in each action type can be categorized according to their roles
in the actions. Fig. 9 illustrates the categorization results of
objects that performed same roles in different versions of
actions. As an example, the apple and orange are in the same
group since they are being manipulated in the Moving Object
action.

Notwithstanding some remaining problems, the results
shown here clearly demonstrate that it is possible to classify
objects and actions in scenes with limited context without
prior (model) knowledge.

V. DISCUSSION AND FUTURE WORK

We presented a novel algorithm that represents a promising
approach for recognizing actions without requiring prior
object knowledge, and for categorizing objects solely based
on their exhibited role within an action sequence. Our
framework is mainly based on the analysis of object relations
in the spatiotemporal domain. We are aware of the fact that



Fig. 9. Object categorization results. In each action type the manipulated
objects can be detected based on their action roles.

“segment permanence” (i.e., reliable tracking) needs to be
assured without which our method would fail. Clearly on
the computer vision side improvements can be made to better
assure this. This, however, is not the point of this paper. As
far as we see it this is one of the first papers in which the
categorization of object-action relations has become possible
in a model free way. This procedure can thus be entirely
based on the experimentation of the robot (here simulated
by a human). Hence we arrive at a very high sub-symbolic
representational level in a fully grounded way. From there on
the grounded development and the learning of symbols (for
example verbal utterances) which describe actions should
be easier than before and this has been deemed as one of
the major challenges in cognitive robotics. Furthermore, it
should also be possible to “backwards unwrap” the learned
event tables (the OACs) and this way generate an action.
Obviously complex inverse kinematic (and dynamic) prob-
lems need to addressed to arrive at an actual movement
sequence. However, the event graphs specify the fundamental
“breaking points” whenever certain object relations change.
Therefore movement segments between two such breaking
points could be seen as motor primitives. The execution of
such a primitive may then be optimized by whatever means
but one always must assure that its starting point (prior) and
its endpoint (posterior) corresponds to two subsequent entries
in the event table.

The proposed algorithm has been applied to three different
real action sequences of scenes containing limited context.
Each action type had four different versions which differed
in trajectories, speeds, hand positions, and object shapes. The
experimental results showed that the agent can categorize all
three action types by measuring the amount of similarity be-
tween action sequences and also categorize the participating
manipulated objects according to their roles in the actions.

Several extensions of this algorithmic framework will be
pursued in the future (for example 3D-tracking to eliminate
false touching-relations introduced by the 2D-perspective
projection). By using depth information either from stereo or
a real-time depth camera [21] we will assign 2 1

2 attributes
to the segments, which will allow to describe abstract in-
variant 2 1

2 segment relations, e.g. the relative angle between
approximative approximated segment-surface normals.

Furthermore, determining similarity values between each
action makes the whole system computational expensive,
especially if the database contains a lot of training data. In
order to avoid this problem, we plan to construct a template
main-graph model for each kind of action. Template graph
models can be constructed by considering the main graphs
of a scenario which accurately represents the respective
action type. Actions will then be classified by calculating
the similarity values with those template models instead of
with one another. In addition to this, we intend to let the
agent learn the template main-graph models from a training
data set.

In the future, we plan to apply our framework to more
complex and even longer scenes containing high-level con-
text and currently we are working on the disentangling of
a complete “making a breakfast” sequence. Because the
dimensions of the event tables are expected to increase, we
are decomposing these action sequences into action sub-
sequences and analyze each of them separately. We are also
planning to compress the event tables without losing tem-
poral relations. This way we are decreasing the computation
time and can calculate the actual similarity between long
actions containing similar sub-actions in different order. A
parallel implementation of the framework on GPUs for real-
time robotics applications is currently being implemented.

Thus, this study is one of the first to show that it is
indeed possible to treat objects and actions as conjoint
entities as suggested by the abstract idea of object-action
complexes (OACs, [1], [2]). This is the first description of
our new approach and the discussion above shows that it
seems to have high potential. In general this contribution
shows that this complex concept is algorithmically treatable
and therefore we believe that the OAC indeed provides a
promising approach for treating problems involving cause-
effect relations in cognitive robotics.
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Abstract

This paper investigates the use of second-order relations between local and semi-global 3D edge features for object identification
in visual scenes. Relations between 3D features have the inherent property of being pose-invariant, and therefore allow for direct
comparison without knowledge of object pose. We define histograms of relations such as coplanarity, distance, and color difference
between local 3D edge descriptors and semi-global groups thereof, and use them to encode the object structure. Histogram inter-
section is then used to identify a set of low-textured objects that are poorly described by classical feature descriptors. Moreover, the
relation histograms are shown to describe structural properties of the objects, and the histogram similarities between objects reflect
structural similarities between them.

Key words: 3D features, relation histograms, object identification

1. Introduction

After their introduction by Swain and Ballard (1991),
histogram-based approaches have been used in computer vision
for various tasks (see, e.g., Pass and Zabih (1996); Schreiber
(2008); Zhang et al. (2006)) since they are easy to compute,
the computational cost of comparing histograms is small, and
additional visual cues can easily be added to the system as an-
other dimension in the histogram. Histograms have also been
used in the context of object encoding, retrieval and recogni-
tion (see, e.g., Evans et al. (1993); Huet and Hancock (1998);
Saykol et al. (2005); Schiele and Crowley (1996)).

In this work, objects are described as multidimensional his-
tograms of a set of relations between 3D edge features, and be-
tween groups of features. The relations considered cover both
appearance and geometric aspects: they are coplanarity, nor-
mal distance and mean color. Dissimilarity between two ob-
jects can then be viewed as the distance in this relational space,
and thus reflects structural similarities between distinct objects.
This distance is estimated as the intersection between the two
histograms encoding the respective objects.

One common approach to the problem of defining shapes
in terms of descriptors is to use robust local features such as
SIFT (Lowe, 2004). These features rely heavily on texture
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n.pugeault@surrey.ac.uk (Nicolas Pugeault),
Justus.Piater@ULg.ac.be (Justus H. Piater), norbert@mmmi.sdu.dk
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rather than object shape (see, e.g., Mikolajczyk and Schmid
(2005)), whereas the importance of the latter for visual recog-
nition has been shown in many context (see, e.g., Biederman
(1987); Ullman (1996)). As a possible approach to encode the
shape of objects, geometrical and appearance-based visual fea-
ture relations have been successfully used. Vosselman (1992)
discusses relational matching techniques based on graphs. In
Wang et al. (1997), 2D spatial relations are used as features for
object recognition. Similarly, Henricsson (1995) uses geomet-
ric relations such as proximity, cocurvilinearity and symmetry
between contours to describe objects by combining these rela-
tions. In more recent work, Savarese et al. (2006) use correl-
ograms of spatial correlations between visual words for object
recognition.

Relation histograms in 2D have been applied to various tasks
like image retrieval and recognition. Evans et al. (1993) employ
the distribution of pairwise geometric relationships between lo-
cal features as histograms to represent objects. In Huet and
Hancock (1998), two-dimensional histograms of relative angle
and relative position of pairwise attributes for directed segments
are used in the context of image retrieval in 2D. The histogram-
based method proposed by Saykol et al. (2005) utilizes distance,
angle and color histograms in 2D for object-based querying.
Note that all the histogram-based methods mentioned above
that make use of relational space use 2D approaches.

The main novelty of this work is the use of relations between
three-dimensional visual features, reconstructed by, e.g., stere-
opsis. Although 2D relations are easier to extract and are sub-
ject to less uncertainty, some important relations such as, e.g.,
coplanarity or 3D distance are essentially three-dimensional.
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Moreover, we analyze the approach both for local and semi-
global1 visual features with similar relations. Also, because the
histograms are built from both geometric (e.g., coplanarity and
distance) and appearance-based (mean color) relations, they ex-
press both types of information about objects.

The approach is evaluated in the context of object identifi-
cation using a database of 10 objects featuring low amounts
of texture, viewed from 5 different poses each2. The perfor-
mance of the proposed system is evaluated through an exper-
iment where we asked how well relation histograms encode
structural differences and similarities between objects, and how
reliably the same object is identified when viewed in a different
pose. We also evaluated the relative advantages and drawbacks
of histograms built from relations between either local edges or
semi-global visual features.

In general, various aspects of visual information (e.g., color,
edge structures, texture, 2D, 3D, local or global features or fea-
ture relations) can be used as input for high-level tasks such as
object identification. It is likely that top performance can only
be reached by merging these different aspects with additional,
contextual knowledge. However, the focus of this article is to
specifically demonstrate the potential of 3D edge and contour
relations.

In the following section we describe the local and semi-
global features used in this work. After presenting a set of rela-
tions between local features (Section 2.1) and between contours
(Section 2.2), we discuss in Section 3 how relation histograms
are created and used. The experiment that was conducted to
evaluate the performance for both local features and contours is
presented in Section 4. We conclude with a discussion of the
results in Section 4.2 and 5.

2. Visual Representation

In this work, we make use of the visual representation pre-
sented by Krüger et al. (2004) and Pugeault (2008). A cal-
ibrated stereo camera setup is used to create sparse 2D and
3D features, namely multi-modal3 primitives, along image con-
tours. 2D primitives represent a small image patch in terms of
position, orientation, phase and color, and are denoted as

π = (x, θ, φ, (cl, cm, cr)) . (1)

These features are then matched across two stereo views, and
pairs of corresponding 2D features allow the reconstruction of
a 3D equivalent, encoded by the vector

Π = (X,Θ,Φ, (Cl,Cm,Cr)) . (2)

An example is shown in Figure 1 which illustrates what kind of
information exists on different levels of the representation. A
stereo image pair (Figure 1 (a)) is used to create filter responses

1A composition of local features
2This dataset is available at http://www.mip.sdu.dk/covig/histogram.html, and

contains the required calibration parameters and stereo image pairs for every
object.

3That is, including different visual modalities such as stereo and color.

(Figure 1 (b)) which then give rise to the multi-modal 2D prim-
itives (Figure 1 (c)).

These 2D features are grouped together by using the percep-
tual organization scheme presented by Pugeault et al. (2006)
to create 2D contours (Figure 1 (d)). Local 3D features (Fig-
ure 1 (e)) are reconstructed from the matching 2D features and
are then grouped together to create 3D contours. Note that
2D primitives cover an image patch and 3D primitives cover
a volume in space. The primitives divide these patches into
two halves, denoted left and right relatively to their orientation.
Therefore, for every 2D and 3D primitive, color is defined as
left, middle and right color.

In the following, primitives will denote local 3D primitives,
and contours will denote semi-global 3D contours, unless spec-
ified otherwise.

2.1. Relations between Local Features
The sparse and symbolic nature of the primitives allows for

an easy definition of relevant spatial relations in 2D and 3D.
In this section, relations between local 3D primitives are pre-
sented.
Normal Distance: Because the primitives locally encode con-
tours, the Euclidean distance would not accurately capture the
distance between two features. Instead, we define the normal
distance as the distance between the line described by the posi-
tion X and orientation Θ of one feature and the position of the
other feature. The normal distance between two primitives Πi

andΠ j is taken to be infinite ifΠ j is outside the cylindrical vol-
ume surroundingΠi (see Figure 2 (a)), and is otherwise defined
as the distance between Π j and the line through the location of
Πi parallel to the orientation vector Θ of Πi.
Cocolority: Two primitives are defined to be cocolor if their
parts that face each other have similar color. We define the
cocolority (see Figure 2 (b)) of two 2D primitives πi and π j as:

coc(πi, π j) = dc (ci, c j), (3)

where ci and c j are the CIE Lab representation of the colors of
the parts of the primitives πi and π j that face each other, and
dc(ci, c j) is the CIE 1994 color difference (see Hunt (1998))
between ci and c j. Cocolority of two 3D primitives is computed
using their 2D projections.

The cocolority relation between pairs of features for two ob-
jects with different colors may give similar results although the
actual color of the features are different; for example, color
difference in rgb space between gray (0.5,0.5,0.5) and black
(0,0,0) is same as the color difference between gray and white
(1,1,1). Therefore, instead of using cocolority value as a rela-
tion, we use (ci + c j)/2 as the mean color of two primitives and
use cocolority to estimate how reliable the mean color is.
Coplanarity: The coplanarity relation (see Figure 2 (c)) be-
tween two primitives Πi and Π j is defined as:

cop (Πi,Π j) =
Θ j × Vi j

|Θ j × Vi j|
•

Θi × Vi j

|Θi × Vi j|
, (4)

where Vi j is the vector connecting the two primitives’ positions,
× is the vector (cross) product, and • is the inner product.

2



Figure 1: An overview of the visual representation. (a) Stereo image pair, (b) Filter responses, (c) 2D primitives, (d) 2D contours, (e) 3D primitives from two
different viewpoints.

a)

b)

c)

Figure 2: Illustration of relations between primitives. (a) Normal distance. (b)
Cocolority. (c) Coplanarity.

2.2. 3D Contours and Their Relations
Collinear and similar primitives are linked together to form

structures denoted as multi-modal contours that contain not
only geometrical but also appearance information. The multi-
modality of contours (e.g., left, middle and right color) orig-
inates from the local primitives from which the contours are
computed. The geometrical and visual smoothness of 3D con-
tours give rise to relations between them. Since contours rep-
resent larger portions of scenes than primitives, contours and
their relations can give a more global insight about the scene.
The perceptual relations between 3D contours that are used in
this work can be summarized as follows:
Normal Distance: The normal distance between two 3D con-
tours is defined by the distance between one contour’s centroid
and the 3D line defined by the other’s centroid and first princi-
pal component direction4. Therefore, the distance between the
ith and jth contours in the scene is defined as

|wi − (wi · ui)ui| + |w j − (w j · u j)u j|

2
, (5)

4The eigen-vector of the highest eigen-value in PCA

where wi = (k j − ki), w j = (ki − k j), ki is the centroid, and
ui is the first principal component of the ith contour. Note that
both terms of the numerator in Equation 5 are the point-to-line
distance formula. An example is shown in Figure 3 (c).

Cocolority: The mean color of a contour is defined in CIE Lab
color space as the average of L, a and b components of the
color of the primitives that are part of the contour. Since the
primitives have left, right and middle colors, every contour has
mean left, right and middle colors as well. Cocolority of two
contours is defined as the color difference (see Equation 3) be-
tween the mean colors on the contours’ sides that are facing
each other. For example, contours satisfying the cocolority re-
lation for a selected contour are presented in Figure 3 (d). In a
fashion similar to the primitives’ cocolority definition, a mean
color is calculated for the contours’ sides that are facing each
other. Cocolority is then used to estimate the reliability of the
mean color.

Coplanarity: Coplanarity between two contours is inversely
proportional to their distance to a common plane. This calcu-
lation employs a plane fitting algorithm based on renormaliza-
tion (Kanazawa and Kanatani, 1995) that takes the uncertainty
of the data into account. The coplanarity between the ith and jth

contours in the scene is defined as

1
N

N∑
k=0

(pk
i )T (Λk

i )−1(pk
i ) +

1
M

M∑
l=0

(pl
j)

T (Λl
j)
−1(pl

j), (6)

where N and M are the numbers of primitives in ith and jth con-
tours respectively, pk

i = (xk
i − x̂k

i ), Λk
i is the uncertainty matrix

of the kth feature (Pugeault et al., 2008) in the ith contour, xk
i is

its position vector, and x̂k
i is the point closest to xk

i on the plane
that has been fit to feature locations of the ith and jth contours
by renormalization. An example is shown in Figure 3 (b).
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Figure 3: Illustration of 3D relations. (a) 3D contours of the object in Figure
1(a). A selected contour is marked in grey. (b) Contours coplanar to the se-
lected contour with maximum Mahalanobis distance of 2 are shown in grey. (c)
Contours at a maximum distance of 30 mm to the selected contour are shown in
grey. (d) Contours that have a maximum color difference of 10 to the selected
contour are shown in grey.

3. Object Structure Encoding via Relation Histograms

Since the geometrical structure of an object is independent of
the pose in 3D, we make use of relations between 3D visual fea-
tures that were discussed in Section 2. Objects are encoded as
relation histograms where the axes are coplanarity, normal dis-
tance, and mean (L,a,b) components (see Section 2.1). Since
the color is encoded with three components, the relation his-
tograms are 5-dimensional. Due to the fact that the relations
are defined for both local and semi-global features, we can cre-
ate both local and semi-global relation histograms for the same
object. Note that, departing from the conventional relation his-
togram approaches, we use not only geometrical (coplanarity
and normal distance) but also appearance-based (components
of the mean color) relations. The idea behind the selection of
these axes is to split objects into parts that are both geomet-
rically and visually similar. Therefore, instead of calculating
the histograms from every feature pair, only cocolor pairs are
used. An example histogram created from primitive relations is
shown in Figure 4. Since we cannot display 5-dimensional his-
tograms, in this example gray-scale mean color between primi-
tive pairs is displayed instead of CIE Lab mean color.

The similarity between two histograms is calculated using a
histogram intersection technique introduced by Swain and Bal-
lard (1991). The intersection between normalized histograms

normal distance

Figure 4: A sample 3-dimensional histogram (top) of primitive relations and
the primitives that created specific bins of the histogram (bottom). The blobs
represent the locations of histogram bins. Their brightness and size are propor-
tional to the value stored in the bins (a high count is represented as a big and
bright blob).

H1 and H2 can be formulated as

D(H1,H2) =

n∑
i=1

min(H1(i),H2(i)), (7)

where n is the total number of bins, and H j(i) is the value stored
in the ith bin of the jth histogram. For normalized histograms, a
perfect match results in 1 and a total mismatch results in 0.

4. Identification by Relation Histograms

Once the object structure is encoded as a relation histogram,
the similarity of two objects can be measured by histogram in-
tersection as discussed in Section 3. In this section, an iden-
tification methodology based on 5-dimensional relation his-
tograms is discussed for the objects in Figure 5.

The main idea is to encode objects as histograms of copla-
narity, normal distance and mean CIE Lab color of the facing
features, and to use histogram intersection to measure the sim-
ilarity between histograms. We applied the method on a vari-
ety of objects using relation histograms of both local and semi-
global features. Since histogram techniques rely on statistical
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Figure 5: Objects used in the experiments.

variation in input data, it is important to have a large number of
relations defining the object. Therefore, we restricted the size
of semi-global features to a maximum of 10 local features to
have fewer semi-global than local features while preserving a
sufficiently large number for statistical stability.

The evaluation is based on a set of 10 objects, viewed in 5
poses each. The objects are toy kitchen utensils, which were
specifically chosen for having little to no texture, making them
difficult to identify using texture-based methods. An experi-
ment was conducted based on different poses of the objects
where 5 different poses of each object in Figure 5 were used
to create two sets of 50 relation histograms, one for primitive
and one for contour relations. Each histogram was then com-
pared to every other histogram in the set to find the similarity
between every pose of every object. We conclude the section
with a brief discussion of the experimental results.

4.1. Comparison of Different Poses with Each Other

The experiment was conducted to analyze the discriminative
power of relation histogram intersection for primitives and con-
tours. Five different poses of each object in Figure 5 were used
to create a total of 50 relation histograms, for both primitive
and contour relations (All different poses are shown in Figure
7.). Every two histograms were compared to find the similarity
score between every pose of every object. The results for both
primitives and contours are presented in Figure 6. High values
close to the diagonal in Figure 6 indicate good matches whereas
other high values indicate either bad matches or structural sim-
ilarity between objects. For example, all poses of the ‘basket’
object are found to be similar to all poses of the ‘rack’ object,
for both primitives and contours. On the other hand, the rela-
tion histograms of the ‘knife’ object responded weakly to every
object in the experiment.

Figure 7: All different poses of the objects used in the experiment.

For every pose used in the experiment, similarity results were
sorted in descending order to find the best matches. Since 5
poses were used, for every object and for any pose, ideally the
first 4 matches (excluding itself) are the 4 other poses of the
same object. Therefore, for any object in the experiment the
maximum number of correct matches (i.e., matches between
two poses of the same object) over all poses is 5 × 4 = 20.
Figure 8 presents the number of correct matches ranked in the
best 4 and best 6. When contour relations are used, the mean
(µ) and standard deviation (σ) of the number of correct matches
across objects in the best 4 is 14.1 and 3.96 respectively. The
number of correct matches increases to µ = 15.8 and σ = 3.55
for the best 6 matches. When primitive relations are used, we
obtain µ = 15 and σ = 4.4 for the best 4, and µ = 16.1 and
σ = 4.15 for the best 6. Therefore, although contour-based his-
tograms produce higher similarity values as shown in Figure 6,
primitive-based histogram intersection performs slightly better
in terms of object discrimination (Figure 8).

Up to this point, we evaluated the discriminative power of
relation histograms in terms of how good they encode object
structure for different poses of the same object. Another inter-
esting observation is the evaluation of the best match for every
object, apart from itself. When contour-based histograms are
used, for 50 poses used in the experiment, 46 of them had a
best match with a pose of the same object which leads to 92%
success for the best match. This performance have been found
as 88% for the primitive-based histograms where 44 out of 50
poses had a best match with a pose of the same object.

To further analyze the discriminative power of relation his-
tograms and how well they encode object structure, we reduced
the 50x50 similarity matrices to a dimension of 50 × 2 using
multidimensional scaling (Borg and Groenen, 2005). The re-
sults are plotted in Figure 9. There, both primitive- and contour-
based relation histograms encode appearance-based (e.g., small
distance between ‘spatula’ and ‘red spoon’ clusters) as well as
structural (e.g., small distance between ‘pan’ and ‘plate’ clus-
ters, ‘red spoon’ and ‘blue spoon’ clusters) information suc-
cessfully. Also, the high degree of similarity between objects
in Figure 6 (e.g., ‘basket’ and ‘rack’) appears in Figure 9 as
well as the low degree of similarity (e.g., very large spread of
the ‘knife’ cluster due to its simple structure which makes it
similar to every other object).

Figure 8: Number of correct matches in best 4 and 6 matches for the matrices
in Figure 6. Each label in the graphs covers 5 poses.

Note that for n visual features we need to calculate n(n−1)/2
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Figure 6: Similarity scores between 5 different poses of the 10 objects in Figure 5. Each small object figure on the axes illustrates only one pose out of 5. All the
different poses can be seen in Figure 7.

Using Contour Relations Using Primitive Relations

Figure 9: Similarity maps between different poses for primitives and contours.

relations. Therefore, compared to contour-based histograms,
the high number of primitives in primitive-based histograms
causes significant computational overhead (e.g., for a sample
object, the creation of a contour-based histogram took 2 sec-
onds while the primitive-based histogram took 120 seconds).
This overhead could be reduced by using a subset of the primi-
tives, but without knowledge of objects or perceptual organiza-
tion, such subset creation may lead to loss of important infor-
mation.

4.2. Discussion

In the previous experiment, we have tested the quality of ob-
ject structure encoding and identification by using relation his-
tograms. The collection of objects studied was chosen to con-
tain little texture so that the distinction between objects needed
to be mediated by structural considerations rather than feature

matching. The previous experiment has outlined how relation-
histograms encode structural properties of objects and allow
for object identification. In the experiment, multidimensional
scaling revealed the fact that the different poses of most ob-
jects were well clustered in relation space (e.g., ‘pan’, ‘plate’ ),
whereas some others were not (e.g., the ‘knife’). Moreover,
the clusters describing objects sharing structural (e.g., ‘blue
spoon’ and ‘red spoon’) or appearance properties (e.g., ‘pan’
and ‘plate’) generate nearby clusters in relation space. When
looking at histogram similarities, we see that higher similarities
are achieved between different poses of the same objects. The
poor results for the ‘knife’ are explained by the large spread of
the different poses in relation space. The ‘red spoon’ and ‘red
spatula’ are quite similar in terms of both structure and appear-
ance, leading to a difficult distinction between the two.

Note that, the semi-global relations are extensions of rela-
tions between local features and performance comparison be-
tween histograms that are based on local and semi-global rela-
tions is possible. Overall, both contour and primitive-based his-
tograms performed similar in terms of object structure encod-
ing and identification. We demonstrate that although local fea-
tures benefit from the statistical stability due to their numerosity
compared to semi-global features, the latter benefit from more
robust relations and less amount of computational cost.

5. Conclusions

We discussed the use of 3D relation histograms to encode
structural and appearance properties of objects. This was as-
sessed using a collection of low-textured objects, and was
shown to be adequate for the purpose of object identification
under unknown pose. The use of contour (semi-global) rather
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than primitive (local) relation histograms lead to a considerable
reduction of the relational space and therefore of the computa-
tional cost.

In summary, we showed that 3D relations can make a signif-
icant contribution to object identification due to their inherent
invariance under viewpoint transformations. Of course in an
ideal system, such 3D relations only represent one aspect which
needs to be merged with different cues.
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Abstract— In this paper, we address the problem of tactile
exploration and subsequent extraction of grasp hypotheses
for unknown objects with a multi-fingered anthropomorphic
robot hand. We present extensions on our tactile exploration
strategy for unknown objects based on a dynamic potential field
approach resulting in selective exploration in regions of interest.
In the subsequent feature extraction, faces found in the object
model are considered to generate grasp affordances. Candidate
grasps are validated in a four stage filtering pipeline to eliminate
impossible grasps. To evaluate our approach, experiments were
carried out in a detailed physics simulation using models of the
five-finger hand and the test objects.

I. INTRODUCTION

Robotic grasping using multi-fingered hand constitutes a
complex task and introduces challenging problems. For well
known scenes a grasping or other manipulation process
may be pre-programmed when using todays robots. On the
other hand, adaptation of a grasping algorithm to formerly
unknown or only partially known scenes remains a difficult
task, to which different approaches have been investigated.
A classical approach consists in grasp analysis and plan-
ning, based on a geometric scene model. In force based
grasp planning the forces and moments at selected grasping
points are analyzed and matched against a grasp quality
criterion considering e.g. force closure. This approach is
usually independent of the hand kinematics. In contrast mere
geometry based algorithms are tailored to specific gripper
designs, especially in the context of multi-fingered hands.
Comprehensive overviews on grasp planning are given in [1],
[2]. Using grasp planning for previously unknown objects
consequently introduces the difficulty of model building
from sensor data which is delivered by robot perception.
As alternatives to the mere planning approach online control
algorithms driven by tactile information have been devel-
oped, which make use of a priori assumptions on the object
to grasp, and control the grasping process by displacing
robot fingers. Different control goals have been formulated
for grasping convex objects in [3], [4] and later [5], where
contact displacements are calculated in order to minimize a
grasp quality cost function. The function values are computed
using estimation of local surface parameters from haptic
feedback, thus resulting in an online control scheme. A
further extension capable of dealing with concavities on

an object’s surface was presented in [6]. Online grasping
approaches using a discrete set of hand postures or motions
have also been presented [7], [8].
Beside vision based methods tactile exploration may be
used for 3D reconstruction of an unknown object, as tactile
sensing solves some severe limitations of computer vision,
such as sensitivity to illumination and limited perspective.
A reconstructed 3D object model may be used for grasp
planning and execution as shown e.g. in [9].
Single finger tactile exploration strategies for recognizing
polyhedral objects have been presented and evaluated in
simulation, see [10] and [11]. In [12] a method for recon-
structing shape and motion of an unknown convex object
using three sensing fingers is presented. In this approach
friction properties must be known in advance and the surface
is required to be smooth, i.e. it must have no corners or
edges. Further, multiple simultaneous sensor contacts points
are required resulting in additional geometric constraints for
the setup.
In general, previous approaches in robot tactile exploration
for surface reconstruction did not cover the problem of
controlling multi-finger robot hands during the exploration
process. Also, real world constraints such as manipulator
limits or robustness over measurement errors have not been
considered. In [13] we have presented first results on the
application of a dynamic potential field control technique
for guiding a multi-finger robot hand across the surface of
an unknown object and simultaneously building a 3D model
from contact data.
In this paper we extend our approach in tactile exploration
to serve the purpose of extracting grasp affordances for
a previously unknown object. Therefore, we have added
modifications to our exploration strategy which lead to a
homogenous exploration process and prevent sparsely ex-
plored regions in the acquired 3D model. We have added a
grasp planning system based on a comprehensive geometric
reasoning approach as initially reported in [14]. We chose
a geometric reasoning approach here as object modelling
from tactile exploration currently does not deliver the details
required for force analysis and contact modelling, as it is
performed in force-based grasp planners, e.g. [15]. As we
believe that robustness and applicability of tactile exploration



and robotic grasping algorithms depend significantly upon
the deployed hardware configuration, we have evaluated our
approach in the framework of a physical simulator, reflecting
non-neglectable physical effects such as manipulator kine-
matics, joint constraints or contact friction. As in related
approaches we initially limit our scope to the exploration
of static scenes, which means the objects are fixated during
exploration and may not move during interaction, although
we wish later to develop means of pose estimation and
tracking for objects in dynamic scenes.
This paper is organized as follows. In the next section a
short introduction to the potential field technique is given
and the relevant details of the robot model are described.
In Sec. IV-A we present the tactile exploration process and
in Sec. IV-B grasp planning and execution. We give details
on our simulation scenario and exploration results in Sec. V.
Finally, our conclusions and outlook on our future work may
be found in Sec. VI.

II. POTENTIAL FIELD CONTROL

Artificial potential fields have originally been introduced for
the purpose of on-line collision avoidance in the context
of robot path planning [16]. In the original approach, real-
time efficiency was emphasized over obtaining a complete
planner. The basic idea is that the robot behaves like a
particle influenced in motion by a force field. The field is
generated by artificial potentials Φi, where obstacles are
represented as repulsive potentials Φr(x) > 0 and goal
regions are represented as attractive potentials Φa(x) < 0.
The superposition property allows to combine potentials in
an additive manner,

Φ(x) =
∑
i

Φr,i(x) +
∑
j

Φa,j(x) .

The force vector field or potential field F , which influences
a Robot Control Point (RCP) at position x is defined as

F = −∇Φ(x) .

A major drawback of potential fields is the existence of local
minima outside the goal configurations in which the imagi-
nary force exerted on an RCP is zero. By applying harmonic
potential functions it is possible to construct potential fields
without spurious local minima for point-like robots. This is
not the case with robots that can not be approximated by
a point, e.g. a manipulator arm. These are likely to exhibit
structural local minima which need to be treated by dedicated
escaping strategies [17].

III. ROBOT HAND KINEMATICS, CONTROL AND SENSORS

For exploration and grasping we consider a setup comprising
a 6-DoF manipulator arm with a five finger robot hand
attached to its Tool Center Point (TCP). The manipulator
arm was modelled according to the Mitsubishi RM-501 five
axis small-scale industrial manipulator, which is currently
used as a research platform for dexterous haptic exploration
in our lab. The model was augmented with a sixth DoF
before the TCP to provide a larger configuration space. In

Fig. 1. Kinematics of the robot hand with joint axes, contact sensor
locations (grey shaded) with assigned RCPs (black dots) and the TCP.

our exploration control scheme we apply controller outputs
to a set of five RCPs, located at the fingertips of the robot
hand and to the TCP of the manipulator. The kinematic
model of the robot hand is shown in Fig. 1. The hand model
provides nine degrees of freedom and is modelled according
to the FRH-4 anthropomorphic robot hand presented in [18].
During haptic exploration we are interested in controlling

the velocity vectors of the RCP’s, which is a different task
compared to trajectory control. In trajectory control the end-
effector is commanded to follow a desired trajectory with the
motion control goal of asymptotic tracking. Yet, the given
exploration task does not induce specific trajectories due
to the uncertainty in the environment. In our approach we
compute the velocity vector applied to an RCP directly from
the dynamic potential field, which guides the exploration
process. In order to evaluate our concept in a physics
simulation environment it was not required to develop a
solution to the multipoint end effector inverse kinematic
problem. Instead we chose to take advantage of the physical
model of the robot system and directly specify velocity
vectors to the RCPs by using a virtual actuator which is
commonly available in physics simulation frameworks. The
joint angles are then determined by solving the constrained
rigid body system and a stable and consistent configuration
of the robot hand is maintained. In general, this approach is
known as Virtual Model Control (VMC), which is described
in detail in [19]. In our case we specify joint constraints
and joint friction for the robot model for achieving an
appropriate force distribution over the joint serial paths,
while we do not model a compliant behavior. The physics
simulation is solved by using the Inventor Physics Modeling
API (IPSA) which was introduced in [20].
We also make use of the dynamic potential field concept
during initialization and grasp execution by placing attractive
sources at desired target locations.
For haptic exploration and contact sensing during grasping,
tactile sensors are required which we have modelled in our
physics simulation. Of course the simulation environment
itself may be regarded as omniscient and therefore it is



Fig. 2. Overview tactile exploration module.

possible to query all contact locations and force vectors
during the interaction of modelled physical bodies. We have
restricted contact sensing to dedicated sensor areas which
cover the fingertips and the palm of the robot hand, see also
Fig. 1. Further, we did not consider the contact force vector
but only the contact location on the sensor area to provide
a more realistic sensor model. This complies with current
tactile sensor technology which in general can not provide
both types of information. It is also possible to model more
specific sensor characteristics such as a certain resolution in
contact location or contact force tresholding, which we did
not yet consider in our experiments.

IV. EXPLORATION AND GRASPING SYSTEM

The goal of our work is a system enabling a robot with a
multi-fingered hand to explore an unknown object using tac-
tile sensing and subsequentially find suitable grasps. There-
fore, our system comprises a module for tactile exploration
as depicted in Fig. 2. In the following we will describe
the exploration and grasp planning process and transition
between both modes of operation. Tactile exploration is
executed in closed-loop and online in simulation. In contrast,
the extraction of grasp affordances is an offline planning
process executed subsequently to exploration. Please note
that major details of the dextrous tactile exploration process
have been reported in [13]. Therefore we will summarize the
basic concept and point out the improvements to the original
algorithm.

A. Dexterous tactile exploration
As a prerequisite the system requires a rough initial estimate
about the objects position, orientation and dimension. In
simulation we introduce this information to the system,
while this information will be provided by a stereo camera
system in the real application. From this information an
initial potential field containing only attractive sources is
constructed. The trajectories for the RCPs are continuously
calculated from the field gradient, while contact point lo-
cations and normals are sensed and stored as oriented 3D

point set. The normal vectors are estimated by averaging the
finger sensor orientations within a spherical neighborhood
around a contact point. The RCP trajectories are constrained
depending on the contact state of the sensor associated with
each RCP, which aims to produce tangential motion during
contact.
The potential field is updated from the tactile sensor infor-
mation as follows. If a contact is detected, a repelling source
is inserted at the corresponding location in the potential field.
Otherwise, if no contact is found in the circumference of an
attractive source, this source becomes deleted from the field.
The robot system is likely to reach structural minima during
potential field motion. We therefore introduced a recon-
figuration observer which detects when the TCP velocity
and the mean velocity of all RCPs fall below predefined
minimum velocity values. This situation leads to a so called
small reconfiguration which is performed by temporarily
inverting the attractive sources to repulsive sources. This
forces the robot into a new configuration from which pre-
viously unexplored goal regions may be explored. As this
method is not guaranteed to be free of limit cycles we
further perform a large reconfiguration if subsequent small
reconfigurations remain ineffective, i.e. the robot does not
escape the structural minimum. During a large configuration
the robot is moved to its initial configuration.
Our approach to extract grasp affordances relies on iden-
tifying suitable opposite and parallel faces for grasping.
Therefore, we needed to improve the tactile exploration
process as described above to explore the object surface
in a dense scheme and prevent sparsely explored regions.
The faces become extracted after applying a triangulation
algorithm [21] upon the acquired 3D point set. Triangulation
naturally generates large polygons in regions with a low
contact point count. We use this property to introduce new
attractive sources and guide the exploration process to fill
the contact information gaps. Within fixed time step intervals
we execute a full triangulation of the point cloud and rank
the calculated faces by their size of area. We then add an
attractive source at the centers of the ten largest faces. This



leads to preferred exploration of sparsely explored regions,
i.e. regions that need further exploration, and conseqently to
a more reliable estimate for the objects surface.
We apply a similar scheme to isolated contact points, i.e.
contacts that have no further contact points in their imme-
diate neighborhood. We surround these by eight cubically
arranged attractive charges. This leads to the effect that once
an isolated contact is added, the according RCP now explores
its neighborhood instead of being repelled to a more distant
unexplored region.

B. Grasping Phase

As an exemplary application for our exploration procedure
we have implemented a method for identifying grasp affor-
dances from the oriented point set.
We did not choose a traditional force-based grasp planning
algorithm as this would require to calculate a triangulated
geometric object model from the 3D point set. The point
set delivered by tactile exploration is inherently sparse and
irregular and we found that most triangulation algorithms
would fail to produce results in a usable way. Instead we
found that extraction of local features from the point set is
more robust than triangulation. We therefore chose a subset
of a geometric reasoning approach as proposed in [14] in
order to compute grasp affordances based on the acquired
object information.

1) Extraction of grasping features: A grasp affordance
contains a pair of object features from which the grasping
points are determined in subsequent steps. In general, planar
faces, edges and vertices of a polygonal object representation
may be used as object features. We only consider planar faces
in our implementation, as estimation and extraction of planar
faces from the given 3D point set is much more reliable
than that of edges or vertices. Therefore, we investigate the
oriented 3D point set for neighboured contact points with
similar normal vectors. Using a region growing method the
contact points in adequate dense regions are assigned to
faces. The original method is designed for parallel robot grip-
pers therefore the grasp affordances found are consequently
of a parallel type with opposing planar faces for grasping.
We apply a mapping scheme as described below in Sec. IV-
B.3 to compute the five finger tip target locations for the
robot hand within each face.

2) Geometric feature filters: Initially every possible face
pairing is considered as a potential grasp affordance. In a
sequential geometric filtering process all grasps unlikely
to be executed successfully with the given robot hand are
eliminated from the set of all pairings. The filter parameters
are chosen for the FRH-4 hand. We use a four stage filtering
pipeline in our approach. The results of the filter stages
are summed up to a score for each grasp affordance. Each
filter is designed to return a value of 0 when disqualifying
a pairing and value 1 ≤ o ≤ 1.1 for accepting a pairing. As
only grasp affordances with filter score ≥ 4 are considered
valid this automatically implies that valid grasps have to
pass all filter stages successfully.

• Parallelism: This filter tests the two faces for paral-
lelism. Let ~n1 and ~n2 be the normal vectors of the two
faces f1 and f2, φ the angle between ~n1 and ~n2 and
φmax the maximum angle for acceptance. The output o
of the filter is:

o =

{
0, if φ > φmax

1 + (φmax−φ)
φmax

· 0.1, otherwise.

• Minimum Face Size: This filter tests the two faces for
adequate size of area. Let a1 and a2 be the areas of the
faces f1 and f2. The minimum area for acceptance is
amin , ka is a normalization factor. Then the output o
of this filter is:

o =

{
0, if (a1 < amin) ∨ (a2 < amin)
1 + min(min( a1

ka
, a2
ka

), 0.1), otherwise.

• Mutual Visibility: With this filter the two faces are
projected into the grasping plane gp, which is the plane
with the mean normal vector ~ngp situated in the middle
of the two faces f1 and f2. So let f1↓gp and f2↓gp
be the projections of f1 and f2 onto gp. Then, aint is
the intersection area of f1↓gp and f2↓gp. The minimum
intersection area for acceptance is amin , kmv is a
normalization factor. The filter’s output is:

o =

{
0, if aint < amin

1 + min(aint

kmv
, 0.1), otherwise.

• Face Distance: The last filter incorporates the character-
istics of the used manipulator tool, i.e. the robot hand.
The filter checks if the robot hands spreading capability
matches the distance of the faces. Let d be the distance
between the centers of the faces f1 and f2, dmin and
dmax are the minimum respectively maximum admitted
distance values. Then the filters output is

o =

{
0, For d /∈ [dmin, dmax]
1, otherwise.

3) Grasp execution: The grasp affordance with the
highest score is used as the candidate for grasp execution.
In a first step we compute the grasping position ~ptcp,a of
the TCP and the grasping approach direction as depicted in
Fig. 3.

Initially we estimate the centers ~c1, ~c2 of the two faces f1, f2
as the centers of gravity of all contact points assigned to each
face. From this we determine the center point ~gp = ~c1+~c2

2
on the line connecting the centers of the two faces. Then we
analyse the first principle component ~pc of the acquired 3D
point cloud and calculate the grasping position as

~ptcp,a = ~gp+ (~ngp × ~pc) · d,

where d is a distance which considers the fingers length of
the robot hand. The cross product (~ngp × ~pc) becomes the
approach direction. We only consider grasping the object
from top. Therefore, in the case the coordinate ~ptcp,a is below
the object to grasp, we mirror its location across the center



Fig. 3. Calculation of the grasp center point and approach direction.

between c1 and c2 and along the approach direction to a
location above the object. Clearly, we make an assumption
about the object’s extension here. From the face pair of
the grasp affordance finger tip target locations need to
be computed. This is achieved by the following mapping
scheme.
The target for the thumb ~pthumb,a is set to be the center
of the smaller of the two faces. We choose target locations
~pindex,a, ~pmiddle,a, ~pring,a and ~ppinkie,a for the opponent
fingers around the center and in the plane of the larger
of the two faces. The arrangement is chosen, so that it is
perpendicular to the approach direction in the plane of target
face. If the target location of ring finger or pinkie is not
situated within the face area the fingers will not be used
for grasping. This way the number fingers involved during
grasping is automatically adapted.
Motion execution starts with the hand in an initial pose,
as it is always reached after a large reconfiguration. From
here we apply the potential field control to the RCPs and
the TCP. Unlike during the exploration phase, the TCP and
the RCPs share the set of repulsive potential sources while
having individual attractive potential sources as mentioned
above. Repulsive sources located in the target planes become
deleted.
As long as the TCP is distant from its target ~ptcp,a the
potential field velocity control is only applied to the TCP
while the finger joints remain open via direct joint control.
When the TCP is close to its target we additionally apply the
potential field control to the RCPs. If an RCP is not in use
because the finger is not involved in grasping, the associated
finger joints are still kept open. Further, the palm normal
~n is aligned towards ~gp by controlling forces acting on the
hand’s pitch and roll DoFs.
If the RCPs in use have approached the finger target loca-
tions, the fingers are closed and the corresponding sensors
are checked for contact. Once all assigned RCP sensors are
in contact with the object, potential field control is turned off
and the finger joints are closed directly. The virtual fixture of
the object then becomes disabled in the simulation and the
robot arm moves back to its initial position with the object
grasped and lifted.

V. SIMULATION RESULTS

We evaluated our exploration and grasping system in several
virtual scenes using our physics simulator with standard earth
gravity gN = 9.81 applied. For contacts Coulomb friction
with a friction coeefficient µ = 0.5 is considered. The virtual
scenes were set up with different rigid objects of suitable size
for grasping by the hand: a sphere, a telephone receiver and
a rabbit. The objects are placed approximately in the center
of the robots workspace. All objects are fixated floating
above the simulators virtual ground to avoid interference,
as we currently do not differ between contact between the
object of interest and any other obstacle in the workspace.
As described in Sec. IV-A the cubical bounding box of
the object is computed from position and space occupancy
estimates and used to initialize the exploration potential field.
Grasp affordances are extracted after a fixed number of 2000
control time steps, whereby each control time step comprises
ten simulation time steps with a temporal resolution of
T = 0.04s.
Fig. 4 shows typical results. Here figures in column (c) show
the 6 best candidate faces for grasping. The color indicates
score ranking in following order: red, green, blue, magenta,
cyan, yellow. Black dots indicate the center of a face, which
is calculated as mean value of all points in the face. Colored
lines connect corresponding centers of corresponding faces.
In colum (d) the grasp affordance with the highest score
is shown. Purple dots indicate grasping points for index,
middle, ring and pinkie finger. Ring and pinkie grasping
points are only plotted if they are used. The red dot marks
the location of the attractive potential source for the TCP
at start of the approaching phase. Naturally, the algorithm
performs worse with objects exposing curved regions as the
algorithm searches for planar faces. Therefore, only one
grasp affordance was found for the sphere in the given
exploration interval. The exploration of the rabbit shows
similar results. Still, successful grasps can be performed with
the grasp affordances identified.
In contrast, several affordances could be identified with the
model of the telephone receiver consisting of large polygons.
In general, the number of found grasp affordances increases
with exploration time. The video accompanying this paper
shows examples of tactile exploration and grasp execution
for the rabbit.
Beside experiments with different objects we also inves-
tigated performance of the system with objects placed at
different positions and orientations in the workspace. For
the experiments a grasp is considered successful if the
manipulator can grasp and lift the object in simulation.
We believe this is still a good approximation for reality as
the simulator only calculates with rigid body dynamics and
assumes point contacts. In reality such a robot system would
be equipped with deformable rubber finger tips which will
provide a significant larger contact area leading to higher
tangential forces. Therefore we assume that a real robot
system could execute the simulated successful grasps.
In a first experiment we placed the sphere, which is naturally



(a) (b) (c) (d)

Fig. 4. Typical simulation results from top to bottom: Sphere, telephone receiver, rabbit. Column (a) shows a virtual scene snapshot during exploration,(b)
final point cloud, (c) grasp affordances, (d) best grasp and grasping points.

(a) Sphere at different distances (b) Telephone receiver at different orientations

Fig. 5. Number of identified grasp affordances. Blue: successful grasp execution, red: failed grasp execution with best candidate.

invariant to rotations, at different distances ranging from
minimum to maximum reaching distance for the manipulator
arm in the workspace. Fig. 5(a) shows the number of found
grasp affordances after N = 2000 exploration steps. After
generation the grasp affordance with the highest score is
executed as desribed in Sec. IV-B.3. In the figure a red
bar indicates a failed grasp execution, a blue bar indicates
a successful grasp execution, both with the best candidate
grasp applied. The failed grasps may be deduced to the error

between the estimated grasping plane and the local tangential
plane of the sphere in combination with an inappropriate
situation of the sphere within the robots workspace. This
could be improved by increasing the exploration time in
order to collect more contact data points.
In a second experiment we investigated the scheme with the
robot model for sensitivity towards different orientations of
an elongated object as the telephone receiver. Therefore, the
receiver is placed in the scene with different orientations



around the Y-axis (direction of gravity). The initial configu-
ration can be seen in the mid image of Fig. 4(a). The receiver
was situated in the workspace center area of the manipulator
arm. The results are depicted in Fig. 5(b) and indicate that the
receiver provides less features to extract grasp affordances
from with its longer axis pointing toward the manipulator.
The reasons for the failed grasp agree with those from
experiment 1. Note that the receiver is not a symmetric
object, therefore the number of grasping candidates is also
not symmetric over rotation.

VI. CONCLUSIONS

In this paper we have presented a control scheme for tac-
tile exploration and subsequent extraction and execution of
grasp affordances for previously unknown objects using an
anthropomorphic multi-fingered robot hand. Our approach
is based on dynamic potential fields for motion guidance
of the fingers. We have shown that grasp affordances may
be generated from geometric features extracted from the
contact point set resulting from tactile exploration. The
complete control scheme was evaluated in a detailed physics
simulation of the robot system with test objects of different
shape and presented the results of the grasp planner based
on the exploration data. Finally, we tested the best grasp
candidate by executing the grasp within the physics simu-
lation. In further experiments we have reported results for
different object locations and orientations in the manipulator
workspace.
For the future we are working on an extension of the
presented set of geometric filters in order to further improve
the success rate upon grasp execution with our robot hand.
Further we will consider the incorporation of the palm during
grasp execution, which would enable power grasps.
Concluding, we are confident that the dynamic potential field
based approach presented may be used for real world tactile
exploration and grasping with an anthropomorphic robot
hand, as it appears robust enough to autonomously control
interaction of the robot hand with a previously unknown
object using tactile information. We assume that the proposed
scheme is transferable to different manipulator and robot
hand kinematics by adapting filter parameters, number of
RCPs and RCP locations. We further plan to investigate
possibilities of combination with exploration methods based
on sensors of different modalities than haptics, e.g. vision
based object exploration. The developed control scheme
based on VMC and dynamic potential fields is currently
subject to implementation on our real world robot system
equipped with five-finger hands [22].
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1 Introduction

The aim of this article is to investigate how successful grasps can be synthesized based on previous
grasping experiences and what kind of feature relations are decisive for determining if a grasp will be
successful or not. The general goal is to form a basis which allows us to replace a random exploration
procedure used for learning object specific grasp densities [1] with an empirically grounded selection
process, which is likely to lead to a significant speed up of the grasp density learning process.
We subdivide this problem by first looking at which features trigger grasps that are likely to be
successful. We then explore the effect of forming a new grasp based on transforming a previously
successful grasp on a local and global scale.

To generate grasping hypotheses in vision based robotics, a general approach is to use visual feature
constellations that are likely to trigger successful grasps (see, e.g., [2, 3]). In this work, we used
the approach introduced in [4] as a basis and we evaluated the possibility of generating grasping
hypotheses from previously tried grasps and geometrical properties of visual features they are
associated to. Similar to our approach, grasp prototypes are used to search for good grasps in [5].
Also in [6], a demonstrated grasp is used to grasp similar objects.

1.1 Problem Statement

In this paper we want to address two questions that are closely related:

Q1 What visual feature relations predict if a grasp is likely to be successful?

Q2 How can an existing successful grasp be transformed into a new successful grasp by using a
space of visual features and the relations defined on it.

The two problems are closely related since knowledge about feature-relations and associated grasp
success likelihoods (Q1) can be used in an active exploration process, which uses previously gained
knowledge about concrete grasping experiences.

In mathematical terms the two tasks can be formulated as probability density estimation problems:

Q1 P (Grasp(F1, F2) is successful |Relation(F1, F2) ∈ In)
Q2 P ((T (F1, F2) ∗A1) is successful |Relation(F1, F2) ∈ In ∧A1 is successful)

where F1 and F2 represent two visual features, Grasp(∗, ∗) is a function that computes a grasping
hypothesis based on two features, Relation(∗, ∗) is an n-dimensional function that computes a set
of relations between two features, In is an n-dimensional interval. For Q2 this set of prerequisites
needs to be extended by A1 which represents a grasp connected to F1 (A1 = Grasp(F1)) and
T (F1, F2) : SE(3) 7→ SE(3) is a transformation that transforms one 3D pose into another, where
the concrete transformation is dependent on F1 and F2.

To be more precise, we are interested in the impact of the transformation T on the grasp success.
This transformation can be seen from a local point of view where we are interested how small pose
changes effect the success likelihood or from a more global perspective where we transform a grasp
according to the transformation between two features (denoted F1, F2 up till now).
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Note that since not much can be said about the densities inherent in Q1 and Q2 a priori, non-
parametrized methods (i.e. kernel density estimation (KDE)) are a suitable method for approxi-
mation them.

The complexity of problem Q2 arises from the fact that there is a six-dimensional space (a pose
transformation in SE(3)) that defines how to associate a grasp to a contour. In addition there
is also an up to six–dimensional space of pose transformations between the two visual features
contours. The actual dimensionality depends on the concrete nature of the features but we can
use SE(3) here as an upper bound. Note that F1 does not need to be modeled since it is assumed
to be placed in the origin in some canonical way. Estimating a twelve dimensional density is hard
and requires a large amount of samples. Therefore, we need to reduce the problem leading to a
number of sub-problems. But we first express Q1 more precisely.

The questions Q1 and Q2 can be described in more detail as follows. Q2 will be subdivided into
Q2.1 and Q2.2 to reduce it to feasible subproblems.

Q1 Computing the predictivity of specific relations for successful grasps: This problem
is addressable in a relatively straightforward way. Given two contours F1 and F2, we need to
define a function that defines a concrete grasp Grasp(F1, F2) based on the two contours. For
the work here, we will limit the used relations to coplanarity and co-colority since these have
been used previously in [4] to trigger grasps, and it is expected that coplanar and co-color
contours lead to grasping hypotheses which are likely to be successful.

P (Grasp(F1, F2) is successful | coplanarity(F1, F2) ∈ Ip ∧ co-colority(F1, F2) ∈ Ic),

hence we need to approximate a function depending on coplanarity and co-colority.

Q2.1 Estimating the influence of local position changes: As a first step we investigate the
space that defines how the grasp gets associated to a contour by varying an existing grasp in
a small neighborhood.

P ((T ∗A1) is successful |A1 is successful)

Note that no relations are taken into account in this step and the pose is changed in a rather
limited local area.

Q2.2 Computing the global impact of grasping experiences depending on concrete
relations: In this case, we simplify Q2 by only looking at two meaningful relations. Hence
we look at

P ((T ∗ T ′(F1, F2) ∗A1) is successful |Relation(F1, F2) ∈ I ∧A1 is successful).

In contrast to Q2.1, we need to define an explicit prediction how a grasp at a contour F1

(A1) can be transferred in some canonical way by knowing the transformation between the
contours F1 and F2, which is expressed as T ′(F1, F2) here. Note that another transformation
T is used in this context to represent an additional pose offset as in Q2.1.

1.2 Organization

The rest of the article is organized as follows. In Section 2, the visual representation and the
relational space that we use to trigger grasping actions are briefly introduced. The discussion
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about how tried grasps for specific objects were obtained and adapted for our use (Section 3) is
followed by a description of how grasping hypotheses are calculated based on visual features and
how they are transformed (Section 5). After presenting the experimental results in Section 6 we
conclude with a brief discussion in Section 7.

2 Visual Representation

In this work we make use of a visual representation based on local descriptors called primitives
[7]. They are extracted sparsely along image edges and form a feature vector that contains visual
modalities such as position, orientation, phase and color (π = (x, θ, φ, (cl, cm, cr)) where color of
a patch is defined by left, right and middle color. 2D-primitives are matched across two stereo
views and pairs of corresponding primitives afford the reconstruction of a 3-dimensional equivalent
called 3D-primitive which is encoded by the vector Π = (X,Θ,Φ, (Cl,Cm,Cr)). An overview of
the visual representation and how information is represented in each level is shown in Figure 1.

The 3D primitives are linked according to geometrical and visual good continuation, as described in
[8], to create more global entities that we call contours. These contours are described analytically
as NURBS (Non-uniform Rational B-Splines) [9] approximations of the curves. In the rest of this
work, we use Ci to denote a 3D contour and Ci(t) to denote the NURBS approximation of Ci.

Figure 1: An overview of the visual representation. (a) The hierarchy of the visual representation
and how information is represented in each level. (b) A closer view at 3D primitives and 3D
contours.

Similar to the 3D primitives they are based on, contours also have modalities like position, color
and orientation. Since primitives have left and right colors, a contour has mean left and right
colors as well (see Figure 1(b)). To further characterize a 3D contour, we fit a line by taking the
position uncertainties of the 3D primitives into account (see [10] for details of how to use position
uncertainties for this process). We define the position of a contour (xi) as the projection of its
centroid on to this line, and its orientation (Cv

i ) as the orientation of the fitted line. Note that,
these attributes make it possible to define semantic relations such as co-planarity and distance
between contours.

Within the context of this work, we use five inter-contour relations, namely, coplanarity, co-colority,
normal distance, angle and collinearity. Coplanarity between two contours Ci and Cj (RP (Ci, Cj))
measures the mean angle between the fitted lines of the contours and their common plane. The
distance between the centroid of one contour to the fitted line of the other gives a parallel distance,
which we define as the normal distance (RD(Ci, Cj)). We also use the fitted lines of the contours
to define the angle between them (RA(Ci, Cj)) and to measure how collinear (RL(Ci, Cj)) they are.
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Note that all these relations are defined in 3D and they are geometrical relations. On the other
hand, co-colority is an appearance based relation and it measures the color difference between the
sides of two contours that are facing each other. The formal definitions of the geometrical relations
are:

RP (Ci, Cj) =
π − αi − αj

2
, αi = acos(

n · Cv
i

|n||Cv
i |

), (1)

RD(Ci, Cj) =
|wi − (wi · ui)ui|+ |wj − (wj · uj)uj |

2
, (2)

wi = xj − xi, ui = Cv
i ,

RA(Ci, Cj) = acos

(
Cv

i · Cv
j

|Cv
i ||Cv

j |

)
, (3)

RL(Ci, Cj) = 1− sin
(
βi + βj

2

)
, (4)

βi = acos(γ · Cv
i ), γ = (xj − xi).

3 Grasping Data

Grasps are in this work considered to be grasps with a two-finger gripper and are defined by a 6D
pose consisting of a 3D location w ∈ R3 and a rotation quaternion q ∈ H.

a = {w, q} for w ∈ R3, q ∈ H (5)

In this work, we use accumulated visual representations of objects [11] and associate tried grasps
to this objects to gain knowledge on how these objects can be grasped successfully. For three
objects, an accumulated model as well as a set of evaluated and successful grasps are presented
in Figure 2(b–d). The pose of each grasp is given in the reference frame of the individual object
model. However, the grasps are not directly linked to specific visual features of the object model
as they are created using the representation of a unique scene. The object model has been used to
estimate the pose of the object in the current scene and subsequently to transform the evaluated
actions to the reference frame of the model (see [1] for further details how the grasps have been
recorded). Therefore we determine which contour of the model is closest to a given grasp in terms
of Euclidean distance and create hereby a set of pairs, each consisting of a contour and a grasp.
Grasps that are not close to any contour of the object model are discarded.

Note that these object models along with recorded grasps are suitable for our investigations as
they both offer dense visual representations and provide a large number of tried grasps at various
locations at the object.

4 Kernel Density Estimation

To analyze the experimental results, we have used multi-dimensional histograms. Conventional
histogram methods have inherent problems since they heavily depend on the bin size and location.
For example, if data is mostly accumulated close to bin borders, small deviation in measurements
will cause significant change in the shape of the histogram. To avoid this problem, we choose to
use histograms where data can effect more than one bin. The procedure is illustrated in Figure 3.
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Figure 2: Recorded grasps for three different objects. (a) Figure showing the relationship between
(1) a two finger grasp and (2) the grasp representation used in the rest of this figure and (3) axes
labels. (b–d) Green grasps have been associated to contours, red ones have been discarded as no
contour was sufficiently close.

When an occurrence of 8 is inserted into the conventional histogram in Figure 3(a), it increments
the second bin by 1. If we want each data instance to effect two bins, we can distribute the effect to
the neighboring bins depending on the value of the data instance (see Figure 3(b)). The resultant
histogram is shown in Figure 3(c). Note that, the histogram in Figure 3(c) is a smoother histogram
than the histogram in Figure 3(a) since it distributes the effect of a vote into more than one bin.

5 10 15

1

8

5 10 15

1

8

5 10 15

1

(a) (b) (c)

Figure 3: Smoothing a histogram by distributing the effect of a vote into more than one bin. (a)
A conventional histogram example. (b) The coverage of a data instance if we let a data instance
have a width of two bins. (c) The resultant histogram where a vote has a width of two bins.

5 Feature-Relation Grasp Statistics

To answer Q1, we need to define grasping actions, based on visual features. In Section 5.1, we
discuss a feature-based grasp generation method, which is based on visual 3D contours. In the
context of Q1, we present a method to predict grasps based on a tried action and two 3D contours
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in Section 5.2, and in Section 5.3 we discuss a method to evaluate the quality of a predicted grasp
based on previously tried grasping data.

5.1 Feature-Based Grasp Generation

As mentioned in Section 3, grasps for a two-finger gripper (see Figure 4(a)) are defined through a
3D location (w) and a rotation quaternion (q). A grasp at a certain position Ci(t0) on a contour
Ci is defined by using s second contour Cj :

w = Ci(t0)
rx = C ′i(t0)
rz = n

ry = rz × rx (6)

where C ′i(t0) is the derivative of C ′i(t0) at t0 and n is the normal on the common plane that is
formed by Ci and Cj . rx, ry and rz form together a coordinate system. q is the rotation quaternion
that rotates from this coordinate system into base coordinates.

Figure 4: Grasping with a two-fingered gripper. (a) A grasp (action) is defined by a location and
a orientation. (b) An example action.

5.2 Grasp Transformation

A grasp âj is predicted by transforming a tried grasp ai from its associated contour Ci to Cj . The
new position is obtained directly from the contour Cj , additionally the displacement vdisp of ai

with respect to Ci is applied to the predicted action as well. The orientation of âj is obtained
directly from ai. This leads to the following definition of âj = {wj , qj} given ai = {wi, qi} :

wj = xj + qf vdisp q
∗
f (7)

qj = qf qi (8)
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where qf is the quaternion defining the rotation which aligns Ci and Cj .

Calculating the orientation from ai may not be the best choice under all conditions, as the relation
between the contours is not necessarily sufficient to define this orientation.

As we do not have any preference where on the contour the predicted grasp should be placed, we
sample the contour (illustrated in Figure 5(a)).

Figure 5: Illustration of the transfer of a grasp. The teal grasp to the left has been transferred to
another contour which has been sampled. The resulting grasps are colored brown and the involved
contours are highlighted in red.

In a secondary step, the position of a predicted grasp is varied both in the main direction of the
contour and in the plane defined by the contours orientation and position. This is illustrated in
Figure 9.

Finally the predicted grasps are varied in terms of position. The variation of the position is encoded
with respect to the main direction of the associated contour as well as the plane perpendicular to
the main direction.

Within the context of this work, the grasp transformation shown in this section is only used
for Q2.2. In Q2.1 a discretized local position displacement along the XYZ coordinates (see
Figure 2(a)) is used. For Q2.2 we apply such a position displacement as well, after the grasp
transformation detailed in this section has been used.

5.3 Evaluation of Predicted Grasps

In order to evaluate the predictions, a quality measure is defined based on the Euclidean distance
to the closest tried grasp and the angle of the rotation needed to align the prediction with a tried
grasp. Thus when a predicted grasp matches a tried grasp, it is assumed that it would be successful.
Each grasp is evaluated by comparing it with all tried grasps and using the one resulting in the
highest estimate:

QL (â) = max (1− dist (â, a))∀a ∈ S (9)

dist(ai, aj) = min
(

1, (1− c) min (‖wi − wj‖, 2 · d)
d

+ c
|angle (q∗i · qj)|

π

)
(10)

where QL() is a function that measures the quality of a predicted grasp, S the set of all tried
grasps, d is a distance threshold that encodes the maximum expected distance and c is a weighting
constant whose value is chosen to 0.5 here.
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The symmetry of the gripper is taken into account but omitted here. Further, the Euclidean
distance is allowed to dominate the overall distance measure. This ensures that only nearby tried
grasps have an impact. As it is likely that there always exist a tried grasp with a similar orientation
as the predicted one (e.g. the one tried grasp used to create the prediction) the expressiveness of
the evaluation would otherwise decrease.

6 Results

6.1 Impact of relations on assigned grasps.

In order to address the problem defined in Q1 the grasping mechanism outlined in Section 5.1 is
used to create grasping hypotheses for all combinations of contours. Subsequently, the quality of
each grasping hypothesis for being successful is estimated as outlined in Section 5.3.

The likelihood of a grasping hypothesis for being successful and the value of specific relations
between the contours which have been used to trigger a grasp are used as basis for the histograms
shown in Figure 6.1. To improve the visualization, for each bin the number of grasps that have a
higher likelihood for being successful than some threshold is computed and this amount is indicated
by the color of the bin.
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Figure 6: Results for Q1. Top row shows the amount of good predictions with respect to coplanarity
and co-colority, bottom only for coplanarity. The fourth column is the sum over all objects, giving
each object the same impact.

As mentioned earlier, the relations investigated were co-colority and coplanarity. The results
indicate that the co-colority-relation is problematic when accumulated object representations are
used (this becomes explicit for the the pan). Even though it is unicolored (blue), the co-colority
values range from 0.5 to 1. We assume that this problem is caused by the fact that the color of
the object and the color of the background are not distinguished properly. Furthermore both pan
and knife are close to planar objects. Therefore, only one object, the basket, is providing pairs of
non-coplanar contours. In this respect, it is difficult to judge the importance of the coplanarity
relation, even though results indicate that coplanar contours are more likely to lead to successful
grasps.
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6.2 Local variation of tried grasps

In Q2.1 we are investigating how much a tried grasp can be transformed locally. For this purpose
the position of a tried grasps is varied with respect to the XYZ-axes (illustrated in Figure 7).
Currently only translations have been considered. In the future, also variations of the orientation
will be addressed. For each variation of the grasp, the likelihood for being successful is estimated.
Subsequently the four-tuple consisting of the displacements and the success-likelihood are used
as basis for a histogram. In order to reduce the dimensionality, the histogram is split into five
histograms according to the displacement in the Z-direction (see Figure 8). The displacement
ranges from -40 to 40 mm in the Z-axis, and from 0 to 40 mm in the X- and Y-axes due to
symmetry in the two finger gripper.

Similar to the previous histograms, the color in each bin indicates how many percent of the grasps
in this bin have a higher likelihood for being successful than a threshold.

Figure 7: Illustrating variation of the positions in Q2.1. To increase visibility, the step-size in the
position variation has been increased here.

Figure 8: Results for Q2.1. The Displacement in the Z-axis varies from -40 to +40mm (left to
right).

The results shown in Figure 8 for all three objects combined show that, grasps are more robust
against displacements along their X-axis than their Y- and Z-axis. Yet, more significant results
have been expected as the Z-axis is expected to be aligned (to some degree) with the contours.
One possible reason for this is that a grasp still can be successful even though it is rotated slightly
around it’s approach vector, the Z-axis. Also, if grasps are rotated slightly, their axes are no longer
aligned with the contour and therefore we cannot expect that grasps which have been displaced
along their X-axis still have a high likelihood for being successful. When the orientation is varied
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as well, it will become explicit how much the orientation can be varied. The results that have been
achieved so far indicate that the possible variance of the position resp. orientation should not be
investigated independently.

6.3 Global transformation of grasping experience

We address problem Q2.2 by transforming a grasp from one contour to another as outlined in
Section 5.2. However, we cannot assume that the transformation we apply is suitable in every
situation. Therefore the grasps are varied relative to the contour. Currently only the position is
varied. In the future, also variation of the orientations will be addressed. The position is varied
with respect to the main direction of the contour and the plane perpendicular to the main direction.
This is illustrated in Figure 9.

Figure 9: Illustration of the displacement of a grasp along the main direction of the contour and
in the plane perperndicular to the main direction.

Each contour/action pair can be combined with every other contour to predict a new grasp. We
then estimate the success likelihood for each of these new grasps. For each of these combinations, we
use the relations between the contours, the predicted grasp success and the used position variation
to form a common histogram. In order to decrease the dimensionality, the histogram is divided
into several smaller ones as shown in Figure 10. The color of a bin again shows how many of the
predictions falling into this bin have a likelihood for being successful higher than some threshold.

The two relations which have been investigated in this context are parallelism and normal distance.
The latter is limited to the range from 0 to 250 mm which covers the dimensions of the largest
object used. The results clearly indicate that grasps can not be easily transformed successfully
when the contours have a high normal distance and that parallel contours indicate that grasps can
be transferred. Still the results also indicate that more data is needed in order to cover the space
spanned by the relations.

7 Discussion

We have shown that a tried grasp can be used to trigger another grasp by transforming it both
locally and globally. When the transformation is done in a small neighborhood (local transforma-
tion), the transformation along the axis of the tool which is aligned with the main orientation of a
contour is more successful than transformations in the orthogonal directions. We also showed that,
global transformation of a tried grasp is more likely to be successful under certain inter-contour
relations.

10



Figure 10: Results for transferred grasps that have been displaced along the main direction of the
associated contour and in the plane perpendicular to the main direction. The results are shown
with respect to parallelism and normal distance.
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Abstract 

Conceptual knowledge is acquired through recurrent experiences, by extracting 

statistical regularities at different levels of granularity. At a fine level, patterns of feature co-

occurrence are categorized into concepts. At a coarser level, patterns of concept co-

occurrence are categorized into contexts. We present and test CONCAT, a connectionist 

model that simultaneously learns to categorize concepts and contexts. The model contains 

two hierarchically organized CALM modules (Murre, Phaf, & Wolters; 1992). The first 

module, the Concept Module, categorizes concepts based on co-occurrences between 

features. These concepts are used as input for the second module, the Context Module, which 

categorizes contexts based on concept co-occurrences. Feedback connections from the 

Context Module to the Concept Module send activation from the active context to those 

concepts that frequently occur within this context. We demonstrate that context feedback 

contributes to the successful categorization of input patterns, especially when these patterns 

are degraded or ambiguous. 

 

 

Word count: 148
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Grounded Concept and Context Learning: A Connectionist Approach 

 

People are able to make sense of the world because they possess conceptual 

knowledge. Concepts are mental representations, referring to classes of objects or events in 

the world, which are organized in larger knowledge structures such as scripts and schemata. 

According to Murphy, “concepts are a kind of mental glue, in that they tie our past 

experiences to our present interactions with the world” (Murphy, 2004, p. 1). This quote 

refers to two important aspects of conceptual knowledge. First, we use concepts during our 

interactions with the environment. They enable us to categorize objects, to infer those 

properties of objects that cannot be perceived directly, and to react to objects in an 

appropriate way. For example, we might categorize a small round red object as a yew berry, 

infer that this is a poisonous type of berry, and therefore refrain from eating it. Concepts 

enable us to interpret and organize the continuous stream of perceptual information that 

enters our senses during our interactions with the world. Without concepts, the world would 

be experienced as “one great blooming, buzzing confusion” (James, 1890/1981, p. 464). The 

second aspect addressed by the quote is that conceptual knowledge is gained through 

experience. During repeated interactions with a particular class of objects (e.g., balls), the 

conceptual system extracts the statistical regularities of these experiences and stores them in 

memory to form a mental concept representing that class of objects (e.g., the concept 

BALL 1).  

Most theories of concept learning agree that concepts are formed by extracting the 

regularities that emerge from recurrent experiences (e.g., O’Connor, Cree & McRae, 2009; 

Rogers & McClelland, 2004; Smith, Shoben & Rips, 1974). During interactions with 

different exemplars of a particular category, the conceptual system detects which features are 

invariant across exemplars and are therefore relevant for the category. In order to create a 
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mental concept representing the category, it stores those features in memory, while discarding 

the category-irrelevant (i.e. variant) features and information about the different contexts in 

which exemplars are encountered. These models thus assume that concepts are primarily 

based on bottom-up feature information, and they generally ignore the role of context 

information in conceptual processing (Yeh & Barsalou, 2006).  

However, across many domains of cognition, it has been shown that the context 

profoundly influences conceptual processing and performance (for an overview, see Yeh & 

Barsalou, 2006). The term context has been defined in many different ways, but here we 

follow the definition of Yeh and Barsalou: a context is a region of perceived space, extending 

over some temporal duration. Studies of visual processing have shown that visual recognition 

of objects is influenced by context information (for an overview see Bar, 2004). Objects are 

recognized more accurately when they are seen in a typical context than when they are seen 

in isolation or in an atypical context. For example, Davenport and Potter (2004) showed 

participants photographs containing an object (e.g., a camel, truck, or football player) in front 

of a background setting (e.g., a beach, mountain, desert, or library). Objects and backgrounds 

were recognized better when they were consistent (e.g., a camel in front of a desert scene) 

than when they were inconsistent (e.g., a camel in front of a snowy mountain). Objects are 

also recognized better when they are presented together with a contextually related object 

than with an unrelated object. In a study by Davenport (2007), participants viewed and named 

two objects that were presented in front of a consistent or inconsistent background. The 

foreground objects were named more accurately when they were contextually related (e.g., an 

eskimo and an igloo) than when they were contextually unrelated (e.g., an eskimo and a 

camel). In addition, objects were named more accurately when they appeared in a consistent 

setting than in an inconsistent setting, similar to the findings of Davenport and Potter (2004). 

These effects are not limited to the visual domain. A recent study by Özcan and van Egmond 
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(2009) has shown that sounds of household products (e.g., an electric toothbrush) are 

recognized faster and more accurately when congruent visual context information (e.g., a 

picture of a bathroom) is presented than when incongruent information (e.g., a picture of a 

kitchen) is presented.  

Similar effects occur in language processing. Words are recognized more accurately 

when they are presented in a meaningful sentence than when they are presented in an 

anomalous sentence (Schwanenflugel & Shoben, 1985). Furthermore, meaningful sentences 

can be read and understood even at very high presentation rates of 12 words per second (e.g., 

Potter, Kroll, Yachzel, Carpenter & Sherman, 1986). In contrast, when a sequence of random 

words is presented at that rate, participants can typically recognize and remember only 2 or 3 

words from the sequence (Potter, 1993). Another study shows that semantically related words 

prime each other more strongly when people have read a sentence describing a congruent 

context relative to an incongruent context (Zeelenberg, Pecher, Shiffrin & Raaijmakers, 

2003). For example, the word “sun” primes the word “beach” more strongly if participants 

have first read the sentence “he had a nice tan after a warm day on the beach” than if they 

have read the sentence “children like to play with scoops and buckets on the beach”, while 

the reverse is true for the prime “sand”.   

Context also influences memory performance. In a famous study by Godden and 

Baddeley (1975), participants learned lists of words either underwater or on land, and 

subsequently recalled the words in the same context or in the alternative context. Memory 

was better if the context at recall was the same as the context at encoding. Other studies have 

shown that objects are remembered better when they appear in a coherent scene than when 

they appear in a scrambled scene (Mandler & Parker, 1976; Mandler & Stein, 1974). 

Furthermore, context does not only influence true memories, but false memories as well. For 

example, in a study by Miller and Gazzaniga (1998), participants viewed images depicting 
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typical scenes (e.g., a beach). On a later memory task, they made more false recognition 

errors to items that were contextually congruent with the viewed scenes (e.g., a beach ball) 

than to scene-incongruent items (e.g., a snow scooter). Context effects have also been found 

in many conceptual tasks. For example, Barsalou (1982) demonstrated that mental concepts 

are flexible and that their exact content depends on situational factors such as current goals 

and task demands. In a property-verification task, participants were faster to verify 

contextually relevant properties than contextually irrelevant properties. Finally, context 

information can contribute to the categorization of new objects. A recent study by Chaigneau, 

Barsalou and Zamani (2009) showed that new objects were categorized more accurately 

when situational information was provided than when the objects were presented in isolation. 

In addition, inferences about the objects became more accurate as more situational 

information was presented during categorization.  

Context information thus appears to be very relevant for conceptual processing and 

for mechanisms that rely on conceptual representations. To account for this influence, we 

propose that the conceptual system does not only form mental representations of concepts, 

but of contexts as well. These context representations can be learned in the same way as 

concept representations, by extracting the statistical regularities that emerge from repeated 

experiences. Regularities across experiences can be detected at various temporal and spatial 

scales. At a fine scale, patterns of co-occurrence between sensory-motor features (e.g., <red>, 

<round>, <soft>, <bouncing>) emerge, because features belonging to a particular object tend 

to be grouped in time and space. These patterns of feature co-occurrence can be used to form 

concept representations. At a coarser scale, patterns of co-occurrence between objects 

emerge. Objects are not distributed randomly in the world, but tend to co-occur in time and 

space with other objects, resulting in coherent scenes or contexts. For example, a toaster is 

typically found in a kitchen, and tends to co-occur with other objects that are often found in 
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kitchens, such as ovens, stoves, sinks, pans and fridges. These patterns of co-occurrence 

between objects can be used to form mental representations of contexts. Thus, a context is 

defined as a coherent collection of objects that co-occur within a certain window of time and 

space. For example, a room is defined as a kitchen by the objects that are typically found in 

kitchens (e.g., a stove, sink, toaster, fridge, sideboard, etc.). Contexts can be defined at 

different grain sizes, and they can be hierarchically organized, in the sense that a higher-order 

context (e.g., a house) may be composed of multiple lower-order contexts (e.g., different 

rooms). As Yeh and Barsalou (2005) noted, “a situation can range from a large region of 

space over an extended period of time down to a small region of space for a brief moment. As 

a result, a given stimulus typically exists in a hierarchically organized set of situations across 

many levels of grain size simultaneously. There is not just one situation for a stimulus; 

typically there are many” (pp. 356-357). The idea that a context can be described as a pattern 

of co-occurring objects is not new. For example, Bar (2004) proposed the term ‘context 

frame’ as a representation of a prototypical scene, containing information about the objects 

that are most likely to appear in this scene. Likewise, Tversky, Zacks and Martin (2008) 

argued that scenes (contexts) are characterized by the activities that take place in them and 

the objects that occur in them. These objects are not distributed randomly across a scene, but 

their spatial arrangement is loosely constrained by the scene (see also Bar, 2004). For 

example, in a dining room, chairs are typically grouped around a table, a lamp is hanging 

above the table and food is placed on the table, rather than on the chairs. Although 

informative, this information is not used in our model. For the current purposes, a context is 

defined only as a pattern of co-occurrence between objects, disregarding information about 

their typical spatial arrangements.   

In this paper, we distinguish only two levels of representation, concepts and contexts. 

Concepts are interpreted as object representations, and contexts are interpreted as collections 
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of objects. Following the definition of concepts given above, however, both types of 

representations are actually concepts, in the sense that both refer to a category of objects or 

events in the world. Furthermore, other levels of representation could also be distinguished. 

For example, concepts can also represent features (e.g., RED), object parts (e.g., LEG), 

actions (e.g., THROW) and events (e.g., WEDDING). These concepts differ in the level of 

granularity, and each concept can encompass other concepts. For the sake of parsimony, here 

we distinguish only two levels and give them separate names, although we acknowledge that 

reality is much more complicated than this. Importantly, the model we suggest can easily be 

applied to object configurations, actions, and other events and be extended to capture 

hierarchical relations between these entities. 

If contexts are represented as distributions of concepts, in a symmetrical way, 

concepts can be represented as distributions over contexts. Thus, concepts are based on two 

sources of information: feature-based data, and context-based or distributional data2. With 

respect to the former, we are basing our reasoning on the Theory of Event Coding (TEC: 

Hommel, Müsseler, Aschersleben & Prinz, 2001), which assumes that stimulus and action 

events are cognitively represented in terms of their distal features. Accordingly, we take feature-based information to refer to all the features (also called properties or attributes) of a 

particular category that are acquired through interactions with different exemplars of that 

category. This includes perceptual information from various sensory modalities, referring to 

the category’s typical shape, color, smell, taste, and feel, but also affective information and 

information about the actions afforded by (exemplars of) the given category. The similarity 

between two concepts is partially defined by the degree to which their features overlap. In 

addition to this experiential information, a concept is based on distributional information, 

which refers to the different contexts in which a concept is encountered (see also Barsalou & 

Wiemer-Hastings, 2005). Concepts may occur in a range of different contexts. The similarity 
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between two concepts is therefore also defined by the degree to which they share the same 

contexts.  

Summarizing, we claim that concepts relate to both various features and various 

contexts. Because of the distributed nature of such representations, features and contexts may 

be shared by multiple concepts. Any pair of concepts has a certain degree of feature overlap 

and context overlap, which defines how similar these two concepts are. In addition, concepts 

are not related to features and contexts in an all-or-none way, but in a more graded fashion. 

The strength of association with a particular concept varies across features. While some 

features are concept-defining features that are strongly related to the concept (e.g., <round> 

for BALL), others are more variable and are only weakly related to the concept (e.g., <red> 

for BALL). Reversely, features also vary in the degree to which they are distinctive for a 

particular category. Whereas some features (e.g., <can whinny>) are associated with only one 

category (HORSE) and are thus distinctive, others occur in many concepts (e.g., <made of 

metal>) and are therefore less distinctive. These differences in feature distributions may 

contribute to the organization of conceptual knowledge (McRae, de Sa & Seidenberg, 1997). 

In a parallel manner, concepts are connected to contexts in varying degrees (e.g., Bar & 

Aminoff, 2003). Some concepts are strongly related to a certain context (e.g., a BEDROOM 

typically contains a BED), whereas others are less strongly related to a certain context (e.g., a 

BEDROOM sometimes contains a TELEVISION). Conversely, some concepts are 

constrained to only a few contexts (e.g., a MICROWAVE is frequently found in a KITCHEN 

or an APPLIANCE STORE, but not in many other contexts) whereas other concepts (e.g., a 

BOOK) are distributed over many contexts.  

Because concepts and contexts are connected to each other, they can influence each 

other bidirectionally. Activating a particular concept will lead to activation of the contexts 

that are associated with this concept. In turn, activating a context will prime concepts that are 
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likely to occur within this context. As a result, those concepts can be recognized more easily. 

This explains why visual object recognition is better when an object is presented in a relevant 

context than in isolation or in an irrelevant context (Davenport & Potter, 2004). It also 

explains why the activation of a concept facilitates the recognition of contextually related 

concepts, as has been demonstrated in numerous semantic priming tasks (e.g., Meyer & 

Schvaneveldt, 1972; Neely, 1991). 

In this article we propose that the conceptual system forms not only conceptual 

representations but also contextual representations. These representations are learned in a 

similar way, by extracting the statistical regularities over repeated experiences. Regularities 

can be detected at different temporal and spatial scales. At a small scale, features that co-

occur in time and space are bound into concept representations. At a coarser scale, concepts 

that co-occur in time and space are bound into context representations. Conceptual and 

contextual representations are connected to each other, such that a particular concept will 

activate the contexts in which it frequently appears and reversely, a particular context will 

activate the concepts that are likely to occur within this context. Thus, concept 

representations are based on two sources of information; experiential data, bottom-up 

information about the (sensory, motor, affective, etc.) features that are relevant for interaction 

with a particular category, and distributional data, top-down information about the different 

contexts in which this category is likely to occur. These functional principles are here 

implemented in a connectionist model, named CONCAT, which simultaneously learns to 

categorize concepts and contexts. 
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The Model 

Model Overview, Architecture and Functional Logic 

At the core of this model are two Categorization and Learning Modules (CALM) 

(Murre et al., 1992; see also Murre, 1992). A CALM module is able to perform unsupervised 

categorization of distributed input patterns, in a localist fashion (see also Page, 2000). That is, 

a particular input pattern (or set of similar input patterns) is associated with a unique node in 

the module. CALM modules display two modes of learning, depending on the novelty of the 

input pattern (Graf & Mandler, 1984; Wolters, & Phaf, 1990). When a novel input pattern is 

presented, elaboration learning takes place. An increased learning rate combined with the 

distribution of nonspecific, random activations in the module results in strong competition 

between the uncommitted nodes (those nodes that do not yet represent a pattern). As a result, 

the input pattern is associated with a node that is not yet committed by any other pattern. 

When a familiar input pattern is presented, activation learning takes place. A low learning 

rate and weak competition between nodes result in the activation and strengthening of the 

existing representation. Multiple CALM modules can be combined to construct a modular 

neural network that is able to perform hierarchical categorization. CALM networks thus 

contain some psychologically and biologically plausible properties, such as modularity, 

unsupervised learning and novelty-dependent learning (Murre et al., 1992).  

In CONCAT, depicted in Fig. 1, two CALM modules are implemented to perform 

concept-context based hierarchical categorization of input patterns. The first CALM module, 

the Concept Module, forms concept representations based on feature co-occurrences. These 

representations are used as input for the second CALM module, the Context Module, which 

categorizes contexts based on concept co-occurrences. The CONCAT model incorporates 

two activation streams; a bottom-up or feedforward stream and a top-down or feedback 
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stream. The feedforward stream originates at the input layer, called Feature Detection Layer. 

In this layer, a perceived object is represented as a distributed pattern of activation across 

nodes representing different features from various sensory modalities, as well as affective and 

affordance features. We assume that some pre-processing of the raw sensory signal has 

already taken place, such that the Feature Detection Layer represents features in a 

subsymbolic but distal, rather abstract way (Hommel, Müsseler, Aschersleben & Prinz, 

2001). The patterns of activation in the input layer are categorized by the Concept Module, 

by mapping different input patterns onto different nodes in the module.  

Following categorization, information is propagated from the Concept Module, 

through several layers of internodes (see Fig. 2), to a next layer, called Memory Buffer. The 

Memory Buffer is similar to the Conceptual Short Term Memory (Potter, 1993), retaining the 

most recently activated concepts. As a result, a pattern of activation arises in the Memory 

Buffer, representing the co-occurrence of concepts across a stretch of time. This pattern is 

used as input for the next level, the Context Module. Importantly, stimuli do not appear in 

completely random order, but in coherent clusters of co-occurring patterns, which can be 

regarded as different contexts. As a result of this clustering, the activation patterns in the 

Memory Buffer show some regularities, which are picked up and categorized by the Context 

Module. In addition to this feedforward stream of information, feedback connections provide 

direct top-down input from the Context Module to the Concept Module. These feedback 

connections are modified through a form of novelty-dependent competitive Hebbian learning 

(for details, see below). Due to the feedback connections, concepts are effectively represented 

not only by bottom-up feature information, but also by top-down context information.  

 

- FIGURE 1 ABOUT HERE - 
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- FIGURE 2 ABOUT HERE - 

 

In CONCAT, concepts are thus represented as distributed patterns of activation across 

nodes representing features and as distributed patterns of activation across nodes representing 

contexts. Whenever a context node is activated, it propagates activation to those concepts that 

frequently occur within this context. As will be demonstrated by several simulations (see 

below), this top-down context information facilitates the categorization of concepts, 

especially when a given input pattern is ambiguous or degraded. In the case of an ambiguous 

input pattern, multiple concept nodes may potentially get activated, thus resulting in a 

competition between different concept nodes. Top-down activation from the active context 

increases the activation of the concept node representing the pattern that is most likely given 

the current context. As a result, this ‘expected’ concept will have a higher chance of winning 

the competition. In other words, a form of context priming takes place. A similar process 

takes place when the input is degraded. In this case, the bottom-up input may be too weak to 

activate the correct concept node to a sufficient degree to let it win the competition. The 

activation of the concept node can be enhanced by a top-down signal from the current 

context. In other words, contextual feedback can make concept nodes more sensitive to 

patterns belonging to the currently active context.  

As will be demonstrated by the simulations, contextual feedback strongly improves 

concept categorization performance. This characteristic of the model explains why objects are 

more accurately recognized when they are presented within a relevant context than in 

isolation or in an irrelevant context, and reversely, why scenes are recognized more 

accurately when a relevant object is presented in the foreground (Davenport & Potter, 2004). 

It also explains how objects can facilitate the recognition of other objects that belong to the 

same context (Davenport, 2007).  
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Processes 

As shown by the simulations reported below, the CONCAT model learns to 

categorize concepts distributed over a number of different contexts. To that end, input 

patterns were not presented randomly to the model, but they were grouped within clusters of 

contextually related patterns. As a metaphor, think of someone walking through a house and 

opening doors to different rooms in that house. When looking into a specific room, attention 

shifts from one object to the other, in order to recognize and categorize those objects as, for 

example, a faucet, a toaster, an oven, and a fridge. Once a sufficient number of objects has 

been recognized, the room (i.e., context) can be reliably categorized as a kitchen. Had one 

seen a faucet, shower, towels and a bath instead, the room would have been categorized as a 

bathroom. Thus, the collection of objects determines what kind of room (i.e. context) one is 

looking at. In order to simulate this procedure, several contexts are created. A context is 

defined as a collection of various input patterns. Because input patterns can occur in multiple 

different contexts (just like some types of objects are found in different rooms), contexts are 

partially overlapping.  

In order to learn the different contexts, the model experiences several contextual 

episodes (c.f., opening the various doors in a house). During a contextual episode (see Fig. 3), 

a context is selected at random and all patterns belonging to the selected context are 

presented in random order. A pattern is presented on the Feature Detection Layer, and 

categorized by the Concept Module based on the bottom-up feature information. Activation is 

forwarded, through several layers of internodes, to the Memory Buffer. Note that activation 

spreads through the network at every iteration. However, due to the wiring of the internodes 

(explained in more detail below) activation does not reach the Memory Buffer until the 

Concept Module has reached convergence (i.e., the pattern has been categorized). In other 

words, the Memory Buffer only represents concepts that have been fully categorized by the 
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Concept Module. After a fixed number of iterations, the presentation of the input pattern is 

terminated. Before presenting a new input pattern from the same context, there is a delay 

during which the model does not receive any input pattern. This delay is implemented in 

order to let the activations of the Concept Module decay to zero. Since the Memory Buffer 

has a much slower decay rate than the Concept Module, the active concept is retained in the 

Memory Buffer, throughout the delay that resets the Concept Module. After the delay, the 

next pattern of the current context is presented and categorized in a similar way as the first 

pattern. Again, activation is forwarded to the Memory Buffer, where the previously activated 

node(s) is (are) still active. As a result, a pattern of activation arises in the Memory Buffer, 

reflecting the most recently categorized concepts. Once the amount of activation in the 

Memory Buffer reaches a certain level, the pattern of activation is categorized by the Context 

Module.  

 

- FIGURE 3 ABOUT HERE - 

 

Contexts are thus represented as constellations of concurrently active concepts, based 

on coincidence in time and place. The active context node sends feedback down to the 

Concept Module through modifiable feedback connections. The strength of these connections 

is adapted through Hebbian-like learning, such that connections get stronger when the 

sending context node and the receiving concept node are concurrently active, and they get 

weaker when one node is active while the other one is inactive. Once all patterns of a context 

have been presented, the contextual episode is finished with a long delay, in order to let all 

activations in the network decay to zero. Of course, in real life, episodes are not separated by 

a delay. Instead, information about the world enters our senses continuously. According to 

the Event Segmentation Theory (Zacks, 2007), people parse this continuous input into 
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discrete events3. Simulations with a computational model of event segmentation have 

demonstrated that event boundaries can be reliably detected in a continuous stream of input 

(Reynolds, Zacks, & Braver, 2007). In CONCAT, this aspect was bypassed by presenting 

discrete episodes, separated by a delay. However, the work of Zacks and colleagues (Zacks, 

2005; Reynolds, Zacks and Braver; 2007) shows that it is not unreasonable to assume that 

continuous input is parsed into discrete events, and that event boundaries can be used to reset 

the activations in the model. 

Node Activation Rule 

The input ie  to each network node i may be either excitatory (positive) or inhibitory 

(negative). The activation of each of a generic CONCAT node i at the iteration (t+1), 

)1( +tai , is described by the following rule: 
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where   )(tawe j
j

iji ∑=  

k is an activation decay term, ijw  denotes the connection weight from node j to node i. This 

activation rule ‘squashes’ the input to a number between 0 and 1, and ensures that the 

increase in activation due to input excitation, or the decrease in activation due to input 

inhibition, diminishes as the activation approaches the maximum or the minimum, 

respectively (asymptotic approach).  
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Internal Structure of Concept and Context Modules  

The Concept and Context CALM Modules in CONCAT consist of different types of 

nodes that are connected to each other in the module by fixed weights (see Fig. 4 and Table 1 

of the Appendix for details). ‘Representational-nodes’ (furthermore called R-Nodes) are the 

only nodes that receive external input. In order to create competition between R-nodes, each 

R-node activates a matched ‘Veto-node’ (V-node), which inhibits to all other nodes in the 

module. In particular, V-nodes are characterized by mutual inhibition; they strongly inhibit 

unmatched R-nodes, but they inhibit their matched R-Node only weakly. The modules also 

contain an ‘Arousal-node’ (A-node), which is sensitive to the novelty of the input pattern. In 

a sense, activation of the A-node can be regarded as a representation of the arousal response, 

which may result in an orientation reaction (e.g., Sokolov, 1963). Given the specific wiring 

pattern of the connections in a CALM module (see Fig. 4), the activation of the A-node is a 

positive function of the amount of competition in a module. Thus, the A-node activation 

measures the novelty of a given input pattern. Finally, an ‘External-node’ (E-node), which 

might correspond to an arousal center external to the module (e.g. a subcortical center in the 

brain), receives input from the A-node of the module, and sends random activation pulses to 

all R-nodes in the same module. Such random pulses are uniformly distributed over the range 

[ ])(,0 taE , where )(taE stands for the activation of the E-node at the iteration t. The module 

structure and the weight values were drawn from Murre et al. (1992) (see Tables 1 through 3 

of the Appendix for details on the values that were used).   

 

- FIGURE 4 ABOUT HERE - 

 



GROUNDED CONCEPT AND CONTEXT LEARNING 

 

 18

Learning rule 

Full connectivity is assumed from node layers projecting onto the Concept Module 

(from the Feature Detection Layer and the Context Module) and the Context Module (from 

the Memory Buffer). The weights of such connections (‘inter-weights’) are modifiable in the 

range [0,K]. The learning rule used in CALM networks (Murre et al., 1992) is a variation of 

Grossberg’s (1976) learning rule, which is related to the Hebb-rule (Hebb, 1949), and is 

expressed by the following formula:   −−=∆ ∑
≠ jf

fifijjijitij atwtLwatwKaw )()())((µ     (2) 

where i, j and f are R-nodes, L and K are positive constants. The first term within the brackets 

represents weight increases, whereas the second term determines the background-dependent 

weight decrease. The symbol tµ  denotes the variable learning rate at iteration t, which is 

computed as follows: 

EEt awd µµ +=         (3) 

where d is a constant and Ea  is the activation of the E-node. To bind inter-weights in the 

range [0,K], the following condition is included:    

[ ]{ }0,),1()(minmax)1( Ktwtwtw ijijij +∆+=+     (4) 

The learning parameters used in the simulations are specified in Tables 2 and 3 of the 

Appendix.  

Connection Chain from the Concept Module to the Context Module 

As shown in Fig. 2, a sequence of intermediate nodes (internodes) is placed between 

the Concept Module and the Memory Buffer, which in turn sends output to the Context 

Module. These internodes ensure that nodes in the Memory Buffer do not get activated until 
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convergence has been reached in the Concept Module. In other words, the Memory Buffer 

only retains fully activated concepts. The R-nodes of the Concept Module send excitatory 

input to a matched ‘Excitatory-internode’ (E-internode) and to a matched ‘Inhibitory-

internode’ (I-internode). In turn, the matched E-internode sends forward excitatory input to a 

matched ‘Feeding-internode’ (F-internode), whereas the matched Inhibitory-internode sends 

(forward) inhibition to all other unmatched E-internodes. Each F-internode, matched 

backward to a Concept R-node, sends activation to a matched node in the Memory Buffer. 

The excitatory input to the R-nodes of the Context Module includes input from individual 

Memory Buffer nodes, multiplied by modifiable inter-weights, and from a ‘Convergence 

node’ (C-node), the excitatory input of which is described by a sigmoidal function of the sum 

of the activations of all Memory Buffer nodes, as follows: 

inputc(x) = 
))(exp(1

1

θβ −−+ x
      (5) 

     

As the Context Module R-nodes receive a fixed amount of tonic inhibition, Inht , the 

input from the C-node unselectively enables activation of the R-nodes in the Context Module, 

which becomes selective with the differential modification of the inter-weights from Memory 

Buffer nodes to Context Nodes. This enabling mechanism plays a functional role to make 

activation of the Context Module dependent on the number of active nodes in the Memory 

Buffer.  

 

Simulations 
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Simulation I: Basic performance of the CONCAT model 

The first goal of  Simulation I was to investigate whether CONCAT could learn to 

categorize concepts and contexts simultaneously. The neural network was presented with 16 

different input patterns, which were clustered across four contexts. Half of the concepts were 

presented in one context only, the other half of the concepts appeared in two different 

contexts. As a result, each context contained six different concepts, and contexts were 

partially overlapping. The second aim of  Simulation I was to investigate how the model’s 

performance was influenced by the degree of overlap between the input patterns. The model’s 

input was represented as a distributed binary pattern over 12 feature detection nodes. Two 

different sets of input patterns were created. In the Low-overlap condition, sparse patterns 

were used in which only two out of twelve nodes were ‘on’. In the High-overlap condition, 

dense patterns were used in which, on average, six out of twelve nodes were ‘on’. We 

expected that categorization performance would be better in the Low-overlap condition than 

in the High-overlap condition. 

The simulation procedure consisted of 140 episodes. The first 80 episodes of the 

simulation were regarded as training episodes. The last 60 episodes were regarded as test 

episodes during which the performance of the model was assessed. It is important to note that 

learning was not disabled during the test phase. During each episode, a context was selected 

semi-randomly; we ensured that all contexts were presented equally often, both during the 

training stage and during the test stage. Once a context was selected, each of the patterns 

contained in that context were presented in a random order. Each pattern was presented for a 

fixed number of iterations.  

Activation was propagated through the model as described above. The specific 

parameters of the simulations are given in Table 6 of the Appendix. During the test stage, the 

model’s performance was assessed in the following way. After each pattern presentation, if 
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the model had reached convergence, the winning concept node was registered. Similarly, at 

the end of each context presentation, the winning context node was recorded. After 

completion of the simulation, this information was aggregated into two different tables. One 

table displayed the number of times that each pattern converged on the different concept 

nodes (see Table 1 for an example). A similar table was created for the contexts, displaying 

the number of times that each context converged on the different context nodes. The node 

that most often represented a particular input pattern was labeled as the ‘winner’ for that 

pattern. In a symmetrical fashion, the pattern that was most often represented by a particular 

node was labeled as the winning pattern for that node. This information was used to compute 

two measures of performance. The Convergence Index was used as a measure how well a 

particular input pattern was categorized by a single node. It was defined as the number of 

times that the particular pattern was mapped onto its winning node, divided by the total 

number of presentations of that pattern. This resulted in a value between 0 and 1, where 0 

meant that the input pattern never reached convergence onto any node, and 1 meant optimal 

convergence onto a single node. Orthogonally, the Separation Index was used as a measure of 

how well a particular node came to represent a single pattern. The Separation Index was 

computed as the number of times that a particular node was converged on by its winning 

pattern, divided by the total number of times that it reached convergence. This resulted in a 

value between 0 and 1, where 0 meant that the node did not represent any pattern, and 1 

meant that the node only represented its winning pattern. In addition to these measures, 

convergence times were logged for each pattern presentation. Convergence time was defined 

as the number of iterations needed by the Concept Module to reach convergence.  

The simulation procedure was replicated ten times for each of the two different input 

sets. This was done in order to get an indication of the variance in performance as a result of 

different random settings used in each of the replications. Convergence in the Concept 
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Module was influenced by the amount of overlap between the input patterns. In the Low-

overlap condition, the Concept Module needed on average 11.3 iterations to reach 

convergence. In the High Overlap condition, an average of 16.6 iterations was needed to 

reach convergence. Table 2 shows the Convergence Index and Separation Index of the 

Concept Module and the Context Module. In both conditions of pattern overlap, the model 

performs quite well, resulting in high Convergence and Separation Indexes (all above 0.80). 

Although performance is better in the Low-overlap condition, the model still performs 

reasonably well in the High-overlap condition.  

These results show that the model can learn to categorize concepts and contexts 

simultaneously. This is an important and novel finding. For example, previous simulations 

with a hierarchical CALM network have shown that it is possible to perform hierarchical 

categorization (Murre, Phaf, & Wolters, 1992; Murre, 1992). In those simulations, however, 

the model first learned the lower-level categories separately, before learning the higher-level 

categories. In contrast, for CONCAT it is not necessary to learn the concepts separately 

before learning them within their contexts. In other words, the current simulation 

demonstrates that it is possible to learn categories at both levels at the same time.  

Simulation II: Influence of Context Feedback on Categorization of Ambiguous Patterns 

The aim of Simulation II was to investigate the role of context-related feedback connections 

in categorizing ambiguous input patterns. In this simulation, the model learned to categorize 

two highly overlapping input patterns, among other, less overlapping, patterns. The highly 

overlapping patterns differed by only two nodes (out of a total of 12 nodes). During the 

training stage, the two overlapping patterns were presented in two different contexts. During 

the test stage, instead of the original patterns, an ambiguous pattern was presented which 

equally deviated from each of the two patterns (see Table 3 for an example). This input was 
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presented to two different versions of the model. In the Feedback-present simulation 

condition, feedback input was allowed to propagate from the Context Module to the Concept 

Module. This feedback input could facilitate categorization of ambiguous input patterns in 

the following way: since the ambiguous pattern is equally similar to both original patterns, it 

will activate the two concept nodes representing those patterns to a similar degree. The 

concept node that is most likely within the given context will receive some extra top-down 

activation from the active context node, which increases the probability that this node will 

win the competition. As a result, the ambiguous pattern will be categorized as either one of 

the original patterns, depending on the context in which it is presented. In the Feedback-

absent simulation condition, no feedback was propagated from the Context Module down to 

the Concept Module. Thus, context information could not be used to bias categorization 

towards the most likely concept.  

In this simulation, each context consisted of four concepts. During the training stage, 

a contextual episode consisted of the random presentation of each of the patterns belonging to 

that concept in random order, as was the case in Simulation I. During the test stage, patterns 

were not presented completely randomly. Instead, the ambiguous pattern was always the last 

pattern to be presented within a contextual episode. This was done to ensure that the context 

representation was already active at the time of presentation of the ambiguous pattern, such 

that the categorization of that pattern could be biased by top-down information flowing from 

the activated context. The test phase was repeated with the original input patterns instead of 

the degraded patterns, in order to verify that the original patterns were categorized correctly. 

The model’s performance in the ‘ambiguous’ test stage was compared to its performance in 

the ‘original’ test stage, which resulted in a measure of categorization accuracy. As in 

Simulation I, the whole procedure was replicated ten times with both versions of the model. 

The results of Simulation II are presented in Fig. 7, which displays the categorization of the 
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ambiguous pattern. As becomes clear from the figure, context feedback influenced the 

categorization of the ambiguous pattern in a consistent manner. In the Feedback-present 

condition, categorization was strongly biased by the context. More specifically, the 

ambiguous pattern was most likely to be categorized as the concept that was congruent with 

the context in which it appeared. Thus, if the ambiguous pattern was presented in Context A, 

it was most likely to be categorized as Concept A. On the other hand, if the pattern was 

presented in Context B, it was most likely to be categorized as Concept B. No such bias 

existed in the Feedback-absent condition. In that case, the pattern was equally likely to be 

categorized as Concept A as Concept B, regardless of the context in which it was presented. 

Note that this simulation does not show that context feedback necessarily results in higher 

accuracy than when no feedback is present. For example, if a contextually incongruent 

pattern is presented, it may erroneously be categorized as the concept that is more likely in 

the current context. However, given that concepts most often occur in a congruent context, 

the context bias will usually lead to better performance.  

Simulation 3;  Influence of Context Feedback on Categorization of Degraded Patterns 

The role of the feedback connections was further investigated in Simulation III. 

During the test phase of this simulation, the model received a number of degraded input 

patterns, and categorization performance on these patterns was assessed. One of the patterns 

from each context was degraded by reducing all units with a value of 1 and increasing all 

units with a value of 0 by a fixed value, corresponding to the severity of degradation. 

Ranging from mild to severe degradation, patterns were degraded by a value of 0.2, 0.25, 0.3, 

0.35 and 0.4, respectively. Similar to the procedure of Simulation II, the input patterns were 

presented to two versions of the model. In the Feedback-present condition, feedback was 

propagated from the Context Module down to the Concept Module. In the Feedback-absent 
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condition, no such feedback was propagated through the network. Since the bottom-up input 

from the Feature Detection Layer to the Concept Module is degraded, it may not activate the 

correct concept node to a sufficient degree to let it win the competition. Top-down activation 

from the active context node may facilitate the categorization, by enhancing the concept 

nodes that are most likely given the current context. Therefore, we expected that performance 

in the Feedback-present condition would be better than in the Feedback-absent condition. 

The training phase was similar to that of Simulation II, except that there were no pairs 

of highly overlapping input patterns. As in Simulation II, each context included four patterns, 

such that patterns were non-overlapping. During the training stage, a contextual episode 

consisted of the random presentation of each of the patterns belonging to that context. During 

the test stage, however, the patterns were not presented randomly. Instead, the degraded 

pattern was always presented last within a contextual episode. This was done to ensure that 

the Context Module had already categorized the context at the time of presentation of the 

degraded pattern, such that the categorization of that pattern could be biased by top-down 

information flowing from the active context node.  

The results of Simulation III are displayed in Fig. 6 and Fig. 7. Fig. 6 shows the 

categorization accuracy of the Feedback-present and the Feedback-absent versions under the 

different conditions of degradation. As predicted, categorization performance is better in the 

Feedback-present than in the Feedback-absent condition under all conditions of degradation. 

Fig. 7 shows the average number of iterations needed to reach convergence. Convergence 

times were faster in the Feedback-present version than in the Feedback-absent version. This 

finding corroborates the results of Simulation II, by demonstrating how context information 

can constrain concept categorization. This is especially useful when the bottom-up input is 

ambiguous or degraded and therefore provides insufficient information to enable successful 

categorization of the pattern. 
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Discussion 

In this paper, we argue that the conceptual system forms mental representations of 

concepts and contexts. We assume that concepts and contexts can both be learned through 

experience, by extracting the statistical regularities that emerge during repeated experiences. 

Features that frequently co-occur in time and space are likely to belong to the same object. 

This information is used to form conceptual representations. At a coarser temporal and spatial 

scale, frequently co-occurring objects are likely to belong to the same context. This 

information can be used to form contextual representations. Thus, while concepts can be 

defined as patterns of co-occurring feature patterns, contexts can be defined as higher-order 

patterns of co-occurring concepts. We furthermore propose that concept representations and 

context representations are dynamically connected to each other. As a result, when a concept 

is activated, activation will spread towards the contexts in which it is likely to occur, and 

reversely, when a context is activated, activation will spread towards the concepts that are 

likely to occur in this context. As a result, cognitive processing can be tailored to the current 

situation.  

To test these ideas, they were implemented in a connectionist model, named 

CONCAT. The model contains two hierarchically organized modules that simultaneously 

learn to categorize concepts and contexts by extracting regular patterns from experience at 

different spatial and temporal scales. Input to the model is represented as a distributed pattern 

of activation across nodes representing the (sensory-motor) features of a particular category. 

This input is categorized by the Concept Module, which forms concept representations based 

on patterns of co-occurrence across features. The concept representations formed by the 

Concept Module are used as input for the higher level Context Module, which forms context 

representations based on patterns of co-occurrence across concepts. In addition to this 
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bottom-up stream of activation, top-down activation is propagated from the Context Module 

to the Concept Module trough feedback connections, which bind a context to its constituent 

concepts. As a result, conceptual knowledge in CONCAT is based on two sources of 

information: feature based data, bottom-up information about the (sensory, motor, affective, 

etc.) features that are relevant for interaction with a particular category, and distributional 

data, top-down information about the different contexts in which this category is likely to 

occur. This sets our model apart from most other theories of conceptual processing. Whereas 

they agree that mental concepts are learned by distilling invariant information from repeated 

experiences with exemplars of a particular category, they typically assume that context 

information is discarded during this process of distillation (Barsalou, 2005). However, the 

results of our simulations show that context information can play an important role in guiding 

and constraining conceptual processing. Our findings are corroborated by many studies 

across different domains of cognitive science (perception, language comprehension, memory, 

concept representation), demonstrating a variety of context effects. 

In CONCAT, concepts and context representations are connected bidirectionally. 

Activating a particular concept will lead to activation of the contexts in which this concept is 

likely to occur, and reversely, activating a context will lead to activation of the concepts that 

are associated to it (see also Bar, 2004). As we have shown in Simulations II and III, these 

bidirectional connections are beneficial for conceptual processing. Top-down context 

information can be used to bias encoding of the input. This is especially useful when the 

bottom-up feature input is degraded or ambiguous. Indeed, Yeh and Barsalou argued; 

“Because specific entities and events tend to occur in some situations more than others, 

capitalizing on these correlations constrains and thereby facilitates processing. Rather than 

having to search through everything in memory across all situations, the cognitive system 

focuses on the knowledge and skills relevant in the current situation. Knowing the current 
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situation constrains the entities and events likely to occur. Conversely, knowing the current 

entities and events constrains the situation likely to be unfolding” (Yeh & Barsalou, 2006, p. 

350). 

The idea that the conceptual system is composed of multiple, hierarchically 

organized, categorizing modules bears a similarity to Damasio’s theory of Convergence 

Divergence Zones (Damasio, 1989; Meyer & Damasio, 2009). According to this theory, 

Convergence Divergence Zones (CDZs) function as association areas that register the 

temporal co-occurrences between patterns of activation in lower level areas. During 

interaction with an object, patterns of activation arise across different sensorimotor areas, 

coding for various aspects of the interaction. The temporally coincident activity at separate 

sites is bound by a CDZ. In order to recall a particular event, the CDZ (partially) reconstructs 

the original pattern of activation in the sensorimotor sites by sending activation through 

divergent back projections. Damasio argues that multiple convergence zones can be 

organized in a hierarchical manner, each representing input at different levels of abstractness: 

“There are convergence zones of different orders; for example, those that bind features into 

entities, and those that bind entities into events or sets of events, but all register combinations 

of components in terms of coincidence or sequence, in space and time.” (Damasio, 1989, p. 

26). Although CONCAT currently encompasses only two levels, we assume that it is possible 

to use the same logic to build a network composed of multiple layers that categorize patterns 

occurring at various spatial and temporal scales. In addition, we assume that it is possible to 

implement feedback connections between those layers, similar to the divergent pathways 

proposed by the CDZ theory.  
Another parallel can be drawn to a recent theory of word meaning, proposed by 

Andrews, Vinson and Vigliocco (2009). They argue that word meaning is based on two 

sources of information. The first source is information about the sensory-motor properties of 



GROUNDED CONCEPT AND CONTEXT LEARNING 

 

 29

the word’s referent, as has been proposed in many theories of word meaning (e.g., Collins & 

Quillian, 1969; Rips, Shoben, & Smith, 1973; McRae et al., 1997). The second source is 

information about the lexical contexts in which a word occurs, as proposed by theories such 

as Latent Semantic Analysis (Landauer & Dumais, 1997) and Hyperspace Analogue to 

Language (Lund & Burgess, 1996). The model proposed by Andrews, Vigliocco and Vinson 

(2009) integrates both sources of information (for similar work, see Steyvers, in press). The 

data generated by the combined model corresponded better to human data of semantic 

representations than data generated by the separate sources. Thus, this study showed that 

experiential and distributional information can be combined to yield rich and realistic 

representations, similar to the findings of the present paper. 

Andrews, Vigliocco and Vinson (2009) define distributional data as information about 

the distribution of words across linguistic contexts, and they call this type of information 

intra-linguistic. We would like to argue that this information might not be purely linguistic, 

but that it could indirectly reflect the actual distribution of the words’ referents across real-

world situations. After all, language refers to objects and situations in the world. Words 

might co-occur in language because their referents co-occur in the real world. For example, 

distributional theories of word meaning consider the words ‘cat’  and ‘dog’ as similar because 

they often occur in similar sentences. However, the reason that they occur in similar 

sentences might be because these sentences typically describe real-world situations in which 

cats and dogs occur. In the real world, cats and dogs are often found in similar contexts (e.g., 

in and around the house). As a result, the sentences describing these contexts will be similar. 

Indeed, a recent study by Louwerse and Zwaan (2009) showed that the spatial distance 

between pairs of US cities can be derived from their distributions across texts. In the words of 

Louwerse and Zwaan (2009), “cities that are located together are debated together.” To sum 

up, while we agree with Andrews, Vigliocco and Vinson (2009) that distributional data form 
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an important source of information about semantic or conceptual representations, we do not 

agree that this information is completely linguistic. Instead, the distribution of a word across 

linguistic contexts might correspond strongly to the distribution of the word’s referent across 

real-world contexts (for a similar argument, see Zwaan & Madden, 2005). 

Summarizing, we have stressed the importance of context information in conceptual 

processing. In addition, we have demonstrated how context information can be extracted 

from experience and categorized into context representations. These representations, through 

their connections with associated conceptual representations, can bias and constrain 

conceptual categorization. This is especially useful when the bottom-up input is degraded or 

ambiguous. By acknowledging the context, the conceptual system taps into a rich and 

powerful source of information. The context can prepare the conceptual system for the 

objects and events that are most likely given the current situation. As a result, these objects 

and events can be recognized and categorized more accurately. Another important 

consequence of such mechanism is that it allows abstract concepts, which have no perceptual 

features themselves, to be grounded in contextual experiences. Indeed, Barsalou and Wiemer-

Hastings (2005) demonstrated that abstract concepts are based on situational information. 

They argue that it is impossible to represent an abstract concept like TRUTH without 

providing information about the situation in which this concept is set. Furthermore, although 

concrete concepts are typically processed better and faster than abstract concepts, these 

benefits disappear when abstract concepts are presented within a relevant situation (e.g., 

Schwanenflugel, Harnishfeger, & Stowe, 1988; Schwanenflugel, & Stowe, 1989). Thus, 

context information appears to be highly relevant for the representation of abstract concepts.  

We live in a world full of regularities. Not only do we repeatedly encounter similar 

things, but we also experience similar situations and find ourselves in similar environments 

over and over again. Our conceptual system is specialized in extracting these regularities 
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from experience, in order to form mental representations of objects, events and situations. 

This results in a rich hierarchically organized knowledge structure that may represent 

concepts and contexts, as well as the connections between them. Capitalizing on these 

connections facilitates processing in many ways. It enables one to select the representations 

that are relevant given the current context, to know which objects to expect in a given 

context, where to look for those things, and how to interact with them. In other words, it 

enables one to interact with the environment in a sensible and efficient manner. 
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Footnotes 

 Throughout this paper, angle brackets will be used to describe features (e.g., 

<round>), uppercase font will be used to describe concepts (e.g., BALL), and uppercase italic 

font will be used to describe contexts (e.g., KITCHEN). 

 

2 The term distributional data is borrowed from Andrews, Vigliocco and Vinson 

(2009). In their paper, however, the term had a slightly different meaning. The authors 

referred to experiential (feature-based) and distributional information as two contributors of 

word meaning. In their definition, distributional information refers to the linguistic contexts 

(sentences, paragraphs) in which a word occurs. In the current paper, distributional 

information refers to the actual contexts in which a concept occurs. 

 

3 The Event Segmentation Theory (Zacks, 2007) supposes that the perceptual system 

not only perceives current input, but also predicts what will be perceived next. This 

prediction is based on the current input as well as on more stable information about the 

ongoing event, which is represented as an event model. Event boundaries are usually 

characterized by a relatively high prediction error, which occurs when the system’s 

prediction is substantially different from the actual input. Whenever an event boundary is 

perceived, the event model is reset in order to represent the new event.
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Table 2  

Results of Simulation I. Convergence Index and Separation Index of the Concept Module and 

Context Module under Conditions of Low and High Pattern Overlap. 

 

Input Module Convergence Index Separation Index 

Low overlap Concept Module 0,98 0,96 

 Context Module 0,94 0,95 

High overlap Concept Module 0,88 0,85 

 Context Module 0,83 0,82 
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Table 3  

Example of Overlapping Patterns and Ambiguous Test Pattern Presented in Simulation II. 

 
 
Concept Distributed Feature Pattern Context 

1 1 0 1 1 1 0 0 1 0 1 1 0 A 

2 1 0 1 0 1 0 0 1 0 1 1 1 B 

Test 1 0 1 0.5 1 0 0 1 0 1 1 0.5 A/B 
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Figure Captions 

 

Figure 1. CONCAT Architecture 

 

Figure 2. Wiring of internodes 

 

Figure 3. Snapshots of activation propagation in the model. The figure only shows the 

Feature Detection Layer, Concept Module, Memory Buffer and Context Module. Four 

different input patterns belonging to the same context are presented. In Panel a. the first input 

pattern is presented, categorized by the Concept Module and stored in the Memory Buffer. In 

Panel b., the second input pattern is categorized and stored in the Memory Buffer. In Panel c., 

the third input pattern is categorized and stored in the Memory Buffer. The total activation of 

the Memory Buffer now exceeds a certain value, resulting in activation of the Context 

Module, which categorizes the pattern in the Memory Buffer. In Panel d., the activated 

context node sends top-down (voltage-dependent) input to all associated concept nodes. This 

facilitates the categorization of a new pattern belonging to the same context. 

 

Figure 4. CALM Module 

 

Figure 5. Results of Simulation II. Accuracy of categorization of ambiguous input patterns by 

model with feedback connections and without feedback connections. 

 

Figure 6. Results of Simulation III. Accuracy of categorization of input patterns under 

different conditions of degradation by model with feedback connections and without 

feedback connections. 
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Figure 7. Results of Simulation III. Convergence times under different conditions of 

degradation by model with feedback connections and without feedback connections. 
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Figure 1 
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Figure 2 
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Figure 6 
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Figure 7 
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APPENDIX 

 

Table 1 

Weight Values of Connections within CALM Modules, as specified by Murre, Phaf & 

Wolters (1992). 

 

Weights Description Value 

Up Connects R-node to its matched V-node 0.5 

Down Connects V-node to its matched R-node -1.2 

Cross Connects V-node to all non-matched R-nodes -10.0 

Flat Interconnects all V-nodes (no self-connections) -1.0 

Low Connects R-node to A-node 0.4 

High Connects V-node to A-Node -0.6 

AE Connects A-node to E-node 1.0 

Strange Connects E-node to R-nodes 0.5 

Inter Initial value of intermodular adaptive weights 0.6 
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Table 2 

Equation Parameters of Concept Module 

 

Globals Description Value 

k Decay of activation in an iteration 0.05 

L Learning competition between bottom-up connections 1.0 

K Maximum value of bottom-up weights 1.0 

d Base rate of learning 0.001 

WµE Virtual weight between E-node and learning rate 0.015 

Ch High convergence threshold 0.001 

Cl Low convergence threshold 0.0001 
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Table 3 

Equation Parameters of Context Module 

 

Globals Description Value 

k Decay of activation in an iteration 0.025 

L Learning competition between connections 1.0 

K Maximum value of learning weights 1.0 

d Base rate of learning  0.005 

WµE Virtual weight between E-node and learning rate 0.025 

Ch High convergence threshold 0.001 

Cl Low convergence threshold 0.0001 
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Table 4 

Weight Values of Connections between Different Layers of the Model  

Weights Description Value 

R-I Connects R-node in Concept Module to matched Inhibitory internode 1 

R-E Connects R-node in Concept Module to matched Excitatory internode 1 

I-F Connects Inhibitory internode to all non-matched Feeding nodes -5 

E-F Connects Excitatory internode to matched Feeding node 1 

F-M Connects Feeding node to matched Memory Buffer node 5 

M-Cv Connects Memory Buffer nodes to Convergence node  1 

Cv-C Connects Convergence node to R-nodes in Context Module 2 

M-C Initial value of connections between Memory Buffer nodes and R-nodes 

in Context Module 

0.6 

FB Initial value of Feedback connections (from R-nodes in Context Module 

to R-nodes in Concept Module) 

0.6 
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Table 5 

Equation Parameters of Other Elements of the Model 

 

Parameter Description Value 

kinter Decay of activation of internodes 0.1 

kmem Decay of activation of nodes in Memory Buffer 0.001 β Gain of input function of Convergence Node -20 θ Threshold of input function of Convergence Node (dependent on nr 

of concepts per context) 

1.5 - 3 

Inht Tonic inhibition to R-nodes in Context Module -1.05 

Lfb Learning competition of feedback connections  1.5 

Kfb Maximum value of feedback weights 1.5 

dfb Base rate of learning of feedback connections 0.005 
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Table 6 

Simulation Parameters 

Description Value 

Number of nodes in Feature Detection Layer 12 

Number of nodes in Concept Module 16 

Number of nodes in Context Module 4 

Iterations per concept presentation 60 

Number of context episodes during training 80 

Number of context episodes during testing 20 

Number of iterations during short reset interval 120 

Number of iterations during long reset interval 3000 
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Abstract

We present a 3D, probabilistic object-surface model,
along with mechanisms for constructing a model from un-
registered 2.5D views and segmenting model instances in
cluttered scenes. The object representation is a probabilis-
tic expression of object parts through smooth surface-point
distributions obtained through kernel density estimation on
3D point clouds. A multi-part, viewpoint-invariant model is
learned incrementally from a set of roughly segmented, un-
registered views, by sequentially registering and fusing the
views with the incremental model. Registration is conducted
by nonparametric inference of maximum-likelihood model
parameters, using Metropolis–Hastings MCMC with simu-
lated annealing. This mechanism is robust to clutter, and
avoids direct model-to-scene correspondences. The learn-
ing of viewpoint-invariant models and the applicability of
our method to pose estimation, object detection, and ob-
ject recognition is demonstrated on 3D-scan data, provid-
ing qualitative, quantitative and comparative evaluations.

1. Introduction

Our object model constitutes a 3D, generative, part-
based, probabilistic expression of object surface primitives
and their spatial configuration.

The definition of object models in 3D point clouds has
been achieved through a variety of approaches [4]. The
idea is generally to break down the object surface into a
number of primitives; an object is then described by de-
scribing each primitive, and possibly also their spatial con-
figuration. Primitives correspond e.g. to complex paramet-
ric shapes such as superquadrics [2, 17], local surface de-
scriptor [7, 8, 9, 12, 14], or local edge descriptors [5]. In
this work, primitives correspond directly to 3D points, with
each point further parametrized by a local surface orienta-
tion computed from the distribution of the k nearest neigh-

bors. In the following, we simply refer to these as points.
Depending on the application, recording the geometric

configuration of surface primitives may or may not be nec-
essary. Methods aiming at object recognition (without seg-
mentation/pose estimation) [7, 8, 12] can afford to com-
pletely ignore the spatial configuration of primitives, or en-
code it implicitly. They can also afford to match a model
by matching each view contained in the model separately,
therefore also avoiding model view registration. Object
recognition finally motivates discriminative models. Con-
versely, pose estimation and segmentation require the mod-
eling of the global shape of the object through the encoding
of relative primitive configurations [9, 14, 5]. This generally
leads to a generative model. Although it may not be their
primary aim, generative models often provide recognition,
too [14]. When building a generative 3D model from mul-
tiple views, it becomes necessary to derive an exhaustive
registration of individual 2.5D views. Our method learns a
initial model from a single view of an object; the model can
then be used to detect and estimate the pose of the object in
novel scenes, provided that the view is sufficiently similar.
If a new view provides more information, the model can be
extended, in principle until the entire surface is completely
modeled. Thus, model learning and model exploitation are
seamlessly integrated.

Detection and alignment of generative models are typ-
ically achieved through the matching of model descrip-
tors to scene descriptors, possibly followed by the deriva-
tion of a model pose from geometrically-constrained op-
timization [14]. We follow a different approach and en-
code object structure through a continuous probability den-
sity function representing the distribution of object-surface
points. This allows us to achieve detection through prob-
abilistic inference, which in turn avoids explicit model-to-
scene correspondences. Our model is inferred by a Markov-
chain Monte-Carlo (MCMC) algorithm which yields the
maximum-likelihood pose of a model in an arbitrary scene.

Within a point-cloud reconstruction, the quantity of in-
formation conveyed by a point from a large and uniform sur-



face is arguably smaller than the information conveyed by a
point on a smaller, distinctive surface. In other words, the
contribution of a surface segment to the identity of an object
is generally not proportional to the number of points sup-
porting the segment in a point-cloud reconstruction. Many
3D modeling techniques acknowledge this observation, e.g.
through the detection of salient points [11], or the use of sur-
face primitives of varying size [14]. We proceed by splitting
object points into groups that represent object parts of dif-
ferent spatial size, and give each part the same weight in the
detection process.

The learning of viewpoint-invariant models is demon-
strated on 3D-scan data from Biegelbauer and Vincze [2],
and on the popular CAD dataset of Hetzel et al. [8]. The
applicability of our method to pose estimation in cluttered
point clouds is demonstrated on the data of Biegelbauer and
Vincze, and object recognition rates are presented for the
dataset of Hetzel et al.

This work is largely inspired by the work of Detry et al.
[5]. The main differences, and key contributions of this pa-
per are: (a) a maximum-likelihood Monte Carlo inference
algorithm, (b) a learning method which autonomously reg-
isters independent views, and autonomously identifies parts
from spatial structure, and (c) experiments on range data
with both pose estimation and object recognition results.

2. Object Model

As mentioned above, we consider point-cloud recon-
structions in which each point is composed of a position
and a local surface normal. The surface normal is com-
puted at each point of the cloud from the covariance matrix
C of its k nearest neighbors [13]. Let us denote by e1, e2, e3
the eigenvalues of C, with e1 ≥ e2 ≥ e3; depending on
whether e1 − e2 is smaller or greater than e2 − e3, the local
direction is set to the eigenvector associated to e3 or e1 re-
spectively, allowing for stable orientations on both surface
and line configurations. Denoting by S2

z+ the z-positive
hemisphere of the 2-sphere (the space of unoriented direc-
tion vectors), computing local orientations yields a point-
cloud O =

{(
λ`, θ`

)}
`∈[1,n]

where λ` ∈ R3 and θ` ∈ S2
z+ .

Our pose estimation method relies on the modeling of 3D
surface with surface-point distributions through kernel den-
sity estimation. Kernel density estimation (KDE) is a tech-
nique that allows one to model a continuous density func-
tion from a set of observations drawn from it, by assigning
a local kernel function to each observation [16]. The value
of the continuous function at an arbitrary point x is defined
as the sum of the evaluation of all kernels at x. Random
variates from the density are drawn by selecting an obser-
vation at random and drawing from the associated kernel.
KDE allows us to define a continuous surface-point distri-
bution from the point-cloud reconstruction of an object. The

surface observations we are dealing with are points which
belong to R3 × S2

z+ ; denoting the separation of point com-
ponents and kernel parameters into position and orientation
by x = (λ, θ), µ = (µt, µr), σ = (σt, σr), an applicable
kernel for our surface-point space is defined with

Kµ,σ (x) = Nµt,σt
(λ) [Θµr,σr

(θ) + Θµr,σr
(−θ)] (1)

where µ is the kernel mean point, σ is the kernel band-
width, N(·) is a trivariate isotropic Gaussian kernel, and
Θ(·) is the von-Mises Fisher distribution [6] on the 2-sphere
in R3. The pair of opposite Θ kernels in K ensures that
K(λ,θ),σ (x) = K(λ,−θ),σ (x) [18]. The bandwidths σt and
σr are computed using a k-nearest neighbor technique [16]
on point positions.

Given a point-cloud reconstruction {x`}`∈[1,n] of an ob-
ject, a surface-point distribution ψ(x) =

∑n
`=1 Kx`,σ(x)

can readily be used as a “3D template” that provides an ob-
ject pose likelihood when convolved with the surface-point
distribution of an arbitrary scene. This observation proba-
bly constitutes the most intuitive illustration of our method.

We model an object composed of p parts with a set of
surface-point distributions ψi(Xi), where Xi ∈ R3 × S2

z+

is a random variable denoting the distributions of points be-
longing to part i. All parts are defined in a common refer-
ence frame, so that

∑p
i=1 ψi(x) yields a reconstruction of

the whole object. Let us denote by SE(3) = R3 × SO(3)
the group of 3D poses, and by φ(x) the surface-point distri-
bution of an arbitrary scene in which the object appears.
We model the pose of an object with a random variable
W ∈ SE(3); the pose distribution in the scene is given
by

p(W ) ∝
p∏
i=1

∫
ψi
(
t−1
W (Xi)

)
φ(Xi)dXi︸ ︷︷ ︸

mi(W )

, (2)

where t−1
W (Xi) denotes the rigid transformation of Xi by

the opposite of W , such that tw ◦ t−1
w yields an identity

transformation for all w ∈ SE(3). Each integral mi(w)
corresponds to the evaluation atw of the convolution of part
i with the scene.

The maximum-likelihood (ML) pose of an object is
given by arg maxw p(w), which is analytically intractable;
we thus naturally turned to Monte Carlo methods. Eval-
uating the integrals mi(w) is done by sampling n times
x`i ∼ ψi(Xi), evaluating φ(tw(x`i)), and taking the average
over n, which produces an approximation of mi(w) up to
a multiplicative constant. Simulating p(W ) directly is not
possible, although simulating one integral w ∼ mi(W ) can
be achieved by generating xi ∼ φ(Xi); w is then obtained
as w ∼ ψi(t−1

W (xi)).
The ML pose of an object in a scene is computed

via simulated annealing on a Markov chain whose invari-
ant distribution at iteration j is proportional to p1/Tj (W )



[10, 1], where Tj is a decreasing cooling schedule such that
limj→∞ Tj = 0. The chain is defined with a mixture of
two local- and global-proposal Metropolis–Hastings tran-
sition kernels. Our choosing of the standard Metropolis–
Hastings algorithm is motivated by the complexity of R3 ×
S2

z+ , which renders the calculation of complex quantities
such as local derivatives difficult. Also, p(W ) is likely to
present a large number of narrow modes. A mixture of
global and local proposals will compromise between dis-
tributed exploration of the pose space and fine tuning of
promising regions. The independence-chain component of
our transition kernel requires a global proposal function
which we can simulate, and which should ideally resem-
ble p(W ). In this paper, the global proposal corresponds
to s(W ) =

∑
imi(W ), which can be simulated by select-

ing i ∼ U[1,...,p], and sampling from mi(W ). The local
proposal for the random-walk component of the transition
kernel is given by the SE(3) kernel

K?
µ,σ (x) = Nµt,σt (λ)

[
Θ?
µr,σr

(θ) + Θ?
µr,σr

(−θ)
]

(3)

where Θ? is the von-Mises Fisher distribution on the 3-
sphere, and rotations θ and µr are expressed as quaternions
[18]. The location bandwidth σt of this kernel is set to a
fraction of the size of the object, which in turn is computed
as the standard deviation of input object points to their cen-
ter of gravity. Its orientation bandwidth is set to a constant
allowing for 5◦ of deviation. The complete algorithm is
listed as Algorithm 1. For our purposes, the mixture weight
ν is typically set to 0.75; T0 and TN are set to 0.5 and 0.05
respectively;N is of the order of 5000. Simulated annealing
does not guarantee convergence to the global maximum of
p(W ). We thus run several chains in parallel and eventually
select the best estimate.

The model presented above is intrinsically sensible to
relative spatial resolution within the input point cloud: the
convolution of parts with scene evidence (2) will be pro-
portional to the global value scale of ψ(Xi) in the region
covered by part–surface-point densities. Unfortunately, the
spatial resolution of 3D-scans is generally not uniform. For
example, objects closer to the sensor will generate more re-
turn than further ones. Hence, the maximum of the pose
likelihood (2) may not correspond to the pose that best ex-
plains surface shape. In the experiments presented below,
we largely mitigate this effect by evaluating scene densities
φ(xi) as the maximum of underlying kernel evaluations at
xi. We note that model distributions φi(Xi) are not con-
cerned by this issue since they are integrated over multiple
views.

Finally, we note that the independence properties of the
random variables involved in the expression of the object
pose distribution (2) can be highlighted in a Markov random
tree of unit height of which W is the root and Xi are the
leaves. The network compatibility potential linking W to

Algorithm 1 Simulated annealing
Initialize w0 arbitrarily
Initialize σt and σr as explained in the text
For j = 0 to N :

Tj = max

{
T0

(
TN
T0

)j/N
, TN

}
Sample u ∼ U[0,1]

If u < ν :
Sample w∗ ∼ s(W )
Sample v ∼ U[0,1]

If v < min

{
1,
(
p(w∗)
p(wj)

)1/Tj s(wj)
s(w∗)

}
: wj+1 = x∗

Else : wj+1 = wj
Else :

Sample w∗ ∼ K?
wj ,(σt,σr)(W )

Sample v ∼ U[0,1]

If v < min
{

1,
(
p(w∗)
p(wj)

)1/Tj
}

: wj+1 = x∗

Else : wj+1 = wj

Xi directly corresponds to ψi(t−1
W (Xi)); observation poten-

tials are given by φ(Xi). Each integral mi(W ) corresponds
to the message sent from Xi to W in a belief-propagation
inference of the marginal distribution p(W ).

3. Learning
The generation of a model from a single point cloud re-

construction of an object is described in Section 3.1. Sec-
tion 3.2 explains how a model is learned from multiple
views.

3.1. Modeling A Point-cloud Reconstruction

Learning a model from a point-cloud reconstruction
amounts to identifying the number and shape of object
parts. Object parts are computed by clustering object points
in R3; they are identified through the mixture of k trivari-
ate Gaussians that best explains object point positions.
K mixtures of p = 1, ...,K Gaussians are fit using the
Expectation-Maximization (EM) algorithm, and the most
appropriate mixture is selected in a way inspired by the
Bayesian information criterion [15]: the selected mixture
is the one that minimizes

− 2 logL+ Cp log n, (4)

where L is the maximized value of the data likelihood, n is
the number of points, and C is a numerical constant which
allows us to strongly penalize large mixtures, hence keeping
the number of parts reasonably low. The object model M
is eventually composed with p surface-point distributions



Figure 1: Objects and their parts. Color indicates to which
part a point belongs. Ellipsoids illustrate the mixture that
identifies object parts.

Figure 2: Example pose estimates. Grey dots correspond
to scene points; color dots show object points aligned to
the scene through pose estimation. The single-part model
fails to produce a correct estimate (left), whereas a two-part
model succeeds (right).

ψi(Xi) built through KDE on the points that belong to clus-
ter i.

Clustering is responsible for the identification of charac-
teristic object parts (Figure 1), drawing attention to smaller
areas that would otherwise be overwhelmed by larger sur-
faces. In Figure 2, the left image shows a pose estimate
computed from a single-part model of a hammer. Infer-
ence finds a best match of the handle of the hammer on a
screwdriver, and ignores the unmatched head of the ham-
mer. In the right image, the two-part model of Figure 1
draws inference towards a correct estimate. The part identi-
fication method described above is similar to the procedure
of Bouchard and Triggs [3], except that their work eventu-
ally expresses parts as cluster centers. Here, clustering is
exclusively used to identify parts. Parts are represented by
fine-grained surface-point densities (Section 2), which hold
significantly more information than a single Gaussian.

3.2. Learning From Multiple Views

The construction of a model that expresses the full 3D
geometry of an object requires pairwise registration of mul-
tiple views. Naturally, only pairs of sufficiently overlapping
views can be registered. Finding overlapping views through

an exhaustive registration of all pairs is unfortunately rather
inefficient. Therefore, a meta-process should ideally detect
strongly correlated views, which are good candidates for
registration [14]. In this section, we present a somewhat
simpler method, which iteratively integrates views into a
model, expecting each additional view to overlap with at
least one of the previous views. Let us assume that each
view contains n points, and let us denote by M` a model
made up of ` views, and denote by O` the set of points used
to construct M`. The first model M1 is built, following the
procedure of the previous section, from the points produced
by the first available view v1. Let us then assume that we
have a model M` constructed from ` views, and the set O`
from which it was built. Adding v`+1 to the model works
as follows. The pose of M` is estimated in v`+1 (Section
2), which allows us to transform the points of v`+1 into the
object reference frame, yielding an object-registered point
set T . A set of points O`+1 that spans ` + 1 views is then
formed by sampling n/(`+1) points from T and n`/(`+1)
points from O`. M`+1 is constructed by applying the pro-
cedure of Section 3.1 to O`+1.

4. Evaluation

In the following experiments, models typically contain 1
to 4 parts. Scene surface-point distributions are computed
from 5000 scan points. The total number of surface-point
observations within object parts is limited to 500. The num-
ber of parallel chains in MCMC inference is typically set to
16. Our C++ implementation estimates the pose of a model
in a scene in about 5–10s on an 8-core desktop computer,
and its memory footprint is always below 50MB. The cost
of detecting multiple objects is linear in the number of ob-
jects. Source code for learning and inference is available
online (link to be provided in the final copy).

4.1. Cluttered-scene Pose Estimation

The suitability of our model for pose estimation in clut-
tered scenes is demonstrated on 3D-scan data from Biegel-
bauer and Vincze [2], which are available online (link pro-
vided in the camera-ready version of the paper). We learned
a model of a mallet, a hammer, a screwdriver, and two
bowls, using between 1 and 4 segmented range views of
each object. The objects and their parts are illustrated in
Figure 1. The pose of these objects was estimated in 4 range
scenes. Because points from the ground plane represent ap-
proximately 85% of each scene, we removed these prior to
detecting the objects, by isolating them through RANSAC
plane fitting. Although this step is not necessary, it signifi-
cantly lowers inference time. As illustrated in Figure 3, all
11 pose estimates were correct. We followed the scenario of
Biegelbauer and Vincze and reproduced the experiment sev-
eral times using different software random seeds, and every



Figure 3: Cluttered scenes with pose estimates. Grey dots
correspond to scene points. The rest of the dots illustrate
pose estimtates: they correspond to object points (Figure 1)
aligned to the poses of the objects in the scenes.

Figure 4: Object library from Hetzel et al. [8]. Illustration
kindly provided by Li and Guskov [12].

run lead to the same correct estimates. When using mod-
els made of a single part, instead of the multi-part models
of Figure 1, only 7 out of 11 poses were correct, for rea-
sons identical to these explained in Section 3.1. Despite its
simplicity, the part-learning process is instrumental in dis-
criminating between objects of similar shapes.

We note that the scenes of Figure 3 contain more objects
than those shown in Figure 1. These objects are not part of
the experiment simply because we do not have segmented
views of them. A segmentent view of the deeper bowl (pru-
ple in Figure 3) was also missing. Its model was built from
data extracted from the top-left scene of Figure 3. It seemed
relevent to include that object because of its similarity with
the second (yellow) bowl.

4.2. Object Detection and Recognition

The primary purpose of our model is to provide a ML
object pose. Yet, the value of the pose-likelihood expres-
sion (2) at its peak may be used as a matching score, hence
yielding object detection and recognition.

Object detection was evaluated on the online-available
CAD dataset of Hetzel et al. [8]. This dataset contains 258

Figure 5: Object points obtained from the registration of
sequences of 66 views. Color indicates learned parts; the
bunny and deodorant bottle are made up of a single part,
whereas the dinosaur yields a two-part model (legs and
body).

0 500 1000 1500 2000
(a) Bunny

10000 20001500500
(b) Deodorant bottle

Figure 6: Distribution of detection scores for the bunny
and deodorant bottle (see Figure 5). The dashed green line
shows the distribution of the scores resulting from the in-
stantiation of the object model in all training images of that
object. The dashed brown line (almost overlapping with the
blue line) corresponds to the instantiation of the model in
the rest of the training set. The red line corresponds to test-
ing images of the object; the blue line corresponds to test-
ing images of the other objects. The scores provided by the
bunny model are clearly separable. The deodorant bottle is
less robustly detected, largely because of a second, similar
bottle in the object set.

simulated range images for each of its 30 objects (Figure 4).
It is divided into a training and a testing set, containing re-
spectively 66 and 192 views of each object. We learned
a view-invariant model of each object using its 66 train-
ing views, providing them to the multi-view learning algo-
rithm of Section 3.2 in the order in which they appear on the
dataset website. Even though this order is not always ideal,
it allowed for the construction of a good model of most ob-
jects. Figure 5 shows three examples. The bunny and the
dinosaur are correctly reconstructed. The deodorant bottle
is missing a side; this is explained by the symmetry of the
object, which causes all model views to be registered to the
same side.

Object detection determines whether a given model is
present in a given view. In order to produce object detection
decisions, all 30 models were instantiated in 300 views of
the training set – 10 views from each object, providing 9000



training scores. Figure 6 (dashed curves) shows the distribu-
tion of the resulting detection scores for two objects. We ran
the same process on 300 images from the testing set (solid
curves of Figure 6), yielding 9000 testing scores. For each
object o, we trained a binary naive Bayes classifier on the
300 training scores produced by o, providing means of dis-
tinguishing o from all other objects. Confronting the testing
scores to the 30 detection classifiers yielded a 98% detec-
tion rate, i.e. out of the 9000 binary classifications, there are
298 true positives, 8580 true negatives, 2 false negatives and
120 false positives.

By contrast to object detection, object recognition deter-
mines, given one view, which object this view is most likely
to show. For this purpose, we trained on the 9000 train-
ing scores a single SVM classifier to determine, given the
matching scores of the 30 objects on one view v, which ob-
ject is in v. This experiment yielded a 99% recognition rate,
i.e. 297 true positives and 3 false positives. This result is di-
rectly comparable and competitive with recent discrimina-
tive approaches on the same dataset which yield 98% [12]
and 93% [8]. It is also comparable with the 95% presented
in Section 8.1 of the article from Mian et al. [14], although
the object library used by Mian et al. is a superset the one
we are using.

We emphasize that the classifiers above are only applied
to find appropriate score separating thresholds or planes.
The underlying inference mechanism is not discriminative,
and goes further than object recognition by providing an
SE(3) object pose. We have not quantified the accuracy
of pose estimation. However, we note that the biggest dif-
ficulty in inference is to find the largest mode of the pose
density. Once the Markov chain has found it, moving to
its maximum is an easier task. The informative value of
quantitative accuracy tests is thus limited. A more interst-
ing study would be that of convergence rate as a function of
the amount of scene clutter and occlusion, which we plan to
analyze next.

5. Conclusion
We presented the definition, inference and construction

of a 3D object model. The model consists of a set of
parts represented with smooth surface-point densities. Ob-
ject pose likelihood is defined through the convolution of
parts with scene evidence. The ML pose is computed
through simulated annealing on a Markov chain whose in-
variant distribution is proportional to an increasing power
of the pose likelihood, yielding an effective balance be-
tween exploration and convergence. The learning proce-
dure probabilistically registers and fuses partly overlapping
object views and identifies object parts through expectation-
maximization. The suitability of our model for pose estima-
tion was demonstrated on cluttered range scenes, using a set
of objects of similar shapes; object recognition results com-

petitive with recent generative and discriminative methods
were obtained on a publicly available dataset.
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Abstract. Human action is goal-directed and must thus be guided by anticipa-
tions of wanted action effects. How anticipatory action control is possible and 
how it can emerge from experience is the topic of the ideomotor approach to 
human action. The approach holds that movements are automatically inte-
grated with representations of their sensory effects, so that reactivating the rep-
resentation of a wanted effect by “thinking of it” leads to a reactivation of the 
associated movement. We present a broader theoretical framework of human 
perception and action control—the Theory of Event Coding (TEC)—that is 
based on the ideomotor principle, and discuss our recent attempts to imple-
ment TEC by means of a computational model (HiTEC) to provide an effec-
tive control architecture for artificial systems and cognitive robots. 

Human behavior is commonly proactive rather than reactive. That is, people 
do not await particular stimulus events to trigger certain responses but, rather, 
carry out planned actions to reach particular goals. Planning an action ahead 
and carrying it out in a goal-directed fashion requires prediction and anticipa-
tion: in order to select an action that is suited to reach a particular goal presup-
poses knowledge about relationships between actions and effects, that is, about 
which goals can be realized by what action. Under some circumstances this 
knowledge might be generated ad hoc. For instance, should your behavior ever 
make a flight attendant to drop you by parachute in a desert, your previously 
acquired knowledge may be insufficient to select among reasonable action al-
ternatives, so you need to make ad hoc predictions to find out where to turn to. 
But fortunately, most of the situations we encounter are much more familiar 
and, thus, much easier to deal with. We often have a rough idea about what ac-
tions may be suitable under a given goal and in a particular context, simply be-
cause we have experience: we have had and reached the same or similar goals 
and acted in the same or similar situations before. 

How experience with one's own actions generates knowledge that guides the 
efficient selection of actions, and how humans carry out voluntary actions in 
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general, was the central issue in ideomotor approaches to human action control. 
Authors like Lotze (1852), Harless (1861), and James (1890) were interested in 
the general question of how the mere thought of a particular action goal can 
eventually lead to the execution of movements that reach that goal in the ab-
sence of any conscious access to the responsible motor processes (executive ig-
norance). Key to the theoretical conclusion they came up with was the insight 
that actions are means to generate perceptions (of wanted outcomes) and that 
these perceptions can be anticipated. If there would be an associative mecha-
nism that integrates motor processes (m) with representations of the sensory ef-
fects they produce (e), and if the emerging association between movements and 
effect representations would be bidirectional (m e), reactivating the repre-
sentation of the effect by voluntarily “thinking of it” may suffice to reactivate 
the associated motor processes (e m). In other words, integrating movements 
and their sensory consequences provides a knowledge base that allows for se-
lecting actions according to their anticipated outcomes—for anticipative action 
control that is. 

After a flowering period in the second half of the 19th century ideomotor 
approaches were effectively eliminated from the scientific stage (Prinz, 1987; 
Stock & Stock, 2004). A major reason for that was the interest of ideomotor 
theoreticians in conscious experience and the relationship between conscious 
goal representations and unconscious motor behavior, a topic that did not meet 
scientific criteria in the eyes of the behaviorist movement gaining power in the 
beginning of the 20th century (cf., Thorndike, 1913). Starting with an early 
resurrectional attempt by Greenwald (1970), ideomotor ideas have recently re-
gained scientific credibility and explanatory power however. In their Theory of 
Event Coding (TEC), Hommel, Müsseler, Aschersleben, and Prinz (2001) 
have even suggested that the ideomotor principle may represent a firm base on 
which a comprehensive theory of human perception and anticipatory action 
control can be built. In the following, we will elaborate on what such a theory 
may look like. In particular, we will briefly discuss the basic principles and 
basic assumptions of TEC and then go on to describe our recent attempts to 
implement these principles and assumptions by means of a computational 
model of human perception and action control—a model we coined HiTEC 
(Haazebroek & Hommel, submitted). 

1   TEC 

The core idea underlying TEC (Hommel et al., 2001) is that perception and action are 
in some sense the same thing and must therefore be cognitively represented in the 
same way—the notion of common coding (Prinz, 1990). According to the ideomotor 
principle, action consists in intentionally producing wanted effects, that is, in the exe-
cution of motor processes for the sake of creating particular sensory events. In con-
trast to action, perception is commonly conceived of as the passive registration of 
sensory input. However, Hommel et al. (2001) argue that this conception is incorrect 
and misleading, as sensory input is commonly actively produced (Dewey, 1896; Gib-
son, 1979). For instance, even though visual perception needs light hitting the retina, 
we actively move our eyes, head, and body to make sure that our retina is hit by the 
light that is reflecting the most interesting and informative events. That is, we actively 
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search for the information we are interested in and move our receptive surfaces to 
optimize the intake of that information. This is even more obvious for the tactile 
sense, as almost nothing would be perceived by touch without systematically moving 
the sensor surface across the objects of interest. Hence, we perceive by executing mo-
tor processes for the sake of creating particular sensory events. Obviously, this is ex-
actly the way we just defined action, which implies that action and perception are one 
process. 

The second central assumption of TEC is that cognitive representations are com-
posites of feature codes (Hommel, 2004). Our brain does not represent events through 
individual codes or neurons but by widely distributed feature networks. For instance, 
the visual cortex consists of numerous representational maps coding for various visual 
features, such as color, orientation, shape, or motion (DeYoe & Van Essen, 1988) and 
similar feature maps have been reported for other modalities. Likewise, action plans 
are composites of neural networks coding for various action features, such as the di-
rection, force, or distance of manual actions (Hommel & Elsner, 2009). One implica-
tion of the assumption that cognitive event representations are composites is that 
binding operations are necessary to integrate the codes referring to the same event, 
and another is that different events can be related to, compared with, or confused with 
each other based on the features they do or do not share. For instance, TEC implies 
that stimuli and responses can be similar to each other, in the sense that the binding 
representing the stimulus and the binding representing the response can include the 
same features, such as location or speed, and can thus prime each other (which for 
instance explains effects of stimulus-response compatibility) or interact in other ways. 

The third main assumption of TEC is that the cognitive representations that under-
lie perception and action planning code for distal but not proximal aspects of the rep-
resented events (Prinz, 1992). In a nutshell, this means that perceived and produced 
events are coded in terms of the features of the external event as external event (i.e., 
as objectively or inter-subjectively definable) but not with respect to the specifics of 
the internal processing, such as retinal or cortical coding characteristics, or particular 
muscle parameters. This terminology goes back to Heider (1926, 1930), who dis-
cussed the problem that our conscious experience refers to objective features of visual 
objects (the distal attributes), even though the intermediate processing steps of the 
physical image on the retina and the physiological response to it (the proximal attrib-
utes) are not fully determined by the distal attributes. Brunswik (1944) extended this 
logic to action and pointed out that goal representations refer to distal aspects of the 
goal event and, thus, do not fully determine the proximal means to achieve it.  

To summarize, TEC assumes that perceived events are represented by activating 
and integrating feature codes—codes that represent the distal features of the event. 
Given that perceptions are actively produced, these bindings are likely to also include 
action features, that is, codes that represent the features of the action used to produce 
that perception. In turn, action plans are integrated bindings of codes representing the 
distal features of the action. As actions are carried out to create sensory events, action 
plans also comprise of feature codes referring to these events. In other words, both 
perceived and produced events are represented by sensorimotor bindings or “event 
files” (Hommel, 2004). However, not all features of a perceived or a produced event 
are relevant in a particular context. To account for that, TEC assumes that feature 
codes are “intentionally weighted” according to the goal or task at hand. For instance, 
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if you are searching for a particular color, or if what matters for your actions is the 
location of your fingertip, color and location codes would be weighted higher, respec-
tively, and thus affect perception and action planning more strongly. TEC was very 
helpful in interpreting and integrating available findings in a coherent manner, as well 
as in stimulating numerous experiments and studies on various topics and perception-
action phenomena. However, as Hommel et al. (2001) pointed out, TEC only provides 
a general framework and the theoretical concepts needed to get a better understanding 
of higher level perception, action, and their relationship. Deeper insight and theoreti-
cal advancement calls for more detail and additional assumptions. To meet this chal-
lenge we began developing HiTEC, a computational implementation of TEC’s basic 
principles and assumptions. In the following, we provide a brief overview of the main 
strategies guiding our implementation, but refer to Haazebroek and Hommel (submit-
ted) for a broader treatment. 

2   HITEC 

HiTEC (Haazebroek & Hommel, submitted) is an attempt to translate the theoretical 
framework of TEC (Hommel et al, 2001) into a runnable computational model. Our 
ambition is to develop a broad, cognitive architecture that can account for a variety of 
empirical effects related to stimulus-response translation and that can serve as a  
starting point for a novel control architecture for cognitive robots in the PACO-PLUS 
project (www.paco-plus.org). 

From a modeling perspective TEC provides a number of constraints; some of them 
enforce structural elements while others impose the existence of certain processes. 
First, we describe the general structure of HiTEC. Next, we elaborate on the processes 
operating on this structure, following the two-stage model (Elsner and Hommel, 
2001) for the acquisition of voluntary action control. Finally, we discuss how the 
mechanisms of HiTEC might operate in a real life scenario and show that anticipation 
plays a crucial role in quickly generating and controlling appropriate responses. 

3   HITEC’s Structure and Representations 

HiTEC is architected as a connectionist network model that uses the basic building 
blocks of parallel distributed processing (PDP; e.g., McClelland, 1992; Rumelhart, 
Hinton, & McClelland, 1986). In a PDP network model processing occurs through the 
interactions of a large number of interconnected elements called units or nodes. Nodes 
may be organized into higher structures, called modules, each containing a number of 
nodes. Modules may be part of a larger processing pathway. Pathways may interact in 
the sense that they can share common modules. 

Each node has an activation value indicating local activity. Processing occurs by 
propagating activity through the network; that is, by propagating activation from one 
node to the other, via weighted connections. When a connection between two nodes is 
positively weighted, the connection is excitatory and the nodes will increase each 
other’s activation. When the connection is negatively weighted, it is inhibitory and the 
nodes will reduce each other’s activation. Processing starts when one or more nodes 
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receive some sort of external input. Gradually, node activations will rise and propa-
gate through the network while interactions between nodes control the flow of proc-
essing. Some nodes are designated output nodes. When activations of these nodes 
reach a certain threshold (or when the time allowed for processing has passed), the 
network is said to produce the corresponding output(s). 

In HiTEC, the elementary units are codes. As illustrated in Figure 1, codes are or-
ganized into three main systems: the sensory system, the motor system and the com-
mon coding system. Each system will now be discussed in more detail. 
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Fig. 1. General architecture of HiTEC 

3.1   Sensory System 

As already mentioned, the primate brain encodes perceived objects in a distributed 
fashion: different features are processed and represented across different cortical maps 
(e.g., Cowey, 1985; DeYoe & Van Essen, 1988). In HiTEC, different modalities (e.g., 
visual, auditory) and different dimensions within each modality (e.g., visual color and 
shape, auditory location and pitch) are processed and represented in different sensory 
maps. Each sensory map is a module containing a number of sensory codes that are 
responsive to specific sensory features (e.g., a specific color or a specific pitch). Note 
that Figure 1, shows only two sensory codes per map for clarity. 

In the visual brain, there are two major parallel pathways (Milner & Goodale, 
1995) that follow a common preliminary basic feature analysis step. The ventral 
pathway is seen as crucial for object recognition and consists of a hierarchy of sen-
sory maps coding for increasingly complex features (from short line segments in the 
lower maps to complex shapes in higher maps) and increasingly large receptive field 
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(from a small part of the retina in the lower maps to anywhere on the retina in higher 
maps). The second pathway, the dorsal pathway, is seen as crucial for action guidance 
as it loses color and shape information but retains information about contrast, location 
of objects, and other action-related features.  

In HiTEC, a common visual sensory map codes for basic visual parts of perceptual 
events. This common basic map projects to both the ventral and the dorsal pathways. 
The ventral pathway consists of sensory maps coding for combinations (such as more 
specific shapes) or abstractions (e.g., object color). The dorsal pathway is currently 
simply a sensory map coding for visual location—to be extended for processing other 
action-related features in a later version of HiTEC. 

Distributed processing allows a system to dramatically increase its representational 
capacity as it no longer requires each combination of features to have its own dedi-
cated representational structure but can rather encode a specific combination on de-
mand in terms of activating a collection of constituting feature structures. On the 
downside, in typical scenarios, this inevitably results in binding problems (Treisman, 
1996). For instance, when multiple objects are perceived and they are both repre-
sented in terms of activating the structures coding for their constituting features, how 
to tell which feature belongs to which object? This clearly calls for an integration 
mechanism that can tell them apart.  

Recent studies in the visual modality have shown that this problem can, partly, be 
solved by employing local interactions between feed-forward and feed-back processes 
in the ventral and dorsal pathways (Van der Velde & De Kamps, 2001). It is true that 
higher ventral sensory maps do not contain information on location and that higher 
dorsal sensory maps do not contain information on object shape or color, but these 
pathways can interact using the common basic visual feature map as a visual black-
board (Van der Velde, De Kamps, & Van der Voort van der Kleij, 2004). For in-
stance: when a specific color is activated in a higher sensory map, it can feed back 
activation to lower sensory maps, thereby modulating the activity of these sensory 
codes in a way that those codes that code for simple parts of this color are enhanced. 
This can modulate the processing in the dorsal pathway as well resulting in enhanced 
activation of those codes in the location map that code for the location(s) of objects of 
the specified color.  

This principle also works the other way round: activating a specific location code 
in the location map can modulate the sensory codes in the lower sensory maps that 
code for simple parts at this location. This can modulate the processing in the ventral 
pathway, resulting in enhanced activation of the more complex or abstract features of 
the object at the specified location. In HiTEC, this is the way the visual sensory sys-
tem can be made to enhance the processing of objects with specific features or on a 
specific location. For now, we assume the following sensory maps in the HiTEC ar-
chitecture: visual basic features map, visual color map, visual shape map, visual loca-
tion map, auditory pitch map, auditory location map, tactile effector (i.e., hands or 
feet) map and tactile location map. 

3.2   Motor System 

The motor system contains motor codes, referring to proximal aspects of move-
ments. Motor codes can also be organized in maps, following empirical evidence that 
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suggests distributed representations at different cortical locations in the motor do-
main (e.g., Andersen, 1988; Colby 1998). For example, cortical maps can be related 
to effector (e.g., eye, hand, arm, foot) or movement type (e.g., grasping, pointing). It 
makes sense to assume that there is some sort of hierarchical structure as well in mo-
tor coding. However, in the present version of HiTEC, we consider only one basic 
motor map with a set of motor codes. As our modeling efforts in HiTEC evolve, its 
motor system may be extended further. 

It is clear that motor codes, even when structured in multiple maps, can only spec-
ify a rough outline of the motor action to be performed as some parameters depend 
strongly on the environment. For instance, when grasping an object, the actual object 
location is not represented by a motor code (this would lead to an explosion of the 
number of necessary motor codes, even for a very limited set of actions). So it makes 
sense to interpret a motor program as a blueprint of a motor action that needs to be 
filled in with this specific, on line, information, much like the schemas put forward by 
Schmidt (1975) and Glover (2004). In our discussion of HiTEC processes we will 
discuss this issue in more detail. 

3.3   Common Coding System 

According to TEC both perceived events and action generated events are coded in one 
common representational domain (Hommel et al, 2001). In HiTEC, this domain is the 
common coding system that contains common feature codes. Feature codes refer to 
distal features of objects, people and events in the environment. Example features are 
distance, size and location, but on a distal, descriptive level, as opposed to the proxi-
mal features as coded by the sensory codes and motor codes.  

Feature codes may be associated to both sensory codes and motor codes and are 
therefore truly sensorimotor. They can combine information from different modalities 
and are in principle unlimited in number. Feature codes are not given but they evolve 
and change. In HiTEC simulations, however, we usually assume a set of feature codes 
to be present initially, to bootstrap the process of extracting sensorimotor regularities 
in interactions with the environment. 

Feature codes are contained in feature dimensions. As feature dimensions may be 
enhanced as a whole, for each dimension an additional dimension code is added that 
is associated with each feature code within this dimension. Activating this code will 
spread activation towards all feature codes within this dimension, making them more 
sensitive to stimulation originating from sensory codes. 

3.4   Associations 

In HiTEC, codes can become associated, both for short term and for long term. Short 
term associations between feature codes reflect that these codes 'belong together in 
the current task or context’ and their binding is actively maintained in working mem-
ory. In Figure 1, these temporary bindings are depicted as dashed lines. Long term 
associations can be interpreted as learned connections reflecting prior experience. For 
now, we do not differentiate between episodic and semantic memory—even though 
later versions are planned to distinguish between a “literal” episodic memory that 
stores event files (see below) and a semantic memory that stores rules abstracted from 
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episodic memory (O'Reilly & Norman, 2002). At present, both types of experience 
are modeled as long term associations between (any kind of) codes and are depicted 
as solid lines in Figure 1. 

3.5   Event file 

Another central concept in the theory of event coding is the event file (Hommel, 
2004). In HiTEC, the event file is modeled as a structure that temporarily associates 
to feature codes that 'belong together in the current context’ in working memory. The 
event file serves both the perception of a stimulus as well as the planning of an action. 
Event files can compete with other event files. 

4   HITEC’s Processes 

How do associations between codes come to be? What mechanisms result of their 
interactions? And how do these mechanisms give rise to anticipation based, voluntary 
action control? Elsner and Hommel (2001) proposed a two-stage model for the acqui-
sition of voluntary action control. At the first stage, the cognitive system observes and 
learns regularities in motor actions and their effects. At the second stage, the system 
uses the acquired knowledge of these regularities to select and control its actions. For 
both stages, we now discuss in detail how processes take place in the HiTEC architec-
ture. Next, we discuss some additional process related aspects of the architecture. 

Stage 1: Acquiring Action-Effect Associations 

The framework of event coding assumes that feature codes are grounded representa-
tions as they are derived by abstracting regularities in activations of sensory codes. 
However, the associations between feature codes and motor codes actually signify a 
slightly different relation: feature codes encode the (distal) perceptual effect of the ac-
tion that is executed by activating the motor codes. Following the ideomotor principle, 
the cognitive system has no innate knowledge of the actual motor action following the 
activation of a certain motor code. Rather, motor codes need to become associated with 
their perceptual action effects so that by anticipating these effects, activation can 
propagate via these associations to those motor codes that actually execute the corre-
sponding movement.  

Infants typically start off with a behavioral repertoire based on stimulus-response 
(SR) reflexes (Piaget, 1952). As the infant exhibits these stimulus-response reflexes, 
as well as random behaviors (e.g., motor babbling), its cognitive system learns the 
accompanying response-perceptual effect (RE) regularities that will serve as some 
sort of database of ‘what action achieves what environmental effect’. Following Hom-
mel (1996), we assume that any perceivable action effect is automatically coded and 
integrated into an action concept, which is, in the HiTEC architecture, an event file 
consisting of feature codes. Although all effects of an action become integrated auto-
matically, intentional processes do affect the relative weighting of integrated action 
effects—TEC’s intentional-weighting principle. 

Taken together, action – effect acquisition is modeled in HiTEC as follows: motor 
codes mi are activated, either because of some already existing associations or simply 
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because of network noise. This leads to a change in the environment (e.g., the left 
hand suddenly touches a cup) which is picked up by sensory codes si. Activation 
propagates from sensory codes towards feature codes fi. And eventually, these feature 
codes are integrated into an event file ei which acts as an action concept. Subse-
quently, the cognitive system learns associations between the feature codes fi belong-
ing to this action concept and the motor code mi that just led to the executed motor 
action. Crucially, task context can influence the learning of action effects. Not by se-
lecting which effects are associated but by weighting the different effect features. 
Nonetheless, this is an interactive process that does not exclude unintended but utterly 
salient action effects to become involved in strong associations as well. 

Stage 2: Using Action Effect Associations 

Once associations between motor codes and feature codes exist, they can be used to 
select and plan voluntary actions. Thus, by anticipating desired action effects, feature 
codes become active. Now, by integrating the feature codes into an action concept, 
the system can treat the features as constituting a desired state and propagate their 
activation towards associated motor codes. Crucially, anticipating certain features 
needs integration to tell them apart from the features that code for the currently ob-
served environment. Once integrated, the system has ‘a lock’ on these features and 
can use these features to select the right motor action.  

Initially, multiple motor codes mi may become active as they typically fan out as-
sociations to multiple feature codes fi. However, some motor codes will have more 
associated features that are also part of the active action concept and some of the mi - 
fi associations may be stronger than others. Taken together, the network will – in PDP 
fashion – converge towards one strongly activated motor code mi which will lead to 
the selection of that motor action.  

In addition to the mere selection of a motor action, feature codes also form the ac-
tual action plan that specifies (in distal terms) how the action should be executed: 
namely, in such a way the intended action effects are realized. By using anticipated 
action effects to choose an action, the action actually is selected because the cognitive 
system intended this, not because of a reflex to some external stimulus. Thus, in Hi-
TEC, using anticipation is the key to voluntary action. 

4.1   Task Context 

Task context can modulate both action-effect learning and the usage of these links. 
This can help focus processing to action alternatives that ‘make sense’ in the current 
context. In real life this is necessary as the action alternatives are often rather uncon-
strained. Task context comes in different forms. One is the overall environment, the 
scene context in which the interaction takes place. The cognitive system may just 
have seen other objects in the room, or the room itself, and feature codes that code for 
aspects of this context may still have some activation. This can, in principle, influence 
action selection. As episodic and semantic memory links exist as well, this influence 
may also be less salient: the presence of a certain object might recall memories of 
previous encounters or similar contexts that influence action selection in the current 
task. 
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A task can also be very specific, as given by a tutor or instructor in terms of a ver-
bal description. In HiTEC, it is assumed that feature codes can be activated by means 
of verbal labels. Thus, when a verbal task is given, this could directly activate feature 
codes. The cognitive system integrates these codes into an event file that is actively 
maintained in working memory. For example, when approached with several options 
to respond differently to, different event files ei are created for the different options. 
Due to the mutual inhibitory links between event files, they will compete with each 
other. Because of the efficiency the cognitive system can now display, one could state 
that a cognitive reflex has been prepared (Hommel, 2000) that anticipates certain 
stimuli features. The moment these features are actually perceived, the reflex ‘fires’ 
and - by propagating activation to event codes and subsequently to other feature codes 
- quickly anticipates the correct action effects, which results in the selection and exe-
cution of the correct motor action.  

4.2   Online vs. Offline Processing 

In HiTEC, action selection and action planning are interwoven, but on a distal feature 
level. This leaves out the necessity of coding every minute detail of the action, but 
restricts action planning to a ballpark idea of the movement. Still, a lot has to be filled 
in by on line information. Currently, this falls outside the scope of HiTEC, but one 
could imagine that by activating distal features, the proximal sensory codes can be top 
down moderated to ‘focus their attention’ towards specific aspects of the environment 
(e.g., visual object location), see Hommel (in press). In addition, actions need still not 
to be completely specified in advance, as they are monitored and adjusted while they 
are performed—which in humans seems to be the major purpose of dorsal pathways 
(Milner & Goodale, 1995) 

4.3   Action Monitoring 

The anticipated action effects are a trigger for action selection, but also form an expec-
tation of the perceptual outcome of the action. Differences between this expectation 
and reality lead to adjusting the action on a lower sensorimotor level than is currently 
modeled in HiTEC. What matters now, is that the feature codes are interacting with the 
sensory codes, making sure that the generated perception is within the set parameters, 
as determined by the expected action outcome. If this is not (well enough) the case, the 
action should be adjusted. 

However, when a discrepancy of this expectation drastically exceeds 'adjustment 
thresholds’, it may actually trigger action effect learning (stage 1). Apparently, the 
action-effect associations were unable to deliver an apt expectation of the actual out-
come. Thus, anticipating the desired outcome falsely led to the execution of this ac-
tion. This may trigger the system to modify these associations, so that the motor codes 
become associated with the correct action effect features. 

Crucially, having anticipations serve as expectations, the system is not forced into 
two distinct operating modes (learning vs. testing). With anticipation as retrieval cue 
for action selection and as expectation of the action outcome, the system has the 
means to self-regulate its learning by making use of the discrepancy between actual 
effects and these anticipations. 
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5   Model Implementation 

The HiTEC model is implemented using neural network simulation software that fa-
cilitates the specification and simulation of interactive networks. In interactive net-
works, connections are bidirectional and the processing of any single input occurs 
dynamically during a number of cycles. Each cycle, the network is gradually updated 
by changing the activation of each node as a result of its interactions with other nodes. 

5.1   Code Dynamics 

HiTEC aims at a biologically realistic implementation of network dynamics. In the 
human brain, local interactions between neurons are largely random, but when look-
ing at groups of neurons (i.e., neuron populations) their average activation can be 
described using mean field approximation equations (Wilson and Cowan, 1972). In 
HiTEC, a single code is considered to be represented by a neuron population. Its 
dynamics can therefore be described using differential equations such as: 
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This equation states that the change in activation A of a code is a result of a decay 
term and the weighted sum of the outputs of those nodes k that it connects to. Also, 
each node receives additional random noise input N. Node output is computed using 
an activation function F(A) that translates node activation into its output as governed 
by the following logistic function: 
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The simulator uses numerical integration to determine the change of activation for 
each node in each cycle.  

5.2   Codes 

Currently, in our simulations we hard code all sensory codes including their receptive 
field specification (e.g., whether a code is responsive to a red or a blue color). Also, 
feature codes are assumed to exist, as well as all connections between sensory codes 
and feature codes reflecting prior experience with sensory regularities. In the future it 
may become an interesting endeavor to learn the grounding of feature codes in terms 
of proximal sensory codes, possibly by means of self organizing map methods that 
can be moderated by HiTEC processes (e.g., failing to predict an action outcome may 
signal relevant novelty and moderate the creation or update of a feature code). Also, 
for now, we assume a limited set of motor programs that are simply represented by 
fixed motor codes. Thus, in simulations we currently focus on the interactions be-
tween perception and action and how task context influence these interactions, rather 
than on the grounding of codes per se. 
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5.3   Action-Effect Learning 

Learning action effects is reflected by creating long term connections between feature 
codes and motor codes. This is currently done by simple associative, Hebbian learn-
ing, as described by the following equation: 
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Thus, the change of the connection strength is determined by the activation of the 
nodes i and j that are connected. This way, feature codes that were activated more 
strongly will become more strongly connected to the motor code that caused the per-
ceptual effect. Surely, this type of learning is known to be limited but serves our cur-
rent purposes. 

5.4   Short Term Associations and Event File Competition 

Crucial in HiTEC is the short term memory component. A task instruction is repre-
sented using short term connections between feature codes and event files. In the cur-
rent set up, an event file is simply a node that is created on demand, as a result of the 
task instruction, and temporarily connects to those feature codes that were activated 
by the task instruction (i.e., via verbal labels). An event file has an enhanced baseline 
activation, reflecting its task relevance. Moreover, event files compete with each other 
by means of lateral inhibition (i.e., they are interconnected with negative connections) 
resulting in a winner-take-all mechanism: as activation gradually propagates from 
feature codes to event files (and back), their activation changes as well. Due to the 
lateral inhibition, only one event file will stand as the ‘winner’, while weakening the 
other event files. This results in selective activation at the feature code level and sub-
sequently in action selection at the motor code level.  

5.5   Related Work  

We must note that we do advertise the associative learning method used in HiTEC as a 
competitive alternative to highly specialized machine learning techniques that are tra-
ditionally used in classification tasks (e.g., Hiddden Markov Models, Support Vector 
Machines et cetera) or reward based learning tasks (e.g., Reinforcement learning,  
Q-learning et cetera). However, we do focus on the context of learning: the interplay 
between (the coding of) task context and action effect anticipation and perception trig-
gers and mediates learning. In particular, we stress that the cognitive system employs 
anticipation as reflection of both its learned knowledge so far and its interpretation of 
the current context. Anticipation can subsequently mediate learning by influencing 
which features engage in learning (and even further: what features to look for in the 
sensory input) and how strongly these features may be associated to motor codes, 
thereby constraining whatever (machine) learning technique used to actually create or 
change the associations. 

Moreover, failing to correctly anticipate an action effect may be a major trigger to 
update the learned knowledge. In the future we may add this as a reinforcement learn-
ing component that drives on biologically plausible reward mechanisms (e.g., dopa-
mine moderated learning).  

Bernhard
Inserted Text
not
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Finally, we stress that although simulations may be set up in terms of instruction, 
train and test phases, the HiTEC model itself does not artificially ‘switch’ between two 
modes of operation: learning occurs on line as a result of perceiving action effects. 

6   Examplary Scenario: Responding to Traffic Lights 

In order to clarify the co-operation of the different processes and mechanisms in Hi-
TEC on a functional level, the following example real life scenario is presented: 
learning to respond to traffic lights. In this example, si  denotes sensory codes, fi  de-
notes feature codes and mi denotes motor codes in the HiTEC architecture. Figure 2 
shows a scenario-specific version of the HiTEC architecture. 
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Fig. 2. Learning to respond to traffic lights in HiTEC  

6.1   Action Effect Acquisition 

Let's say you are a student driver who has never paid attention to the front seat before 
and this is your first driving lesson. You climb behind the steering wheel and place 
your feet above the pedals. Now, the instructor starts the car for you and you get the 
chance of playing around with the pedals. After a while, you get the hang of it: it 
seems that pressing the right pedal results in a forward movement of the car, and 
pressing the left one puts the car on hold.  

From a HiTEC perspective, you just have tried some motor codes and learned that 
m1 (pressing the gas pedal) results in a forward motion, coded by fforward and m2 in 
standing still, coded by fstop. In other words: you acquired these particular action-effect 



44 P. Haazebroek and B. Hommel 

associations. Note that we assume that you have been able to walk before, so it is fair 
to say that fforward and fstop are already present as feature codes in your common coding 
system. 

6.2   Using Action Effect Associations 

Now, in your next lesson you actually need to take cross roads. The instructor tells 
you to pay attention to these colored lights next to the road. When the red light is on, 
you should stop, and when the green light is on, you can go forward.  

In HiTEC, this verbal instruction is modeled as creating two event files that hold 
short term associations in working memory: estop for red light for the ‘stop’ condition, and 
ego at green light for the ‘forward’ condition. The event file estop for red light contains bindings 
of feature codes fred, ftraffic light, fstop and the event file  ego at green light relates to the feature 
codes fgreen, ftraffic light, fforward.  

These event files are activated and their activation spreads to their associated fea-
ture codes which will become increasingly receptive for interaction with related sen-
sory codes. In addition to the specific features, the feature dimensions these features 
are contained in (dcolor, dmotion) are weighted as well. The anticipation of traffic lights 
also serves as a retrieval cue for prior experience with looking at traffic lights. As 
traffic lights typically stand at the side of the road, one could expect associations be-
tween ftraffic light and fside of road to exist in episodic or semantic memory. Consequently, 
anticipating a traffic light activates ftraffic light and propagates activation automatically 
towards fside of road , which makes the system more sensitive to objects located on the 
side of the road. 

Ok, there it goes... you start to drive around, take some turns, and there it is… your 
very first cross road with traffic lights!  

Now, from a HiTEC perspective, the following takes place: the visual scene con-
sists of a plethora of objects, like road signs, other cars, houses and scenery, and of a 
cross road with traffic lights at the side. The sensory system encodes the registration 
of these objects by activating the codes in the sensory maps. This leads to the classical 
binding problem: multiple shapes are registered, multiple colors and multiple loca-
tions. However, we now have a top down 'special interest' for traffic lights. As men-
tioned above, this has resulted in increased sensitivity of the ftraffic light feature code, 
that now receives some external stimulation from related sensory codes. Also, from 
prior experience we look more closely at fside of road locations in the sensory location 
maps. 

The interaction between this top down sensitivity and the bottom up external 
stimulation results in an interactive process where the sensory system uses feedback 
signals to the lower level visual maps where local interactions result in higher activa-
tion of those sensory codes that code for properties of the traffic light, including its 
color. In the visual map for object color, the traffic light color will be more enhanced 
than colors relating other objects. On the feature code level, the color dimension al-
ready was enhanced because of the anticipation of features in the dcolor dimension, 
resulting in fast detection of fred or fgreen. 

Meanwhile, the event files estop for red light and estop for red light are still in competition. 
When the sensory system collects the evidence, activation propagates towards feature 
codes and event codes, quickly converging into a state that where either fforward or fstop 
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is activated more strongly than the other. This activation is propagated towards the 
motor codes m1 or m2 via associations learned in your first drivers lesson. This results 
in the selection and execution of the correct motor action. 

It is clear that by preparing the cognitive system for perceiving a traffic light color 
and producing a stop-or-go action allows the system to effectively attend its resources 
to the crucial sensory input and already pre-anticipate the possible action outcome. 
This way, upon perceiving the actual traffic light color, the system can quickly re-
spond with the correct motor action. 

Luckily, for your safety and that of all your fellow drivers on the road, practicing 
this task long enough will also result in long term memory bindings between fred, ftraffic 

light and fstop that will also be retrieved during action selection and bias you towards 
pressing the brake pedal, even when no instructor is sitting next to you.  

7   Conclusions 

We have introduced HiTEC’s three main modules: the sensory system, the motor sys-
tem, and the emergent common coding system. These systems interact with each 
other. In the common coding system anticipations are formed that have a variety of 
uses in the architecture, allowing the system to be more flexible and adaptive. In ac-
tion selection, anticipation acts as a rich retrieval cue for associated motor programs. 
At the same time, forming this anticipation reflects the specification of an action plan 
that can be used during action execution.  

One of the drawbacks of creating anticipations is that it might not be worth the 
costs (Butz & Pezzulo, 2008). However, from a real life scenario perspective, the 
number of possible action alternatives is enormous. Creating anticipations at a distal 
level seems as a necessity to constrain the system in its actions to select from. Doing 
this, as we propose in HiTEC, not only aids action selection but also delivers the ru-
dimentary action plan at the same time.  

Another concern often mentioned is the inaccuracy of predictions. Following the 
framework of event coding, events – including action plans – are coded in distal terms 
that abstract away from the proximal sensory values. Only inaccuracies on the distal 
level could disturb the use of anticipations in action selection and planning. The fea-
ture codes on this distal level are based on sensorimotor regularities that are stable 
over time. Thus minor inaccuracies in sensors should be relatively easily overcome. 

Actions are usually selected and planned in a task context. When forced with dif-
ferent behavioral alternatives to choose from, multiple anticipations of features are 
created and compete with each other. When features are actually perceived, anticipa-
tory activation quickly propagates to the correct action effects, which results in the 
selection and execution of the correct motor action.  

In action monitoring, anticipation serves as the representation of expected and de-
sired action effects that helps adjusting the movement during action execution. In ac-
tion evaluation, this expectation acts as a set of criteria for success of the action. If the 
actual action effect can no longer – on a lower sensorimotor level - be adjusted to 
fulfill the expected action effect, the existing action-effect associations are considered 
insufficient and learning is triggered. During action-effect learning, anticipation also 
may weight the different action effect features in the automatic integration into action 
concepts, influencing the action-effect association weights.  
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In conclusion, anticipation plays a crucial role in virtually all aspects of action con-
trol within the HiTEC architecture. Just as it does in real life. 
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Grasping by Parts: Robot Grasp Generation from

3D Box Primitives

Kai Huebner Danica Kragic

Computer Vision and Active Perception Lab, KTH, Stockholm, Sweden, {khubner,danik}@kth.se

Abstract

In this paper, we continue our previous work on shape approximation by box primitives for the

goal of simple and efficient grasping, and extend it with a more thorough investigation of methods

and robot experiments. The contributions of work presented here are twofold: in terms of shape

approximation, we provide an updated algorithm for a 3D box primitive representation to identify

object parts from 3D point clouds. We motivate and evaluate this choice particularly toward the task

of grasping. As a contribution in the field of grasping, we additionally provide a grasp hypothesis

generation framework that utilizes the chosen box presentation in a flexible manner.

keywords: grasping, 3D shape approximation, object part representation

1 INTRODUCTION

Robot grasping capabilities are essential for perceiving, interpreting and acting in arbitrary and dynamic

environments. While classical computer vision and visual interpretation of scenes focus on the robot’s

internal representation of the world rather passively, robot grasping capabilities are needed to actively

execute tasks, modify scenarios and thereby reach versatile goals.

In robotic object grasping there has been a lot of effort during the past few decades (e.g. see Si-

ciliano and Khatib [1] for a survey). However, the existing artificial systems performing grasping and

manipulation of objects are still far away from closely emulating the human perception-action system.

Current robotic systems dealing with object grasping and manipulation rarely take into account task

dependency, planning or exception handling, especially when the whole eye-hand coordination problem

is considered. On the processing side, it has been widely recognized that high-level task-related grasp

planning is difficult due to the large search space resulting from all possible hand configurations, grasp

types, and object properties that occur in realistic settings. Innovative work in this field included kine-

matic constraints of the hand in order to prune the search space, e.g. [2, 3]. The most common way to

approach the problem has been the model-based approach. Different grasp-related components such as

objects, surfaces, contacts, forces, etc., are modeled according to very specific physical laws assuming
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a good knowledge of the environment. Thus, the research has mainly focused on (i) grasp analysis, i.e.

the study of the physical properties of a given grasp [4, 5], and (ii) grasp synthesis, the computation of

grasps that meet certain pre-defined properties [3, 6, 7, 8, 9, 10]. Unfortunately, these approaches have

failed to deliver practical implementations for different platforms independent of the hardware.

Early work on contact-level grasp synthesis focused mainly on finding a fixed number of contact

locations without regarding hand geometry [6]. Considering specifically object manipulation tasks, the

work on automatic grasp synthesis and planning is of significant relevance [3, 7, 10, 11]. In these ap-

proaches, finger contact locations, forces and grasp wrench spaces can be simulated. Different criterions

can be defined to rate grasp configurations, e.g. force closure, dexterity, equilibrium, stability and dy-

namic behavior [10]. However, the dependency on a-priori known or dense and detailed object models

is apparent. Miller et al. [3] therefore proposed grasp planning on simple shape primitives like spheres,

cylinders and cones, clearly demanding a pre-classification of object shape. Dependent on the primitive

shape, one can test several grasp configurations for their static stability. This work was continued by

Goldfeder et al. [12], using superquadrics as more sophisticated shape primitives. Ekvall and Kragic

[13] showed how a robot system can learn grasping by human demonstration using a grasp experience

database. The human grasp is recognized with the help of a magnetic tracking system and mapped to

the kinematics of the robot hand using a predefined lookup-table. Other than in [3], the system can

distinguish between ten different human grasps, adapted from Cutkosky’s grasp taxonomy [14]. The

grasp controller takes into account not only the object pose and the kind of grasp, but also the approach

strategy of the human demonstrator.

Thus, an important question is: how can robots be equipped with capabilities of gathering and

interpreting the necessary information for novel tasks through interaction with the environment, based

on minimal prior knowledge? In order to answer this question and overcome its difficulties, machine vision

has been proposed as a solution to obtain the information about object shapes, or contact information

to explore the object. Another trend has focused on machine learning approaches to determine the

relevant features indicating a successful grasp [7, 15]. Finally, there have been efforts to use human

demonstrations for learning grasp tasks. Problematically, these approaches also commonly consider

grasps as a fixed number of contact locations without any regard of hand geometry and hand kinematics

[4]. An alternative paradigm, often motivated by studies on human grasping, is the so-called knowledge-

based approach. It tries to simplify the visual grasp planning problem by reasoning on a more symbolic

level. In this paradigm, object shapes are often described using shape primitives, like constellations of

cubes or ellipsoids. Grasp prototypes are defined in terms of purposeful hand pre-shapes, e.g. power-

grasp or pinch-grasp, and planning and selection of grasps is made according to programmed decision

rules. Taking into account both hand kinematics and a-priori knowledge about the feasible grasps has

been acknowledged as a more flexible and natural approach towards automatic grasp planning [3]. It

is obvious that knowledge about the object shape and task is important for grasp planning [16]. This

interplay of 3D shape and robot grasping is the main research problem considered in this paper.

3



Previous Work, Paper Structure and Contributions. In regard to shape approximation, we

presented a bounding box decomposition approach for arbitrary object shape approximation and robot

grasping in [17]. The initial technique based on Minimum Volume Bounding Boxes from 3D point

clouds proposed in this work will be revisited in Section 2. We have further improved the decomposition

algorithm to be more robust under influence of noise and clutter. The new technique will be presented

in Section 2.3. The content of that section holds the box decomposition itself, leading from an arbitrary

point cloud to a constellation of 3D boxes. In Section 3, we will summarize and discuss how we continue

with such a box constellation for the purpose of grasping. The basic ideas were introduced in [18]: in

the work presented here, we decribe an improved algorithm and extend it with additional detail and

experiments. In Section 4, we present an experiment demonstrating the framework capabilities, and then

conclude our work in Section 5. We first start with an outline of our system, sorting earlier work and

linking it to the primary focus of this paper.

The contributions of work presented here are twofold: in terms of shape approximation, we provide

an algorithm for a 3D box primitive representation to identify object parts from 3D point clouds. We

motivate and evaluate this choice particularly toward the task of grasping. For this purpose, and as a

contribution in the field of grasping, we additionally provide a grasp hypothesis generation framework

that utilizes the chosen box presentation in a highly flexible manner.

Outline of the System. We have observed that modeling 3D data by shape primitives is a valuable

step for object representation. Sets of such primitives can be used to describe instances of the same

object classes, e.g. cups or tables. However, it is not our aim to focus on such high-level classifications or

identification of objects, but specifically on grasping. The very basic features we work with are 3D point

clouds. From a stereo vision system like ours (described in Section 4.1), these are typically dependent on

image resolution, disparity processing method, or an object’s segmentation, between 20.000 and 200.000

points per scene. Processing an enormous number of data points takes time, both in approaches that

use raw points for grasp hypotheses and in those that try to approximate them as good as possible by

shape primitives. Thus, the question remains how rudimentary a model of an object can be in order to

be handled successfully and efficiently. While comparable work uses pairs of primitive feature points,

e.g. [19], or a-priori known models for each object [20], we are interested in looking into which primitive

shape representations might be sufficient for the task of grasping arbitrary, previously unseen objects.

We believe that a mid-level solution is a promising trade-off between good approximation and effi-

ciency for this purpose. Complex shapes are difficult to process, while simple ones will give bad approx-

imations, resulting in unsuccessful grasps. However, we can keep in mind the capabilities of accessible

methods to handle imminent approximation inaccuracies for grasping: e.g., haptic feedback, visual ser-

voing and advanced grasp controllers for online correction of grasps. Unknown objects are difficult to

parameterize but need real-time application for robot grasping. A computation in terms of minutes for

a superquadric approximation is therefore not feasible. We depict an outline in terms of modules, input

/ output data structures and algorithms that will be handled in this paper in Fig. 1.
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Figure 1: Our work touches several fields of research. In this paper, we will not focus on areas depicted

in light green, but on the core idea of bridging basic object representations (3D Point Clouds) and

grasping (Pre-Grasp) by 3D Shape Approximation and Geometrical Heuristics. For specific material on

the side-areas we refer to the publications. Here, we will consider this material very superficially only.

2 FITTING BOXES TO ARBITRARY POINT CLOUDS

2.1 Minimum Volume Bounding Box Algorithm

We base our algorithm on the minimum volume bounding box computation proposed by Barequet and

Har-Peled [24]. Given a set of n 3D points, the implementation of the algorithm computes a Minimum

Volume Bounding Box (MVBB) in O(n log n + n/ε3) time, where ε is a factor of approximation. The

algorithm is quite efficient and parameterizable by sample and grid optimizations, performing the com-

putation from an arbitrary point cloud to one tight-fitting, oriented MVBB enclosing the data points.

Our aim is now to iteratively split the box and the data points, respectively, in such a way that the

new point sets yield a better box approximation of the shape. Iterative splitting of a root box corresponds

to the build-up of a hierarchy of boxes. Gottschalk et al. [25] present the OBBTree (Oriented Bounding

Box Tree) for this purpose. The goal is to efficiently detect collisions between polygonal objects by the

OBBTree representation. The realization of the splitting step is quite straightforward: each box is cut

at the gravity center point of the vertices, perpendicular to the longest axis. This is done iteratively,

until a box cannot be divided any further.

2.2 Fit-and-Split Adaptation

In our case, the above commonly used strategy is suboptimal. We want to conveniently approximate

a shape with as few boxes as possible, thus a splitting into as many small boxes as possible is against

our overall aim, if we refrain from merging them again. Additionally, though the MVBB algorithm is

efficient, a fitting step after each splitting consumes valuable computation time. On the other hand,

splitting at the central point is then not optimal. A heuristic to find a ‘good’ split is needed. In our case,
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we define a ‘good’ split is by consulting the relation of the box volume before and after performing the

split. A split of the parent box is the better, the less volume the two child MVBBs include. Intuitively,

this is clear, as shape approximation is better with highly tight-fitting boxes. In [17], we tested planes

parallel to the box surfaces for the best splitting plane. Each MVBB has six sides, whereof opposing

pairs are parallel and symmetric. In-between each of these pairs, we can shift a cutting plane. We defined

the best split as the one that minimizes the summed volume of the two partitions.

For review, the two core algorithms have been sketched in Fig. 2, Alg. 4.1 and 4.2. Though this is

a very approximative method, it is quite fast, as rectangle volume and bound computation are easy to

process. However, several problems arise from this split estimation and motivate further improvement:

Cutting Non-Convex Shapes. In the referred earlier work, we stated that cutting non-convex

structures is not that simple, especially when distorted, sparse and insecure data is provided. The issue

is how to distinguish between a non-convexity and incompleteness of the data. An add-on for the solution

of this problem would therefore be more complex and time-consuming.

Cutting Shape Extremities. The minimum volume box fitting approach naturally prefers fitting

extremities of the shape into the corners of the boxes, as this keeps the box smaller. The bunny’s ear

is again an example for this, since it is almost diagonally suited into one of the box corners. However,

especially such extremities can rarely be nicely cut by a face-parallel cut as proposed.

Sensitivity to Noise. A third reason is the result of the box decomposition’s robustness evaluation

that we presented in [23]. Briefly summarizing, the evaluation shows that face-parallel splitting is very

sensitive to each kind of inaccuracy that can emerge from a real 3D scene and sensors: noise, outliers,

shape incompleteness due to viewpoint or viewpoint change, etc.

2.3 Advanced Best Split Computation

These issues prompted us to revisit the split computation. Finally, we developed an algorithm based

on convex hulls that solves all the three issues of the simple best splitting and additionally presents

much more confident splitting results. For efficiently computing convex hulls on a set of 2D points p,

like our projections, we use a Monotone Chain Algorithm [26]. Starting from the convex hull CH(p) of

the whole projection, we select those segments Si of the hull which exceed a given threshold in length.

We thereby assume that those either span a ‘valley’ of the outer contour of the data, or they represent a

very straight edge. On these segments, we interpolate a number n of sample points Si,j , j < n. Between

each pair of points (Si,j , Sk,l) with i 6= k, we simulate a cut that splits the point set p into two subsets

p1 and p2. The two segment points that minimize

θ′ =
area(CH(p1)) + area(CH(p2))

area(CH(p))
(1)
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Algorithm 2.1: BoxApproximate(points3d)

P ← findBoundingBox(points3d)

{A,B,C} ← nonOppositeFaces(P )

(p3d
1 , p3d

2 )← split(FindBestSplit({A,B,C}, points3d))

(C1, C2)← (findBoundingBox(p3d
1 ), findBoundingBox(p3d

2 )

if (percentualV olume(C1 + C2, P ) < t) ← see (2)

then BoxApproximate(p3d
1 ) and BoxApproximate(p3d

2 )

else return (P )

Algorithm 2.2: FindBestSplit Bound({A,B,C}, points3d)

for F ← A to C

do































































































p2d ← project(points3d, F )

for i← 1 to fx
max

do



















(p2d
1 , p2d

2 )← verticalSplit(p2D, i)

θ =
boundArea(p2d

1 )+boundArea(p2d
2 )

area(F )

if (θ < θ∗) then (θ∗ ← θ) and (bestSplit← (F , fx, i))

for i← 1 to fy
max

do



















(p2d
1 , p2d

2 )← horizontalSplit(p2D, i)

θ =
boundArea(p2d

1 )+boundArea(p2d
2 )

area(F )

if (θ < θ∗) then (θ∗ ← θ) and (bestSplit← (F , fy, i))

return (bestSplit)

Algorithm 2.3: FindBestSplit ConvexHull({A,B,C}, points3d)

for F ← A to C

do



































































points2D ← project(points3d, F )

S ← longSegments(CH(points2D), lengthThreshold)

for each (S(i,j), S(k,l))

with (i, k = segmentIndex; i 6= k), (j, l = pointIndex; j, l < n)

do



















(p1, p2)← split(p2D, S(i,j), S(k,l))

θ′ = area(CH(p1))+area(CH(p2))
area(CH(points2D)

← see (1)

if (θ′ < θ∗) then (θ∗ ← θ′) and (bestSplit← (S(i,j), S(k,l)))

return (bestSplit)

Figure 2: Pseudocode: a point set and its bounding box, respectively, are recursively split (Alg. 2.1). A

good split is estimated through analysis of 2D splits of the projected points onto each of the box faces,

either using edge-parallel cuts (Alg. 2.2) or convex hull computations (Alg. 2.3).
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(a) θ′
A

= 0.69 (b) θ′
B

= 0.71 (c) θ′
C

= 0.72

Figure 3: The three best projection splits using advanced convex hull algorithm. The result is much more

confident than with the algorithm from [17],while the additional computational effort is still acceptable.

define our best split, where A is the area function for a convex hull. Practically, we use n = 6 (see

also Fig. 3). Increasing n might produce more precise cuts, but for the price of additional convex hull

computation cost. Pseudocode of this algorithm is sketched in Fig. 2, Alg. 4.3.

Performance of both the old and the new technique can be compared taking a look at Fig. 4. The

new technique is more robust to the change of the gain threshold t which will be discussed below. The

duck model (Fig. 4f) is not even affected in the cases tested, but stays with the same constellation of

three boxes. Another visible effect is that the decompositions seem more intuitive, e.g. the cuts of the

handle of the cup (Fig. 4e), or the ears of the bunny (Fig. 4h).

2.4 Fit-and-Split Hierarchy Building

According to the best split θ∗, which would be θ1 or θ2 and θ′
A

respectively in our examples above, the

original point cloud can be divided into two subsets of the data points. These can be used as inputs

to the MVBB algorithm again and will produce two child MVBBs of the root MVBB. In this way, the

complete technique of fit-and-split can iteratively be performed. It is important to note that by MVBB

computation, the MVBBs are not axis-aligned.

Additionally, the previous step of 2D cutting is just equal to computing an approximative gain value,

for the purpose of efficiency. As an iteration breaking criterion, we subsequently test the real MVBB

volume gain Θ∗ of the resulting best split measure θ∗. Therefore, we compute the gain in volume defining

Θ∗ =
volume(C1) + volume(C2) + V (A\P )

volume(P ) + volume(A\P )
, (2)

where A is the overall set of boxes in the current hierarchy, P is the current (parent) box, C1, C2 are

the two child boxes that might be produced by the split, and volume being a volume function.

If the gain of free volume is too low, a split should not be executed. For this purpose, we include a

threshold value t. The precision of the whole approximation can be parameterized by simply preventing

a split if Θ∗ exceeds t. Our commonly used thresholds between t = 0.90 and t = 0.95 are based on

thorough experimental evaluations. We also remove boxes with very low number of points.
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Simple Best Split Advanced Best Split

(a) Mug (2,3 boxes)

(b) Duck (3,5 boxes)

(c) Homer (4,5 boxes)

(d) Bunny (2,4 boxes)

(e) Mug (2,2 boxes)

(f) Duck (3,3 boxes)

(g) Homer (4,5 boxes)

(h) Bunny (2,3 boxes)

Split Hierarchy for Homer model
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Final t = 0.98

only t ≥ 0.94
only t ≥ 0.98

Figure 4: Left: Examples of box decomposition using increasing gain thresholds t=0.90 and t=0.94,

where numbers in parentheses correspond to numbers of boxes. (a)-(d) show the results with the simple

cutting proposed in [17],while (e)-(h) shows the advanced cutting proposed in Section 2.3.

Right: Visualization of a decomposition hierarchy. The example shows a model decomposition, using a

gain threshold t = 0.98. If the best volume split value Θ∗ below this threshold, a valid cut is detected.

Otherwise, the box is a leaf box (dashed), a part of the final constellation. One can also trace the results

with lower thresholds (t = 0.9 dotted gray; t = 0.94 solid gray).

Note that by t, both the depth of the hierarchy, the number of leaf boxes, and thereby the detail of

approximation is parametrized. Where a split is done is not dependent on t. That is why it is easy to

evaluate good values of t, e.g. from a rough root box approximation in the beginning that already can

be used for transport, size attribution or grasping, to a higher degree of decomposition into parts.

An example of a decomposition hierarchy can be seen in Fig. 4 using a gain threshold t = 0.98. Each

time, a best volume split value Θ∗ is below t, a valid cut is detected and it is continued separately with

two new point clouds. Otherwise, the treated box is a leaf box and thereby part of the final constellation.

Besides the result for t = 0.98, which is the whole binary tree presented, sub-graphs represent the state

of lower thresholds, e.g. those presented for t = 0.90, 0.94 in Fig. 4g.
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3 GRASP HEURISTICS GIVEN BOX REPRESENTATIONS

The common way to evaluate grasping strategies is extensive evaluation which is practically possible

only in simulation [3, 12]. Miller et al. have simulated pre-models and shape primitives using their

public grasp simulation environment GraspIt! [3]. We also base most of our following experiments on

model-based grasping in the GraspIt! simulator. In our experiments, each face will be used for grasp

hypotheses, directed along the face’s normal vector, and oriented to an edge of the face.

We introduce the observation that generation of pre-grasp hypotheses from box-based face represen-

tations reduces the number of hypotheses drastically [17]. In that paper, a random pre-grasp generation

included 22104 hypotheses. Though box decomposition effectively produced only very few valid hypothe-

ses (usually <50), they still feature good grasp quality.

3.1 Introducing Higher-Level Dependencies

This result shows that box shapes give efficient clues for planning grasps on arbitrary objects or object

parts. For most of the robot tasks we envision, it should be sufficient to find one of the stable grasps, not

necessarily the most stable one. Additionally, the part-describing box concept enables grasp semantics

to be integrated in the representation, e.g. ‘approach the biggest part to stably move the object’ or

‘approach the smallest part to show a most unoccluded object to a viewer.’ The description of an object

by shape-based part representation, which is claimed to be a criterion of what grasp is the ‘best’ in

terms of task-dependent grasping, is thereby made available. To briefly refer to the box decomposition

approach, a compact box set

B = {B1, . . . , Bn} (3)

encloses a set of 3D points and thereby offers a primitive shape approximation. For each box Bi in the

set, we focus on its six rectangular faces

Fi = F(Bi) = {F(i,1), . . . , F(i,6)}. (4)

Each face spawns up to four grasp approach hypotheses by using the face normal as approach vector

and the four edges as orientation vectors, using a pre-defined grasp. Thus, we can define the overall set

of hypotheses emerging from the box representation as

H = {H(F )|F ∈ F(B)}, with H(F(i,j)) = {F 0
(i,j), F

90
(i,j), F

180
(i,j), F

270
(i,j)} (5)

In this section, we will extend this framework by introducing several grasp selection criteria, whereof each

is based on a different dependency. In each of them, the matter of ‘good’ is connected to very different

dependencies, e.g. a task dependency might vote for a particular box, or a view-point dependency might

vote for particular faces only. Technically, all the dependencies will filter out certain F k
(i,j) from H to

aim for an even smaller set of valid grasp hypotheses.
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3.1.1 Task Dependencies – restricting B

Given a box set (Eq. 3), one can easily compute criteria like the overall mass center (assuming uniformly

distributed mass density), volume and dimension of a box, or the relations between boxes. For example,

we can define the outermost or innermost (according to maximum or minimum L2 distance to the

estimated center of mass), the largest or smallest, the top or the bottom, etc., or even rank the boxes

according to these criteria. Given a task, we can easily map an action like pick-up, push, show, rotate,

etc., to a selected box. For example, in order to pick-up something to place it somewhere else, it would

intuitively be a good choice to grasp the largest box. When showing the same object to a viewer, it

would be better to grasp the outermost box instead.

Similarly, different tasks can be mapped to grasp configurations. In earlier experiments, we used

two static grasp pre-shapes [17]. One can extend this idea towards the selection of different grasp pre-

shapes [14], or even the selection of controllers for different tasks. In fact, Prats et al. [27] also use

box representations for task-oriented grasping with hand pre-shapes and task frames. However, they

assume geometrical knowledge about each object (using a database of 3D models) and structural and

mechanical knowledge about a task, e.g. ‘turning’ a door handle.

3.1.2 Box Face Visibility – restricting F

Each box provides six rectangular faces (Eq. 4). We here consider that incomplete data is produced by a

single view of an object, since the back of the object is not visible to the sensor. In general, we describe

three types of faces: those that are free and visible, those that are blocked by other objects or parts, and

those that are not visible for the sensor. The latter is the type we remove in this stage. We motivate this

decision not only from the point of box faces produced from erroneous data, but also from the intuitive

observation that humans tend to use grasping movements that involve minimum energy effort [28].

3.1.3 Box Face Occlusion and Blocking – restricting F and H

While the visibility criterion is a check for orientation of faces towards a camera’s or an end-effector’s

viewpoint, occlusions and blockings between faces in the box set are also considered. As an example,

grasping the head box of the Homer model (revisit Fig. 4) from the bottom is not profitable, since this

face is ‘occluded’ by the body box. The corresponding face is then removed from F . We also classify

other grasps on the head as being unprofitable. Imagine a grasp towards the head box B1 from one of

the sides. The fingers will not contact the approached face F(1,a), but two of its neighbors, F(1,b) and

F(1,c), depending on the hand orientation k ∈ {0, 90, 180, 270}. We then define a grasp hypothesis F k
(1,a)

as ‘blocked’ in this grasp orientation, if F(1,b) or F(1,c) is occluded, and remove it from H.

This technique has proven to be very effective in reducing the number of hypotheses. Technically, the

detection of opposing faces is more complex than the visibility check, since each face of a box has to be

compared to each other valid face in F . Therefore, it forms the end of the heuristical selection sequence.

However, even if two faces face each other, this is usually not a sufficient condition to mark the face as
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occluded, since a finger could fit in-between. The handling of such situations would demand additional

computational effort. For this reason, and since a more extensive restriction reduces the number of

hypotheses drastically, we remove all occluded and blocked hypotheses from our selection.

3.1.4 Reachability and Graspability – restricting H

If there is information available about the embodiment and the kinematics of the robot platform, i.e. its

arm and gripper, it is possible to use graspability and reachability criteria to further reduce the number

of hypotheses. In terms of graspability, our approach already compares the gripper aperture with the

width of the approached face. In terms of reachability, an inverse kinematics solver can be applied for

dropping hypotheses that are not reachable with one of the available hands. An integration of an IK

solver with our framework is presented in [22].

3.2 Projection Grids and Selection – finding H
∗

We can now use the presented box decomposition algorithm to perform a box approximation of the

point cloud and reduced hypotheses according the previously presented heuristics. These were aiming

at reducing the number of grasp hypotheses according to the task, and 3D orientation or 3D shape of

the object. Also the size, i.e. the dimensions of a face, was considered. However, there is usually a set of

remaining hypotheses H′ after the restriction steps, from which we would like to select one final ‘best’

grasp H∗. Our current approach to this issue is selection through estimation of grasp qualities from

2.5D shape projections.

Considering a box and the points that it envelopes, each face produces a projection of the points onto

the face plane. In fact, these projections were already computed for best cut detection (see Section 2.3).

Discretization was made by dividing each face into equally sized cells, thus projections were represented

as dynamically sized binary grids. Additionally, opposing faces shared the same projection grid. These

grids kept binary information and were dynamically sized. To adapt this representation and enrich it, we

now compute linear information, i.e. minimum distance information to the face plane, in a normalized,

fixed-sized grid. Thus, all six projections have to be stored instead of three, since opposing faces do not

share the same projection anymore. In return, this representation both allows analyzing the 2.5D depth

map of each face and fulfills the input space conditions of a classical neural network.

By providing two grasp quality measures which will be introduced in detail in Section 4.2, GraspIt!

[29] is used as a teacher for a supervised network, estimating the stability of a grasp from a given face

F and its 2.5D projection grid proj(F), respectively. Since due to normalization in width, height and

depth, information about the dimension of F is lost, the box dimensions dim(F) are added in terms of

three additional neural network inputs.
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3.2.1 Final Grasp Decision

Finally, we have to decide where and how to grasp after initially having reduced the hypotheses to a

smaller set. The ‘where’ component equals a decision on grasping one of the faces with one orientation. To

do this, we apply the neural network approach presented above. The face projections of the remaining

hypotheses are fed into the net that has been previously off-line trained with artificial examples. In

our experiments, these are mostly complete models which have been processed by the algorithm and

their projections grasped in the grasp simulator. By providing the two quality measures, GraspIt! was

automatically used as a teacher for the supervised network, estimating the stability of a grasp on a

given 2.5D projection grid. After sorting out hypotheses that do not result in good force-closure response

(third network output) larger than 0.5, we decide for the one hypothesis with maximum vol grasp quality

(second network output). According to the definition of grasp hypotheses in (5), this is

H∗ = arg max
F

φ

(i,j)
∈H′ ∧ Nfc(F

φ

(i,j)
) ≥ 0.5

Nvol(F
φ

(i,j)), (6)

where Nx is the corresponding output of our neural net N and H′ the set of hypotheses after the

heuristical selection processes.

As briefly described above, the ‘how’ component is currently a direct mapping between a manually

given task description (e.g. pick, show) to a grasp pre-shape (e.g. power, pinch). An extension which

approaches the kinematic properties of the applied gripper and connects them to the projection, in order

to estimate good finger contact positions by a set of quality measures, has been proposed in [23].

At this point, we completed a method of selecting a ‘best pre-grasp hypothesis’ H∗ from a 3D point

cloud, using box decomposition. In terms of ‘best’, this not only considers ‘good’ stability, which can to

some extent be learnt and supported by a neural network, but also the proposed heuristical dependencies,

i.e. being ‘good’ in relation to the task at hand, the gripper embodiment, or the pose of the object.

4 IMPLEMENTATION

In this section, we present an experiment showing the capabilities of the presented techniques. Earlier

described experiments have been performed in simulation, but here we test the box decomposition on

real 3D stereo data.

4.1 Experimental Acquisition of 3D Data from a Stereo Setup

Our experimental 3D data will be produced from disparity using the four-camera Armar-III stereo head

shown in Fig. 5a. More information about the whole Armar-III robot, a humanoid platform at the

University of Karlsruhe, can be found in [30] and on www.paco-plus.org. The whole system consists

of two foveal cameras for recognition and pose estimation, and two wide field cameras for attention.

We proposed a grasping strategy for known objects, comprising an off-line, box-based grasp generation

technique on 3D shape representations on the complete platform in [22]. our interest here will be the
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practical processing of the proposed heuristical selection mechanism, including the considered decisions

on task, view-point, shape and size properties on unknown objects.

In our current system and scenario, where there is only one table for reasons of simplicity, detecting

the table plane is done once by Hough Transformation in 3D. Given a table plane, the 3D scene can

further be purged by removing points lying on or below this plane. See Fig. 5 for an example. More

details on our work on 3D segmentation can be found in Rasolzadeh et al. [21].

To demonstrate the output of our real system, the 3D data processing from stereo images, image

differencing, disparity processing, table plane reduction and 2.5D segmentation is visualized in Fig. 5.

Both detected ‘objects’ are clearly influenced by incompleteness, observable by some holes and by the

backsides which are not visible. Additionally, and due to disparity processing, there is noise in disparities,

as also some false assumptions, e.g. the uniformly colored top of the mug has been interpolated to a flat

surface. Most effects of these uncertainties become clear in Fig. 5d, where the 3D model of both objects

are shown from a different viewpoint.

(a) (b)

(c)

table plane table plane

(d) (e)

(f) (g)

Figure 5: (a) A duplicate of the Armar-III stereo head, used in our lab, including a clipped region of

an acquired rectified image. (b) Result of image differencing related to an image without the objects.

This mask is applied in (c) to results from the disparity processor. Note that apart from white being

the mask region, intensity corresponds to distance to the viewpoint. (d) Reconstructed scene purged by

table plane assumption. (e) 2.5D segmentation on table plane projection. The table is not detected, just

the (infinite) table plane visualized. (f) Reprojection of the segmented 3D point sets (g) to the image.

4.2 Experimental Simulation of Different Grasps Types

We can apply two types of approach techniques: a (backup) power-grasp and a pinch-grasp.

The Power Grasp (Backup) will put each pre-grasp position to a constant distance from the face’s

center aligned to its normal. We let the hand approach the object along the normal until an arbitrary

contact is detected. Afterwards, the hand retreats a small distance (the backup) to call the autograsping

function (see below). The backup is mainly used due to technical constraints of the simulator, and based

on contact instead of shape representation. We will call this type of grasp a power grasp to be in line

with common grasp taxonomies.
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The Pinch Grasp will force a grasp towards the center of mass by approximating the distance to the

box center the current face belongs to. The pinch is therefore based on the shape representation of the

object. In contrast to the power grasp, this technique is assumed better for small part grasping, as our

power grasp will usually retreat due to contact with another object first (e.g. a table under a pen). From

the approximated distance, the Autograsp is called. The Autograsp is a built-in grasping technique of

GraspIt! which closes all fingers of a gripper simultaneously. It is important to note that we apply just

one initial posture for each hand and do not consider different grasp pre-shapes at this point.

When all fingers are in contact, GraspIt! provides computation of two different grasp quality mea-

sures, namely epsL1 and volL1. Both measures rely on the convex hull of the union of force cones

derivable from the contact points [31]. While volL1 describes the volume as a measure of grasp quality,

epsL1 corresponds the the radius of the maximum sphere that can be placed inside this volume.

4.3 Experimental Box Decomposition and Grasping

Starting from the two segmented object point clouds in Fig. 5g, we trigger the framework modules

(decomposition, hypotheses generation and pre-grasp generation) with the parameters shown in Fig. 6.

Decomposition results for the treated examples are presented in Fig. 7, each (a) and (b). As one can

see, both examples are decomposed in a very similar way, resulting in three leaf boxes each. Though

not ideally, handle of the cup and head of the duck are separated from the other parts. Decomposition

time strongly depends on the complexity of the model, but is linear in relation to splits. In our cases at

hand, each split step takes around 4 seconds.

Hypotheses results for the treated examples are presented in Fig. 7, each (c) to (f). (c) shows the

occluded and blocked components opposed to the valid ones. Note that also a lot of backsides are invalid,

since the viewpoint in the scene is almost equal to the one in the sketches. (d) provides a view on the face

projections of all faces (also invalid). On those, the network is tested at a later stage. While in (e), all

valid pre-grasp hypotheses are depicted, (f) only shows those that relate to the chosen task-dependency.

The Final Pre-Grasp is determined by applying the trained network on the hypothesis set in (f). The

pre-grasp that results in best grasp stability estimate is chosen and performed (in GraspIt!). (g) shows

the approach position with fully opened hand, while (h) shows the state after approach and grasp.

4.4 Discussion

The presented results point to a couple of issues to discuss. As one can see, the decomposition of objects

into parts is only partially convincing. This is caused by general features of using vision and dense stereo

disparity, using a dynamic programming approach from [32, 33] for point cloud generation.

In particular, artifacts appear in the point cloud for uniformly colored regions, since unmatched

image points can only be interpolated. This issue makes the cup (Fig. 7b) appear to be closed at the

top surface, as also the front shape is quite erroneous. As an additional issue, the only data observable

is the one seen from only one view, causing the point cloud to be highly incomplete. Due to effect that
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I. Box Decomposition III. Pre-Grasp Execution

◦ Main parameters MVBB calculation [24] ◦ Enabled Embodiment-Dependency (see Section 3.1.4)

• 200 sample points and Grid(B) parameter 3. • Graspability test with ARMAR hand (aperture of 120mm)

• No reachability check by Arm kinematics

◦ Gain threshold t (see Section 2.3) ◦ Enabled Grasp Quality Learning (see Section 3.2)

• 0.90. • With ARMAR hand model,

• trained on artificial object models (Homer, Mug, Duck)

II. Grasp Hypotheses Generation

◦ Enabled Task-Dependency (see Section 3.1.1)

. • task : pick → box : largest, grasp : power

◦ Enabled View-Dependency (see Section 3.1.2)

. • Respective to camera viewpoint

◦ Enabled Constellation-Dependency (see Section 3.1.3)

. • Occlusion and Blocking

Figure 6: Algorithm parameters for the grasping experiment in Fig. 7.

I. Box Decomposition II. Grasp Hypotheses Generation III. Pre-Grasp

(b) (c)

(d)

(e)

(f)

(g)

(h)

P
o
in

t
S
et

#
1

(a)

- 45.773 Points

- 3 Leaf Boxes

- 7.33 sec decomp. time

- 18 overall faces = 72 overall hypotheses

- 6(14) valid faces after view (blocking)

- 16 hypotheses after blocking / aperture

- 4 approach hypotheses af-

ter box selection (largest) - Final best grasp

(b) (c)

(d)

(e)

(f)

(g)

(h)P
o
in

t
S
et

#
2

(a)

- 46.820 Points

- 3 Leaf Boxes

- 7.81 sec decomp. time

- 18 overall faces = 72 overall hypotheses

- 7(14) valid faces after view (blocking)

- 20 hypotheses after blocking / aperture

- 4 approach hypotheses af-

ter box selection (largest) - Final best grasp

Figure 7: Process for the two point clouds produced in Fig. 5d. For description, see text in Section 4.3.

more a 3D surface than a 3D model is considered by this, also the decomposition fits boxes to those

surfaces mainly and thereby looses valuable information about 3D shape. As an example for this, the

cup’s ‘cylindrical’ part (Fig. 7b) is finally represented by two orthogonal surfaces which are separated

by the decomposition. In comparison to experiments which applied complete models from a database of

known objects [22], performance is therefore not as good in terms of shape approximation.
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The various steps of hypotheses reduction were intentionally set relatively strictly in the experiment.

The view-point heuristic removes all hypotheses that are not visible from the view-point, relating to

the issues above. However, in case of complete models, applying this heuristic would be rather unliked:

grasps from the backside are valid and interesting, especially when front-hypotheses are not well-rated.

The task-related box selection is clearly influenced by the unfavorable box decomposition. Note, however,

though in Fig. 7f only hypotheses connected to one box are visualized, all of the hypotheses in Fig. 7e are

considered through ranking both related to size of box and grasp quality estimate. This will prevent an

empty result if there is no good hypothesis for, e.g. the largest, box by switching to the second-largest,

and so on. It can be noticed that the hypotheses set is very restricted. However, the flexibility of the

framework allows to disable or enable heuristics to control the size of the final hypotheses set.

For the final pre-grasp generation from a set of hypotheses, the trained network estimates grasp

quality from the samples shown in Fig. 7d. The best ranked are performed in Fig. 7g and 7h with a

right-hand gripper. As one can see, the grasps are awkward having in mind the embodiment of the right

hand on the right arm of the humanoid platform. This problem can be solved by integrating an inverse

kinematics solver which is then able to rate hypotheses by their reachability, as also if the left or the

right hand can be used [22]. Another issue in this context is that one separate neural network has to be

trained for each hand and each type of grasp pre-shape type (e.g. power-grasp, pinch-grasp). It has not

been analyzed yet if, and up to which degree, grasp quality measures are generalizable over such options.

In the experiment, only one network was trained for the right hand gripper model and the power grasp.

Despite these issues, the framework presented in this paper is one of few that approach 3D shape

approximation from dense stereo data instead of 3D range data or 3D meshes for the purpose of grasping.

The source of data for our algorithm is arbitrary, as long as it represents 3D point clouds. Nevertheless,

the high complexity and manifold difficulties of a vision-based approach have been pointed out. However,

we believe that the proposed framework is flexible enough to be extended toward such issues.

5 CONCLUSIONS

We presented the continuation of box approximation work used for robot grasping. We specified the core

algorithm and specific extensions of connecting box shape approximation and grasp hypotheses genera-

tion in earlier work [17, 18, 22, 23]. In our approach, we combined several motivations known from the

shape approximation and grasping literature. In short, we prune the search space of possible approxima-

tions and grasp hypotheses by rating and decomposing very basic shapes, which intuitively corresponds

to the ‘grasping-by-parts’ strategy. In this paper, we focused in greater detail on all the parts of an en-

tire framework taking advantage of the very simple shape representation of boxes. Starting from boxes

and their faces that the core algorithm produces, we extended the idea of ‘grasping on boxes’ towards

an applicable grasping strategy. This strategy includes various heuristical selection criteria based on

efficient geometrical calculations, as also learning from off-line simulation. Basic task-dependencies have

been included in this process. We see the strength of our approach in its simplicity and its modularity.
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The simplicity is obvious by using boxes and faces in 3D space. Geometric calculations are easier to

do in contrast to more sophisticated shape primitives like superquadrics. As presented, boxes and faces

can additionally take advantage of linear shape projections. The modularity is established by mostly

independent criteria and heuristics that complement each other and flexibly leave space for extensions.

There are many possibilities to extend, adapt and optimize the current framework. Considerations

have to be made for the neural net structure, e.g. if it is better to extend the learning to grasp qualities

dependent on the chosen grasp pre-shape, i.e. setting three quality outputs for each available grasp

pre-shape. Additionally, the simulation part for learning is currently done using static simulation. Thus,

contact will stay static between gripper and object, while in dynamics, and reality, the object pose will

change dependent on the force applied to it. As discussed, we are aware that our approach is a pre-grip

component based on very robust shape information. The grip component, as an additional module,

would contribute in terms of fine correction based on haptic feedback [34]. We see haptic feedback and

exploration also as a solution to approach the problem of incomplete models acquired from stereo vision.

Merging the 3D data from stereo with 3D data from haptic contact points along the backsides of objects

may therefore be an issue of future work.

As another issue, the projection of an object onto the box faces ignores to some extent the real 3D

shape of the object, disregarding correct surface normals of the object in the grasp planning. Thus,

there is a possibility that planned grasps are infeasible, which addresses the limitation of the proposed

planning. In [23], we tried to approach this issue using explicit gripper kinematics in order to analyze

finger position estimations on the projections, extending work of Morales et al. [35].

As future work, one could also imagine higher-level part classification to infer suitable grasp pre-

shapes from a wider variety of primitives. Given all three projections of a box or the enclosed point cloud

itself, one could try to classify the represented shape, which is ought to correspond to an object part.

This relates to work on view-based object (part) representation. Classification of shape is a beneficial,

but also complex task, as additionally, the box constellation may be very different as influenced by

noise, perspective view and uncertainties. For the purpose of grasping on faces, this is not a very severe

problem, while in part and object classification, it probably will be. Evaluations of these high-level

ideas are not a topic of our short-term goal. However, we are planning to evaluate a model-based part-

matching technique like in [36], matching 3D data of shape primitives (e.g. cylinders, spheres, cones) to

the point subsets generated from the box decomposition.

Another high-level issue is task dependency. There are different task types on which a grasp may

depend. Just to pick up a cup and place it somewhere else might yield a different grasping action as

picking up the cup to show it or hand it over. These grasp semantics can be mapped to boxes in the

set, e.g. ‘grasp the largest box for a good force grasp to securely move the object’, ‘grasp the smallest

box for a good pinch grasp to show a most unoccluded object to a viewer/camera’ or ‘grasp a very

outlying box so that another human / robot hand can overtake the object easily’. The latter semantics

are quite valuable for applications that are based upon interacting with objects before the exploration

and recognition stage.
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