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Abstract:

WP2 is concerned with grasp posture modeling strategies, reactive grasping, and corrective movements
for a robot hand, thus providing the basics for manipulation. Consequently, the final goal is to equip
the hardware system with sensing and motor components that can be used for learning Object-Action-
Complexes (OACs). As part of WP2.2, this deliverable reports particular work on grasping primitives and
haptic exploration of objects. The included publications discuss different aspects of this area, including
grasping primitives from 3D edge information, grasping primitives from box-based shape approxima-
tions, and haptic exploration.
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1. Executive Summary

The core focus of WP2 is on grasp posture modeling strategies, reactive grasping, and corrective movements
for a robot hand, thus providing the basics for manipulation. Manipulation requires several basic capabilities
of the robot to perceive and act, where of we approach

• acquisition of object information to form object representations (WP2 and WP4),
• generation of grasp hypotheses / reactive grasping (WP2.2, this deliverable),
• correction or verification of object information and object representations (WP2), and
• integration and demonstration of the developed strategies (WP1 and WP8).

As part of WP2.2, this deliverable reports particular work on grasping primitives and haptic exploration of
objects. To do this, object representations in terms of 3D shape are necessarily required and immanent.
While 3D shape representations also play a major role in WP4 “Object-Action Complexes”, the relevance
of WP2 is described by investigating grasp generation, haptic feedback and corrective finger movements.

It is important to note the complementary nature of the two different developed grasp generation techniques
which we will describe in Section 2 and 3. While in Section 2, we successfully refer to grasp generation
based from pure 3D edge-based representations of objects for sparse 3D data, Section 3 describes a sci-
entifically differently motivated approach of grasp generation based on dense 3D data. Our publications
prove that in both fields, we contributed to the state-of-the art, while project-internally, we value advantages
of both techniques in terms of a complementary combination. However, it has early been recognized that
successful grasping, especially grasp generation on unknown objects, can not be sufficiently solved by such
vision-based methods only. Thus, besides presenting the impact of learning aspects in Section 2, we also
conclude our contributions in terms of haptic exploration, which we believe can clearly boost the generation
of successful grasps, in Section 4.

To conclude our introduction, this deliverable comprises 5 published papers and 1 technical report emerged
from the project during the last project period (months 36 to 48). These publications discuss different aspects
of different areas. Mainly, these are

• grasping primitives from 3D edge information,
• grasping primitives from box-based shape approximations, and
• haptic exploration.

In the following, we report the specific contributions of each of these topics before briefly sketching the
papers related and attached to this deliverable.

2. Grasping Primitives from 3D Edge Information

We have presented a system to autonomously create and evaluate grasping hypotheses based on 3D edge
information. For each scene, a large number of grasps become computed by using co-planar 3D contours as
in [4]. We then learn an evaluation function which associates a success likelihood to each grasp by using a
neural network. The learning is based on labeled data in terms of executed grasps that have been evaluated
autonomously (i.e., the visual features the grasp has been derived from and its haptically measured success).

The integration of learning, both offline and online, enabled us to increase the overall success ratio of grasps
by predicting their outcome. Especially the integration of online learning allows to define more complex
grasping strategies, addressing the exploration of the feature space. The extraction of 3D edge primitives
and the system diagram of creating and evaluating grasp hypotheses automatically is shown in Fig. 1 and 2.

A more detailed formulation about the complete system has been included in this deliverable [A1].
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Figure 1: The extraction of primitives. Figure 2: Flow diagram for creating and
evaluating grasp hypotheses.

3. Grasping Primitives from Box-Based Shape Approximations

In the final phase, we presented the continuation of box approximation for the purpose of robot grasping.
We specified the core algorithm and specific extensions of connecting box shape approximation and grasp
hypotheses generation in earlier work [2, 3] and extended it in the attached recent publications [A2, A3].
In our approach, we prune the search space of possible approximations and grasp hypotheses by rating and
decomposing very basic shapes, which intuitively corresponds to the “grasping-by-parts” strategy. In the
attached technical report [A4], we focused in greater detail on all the parts of an entire framework taking
advantage of the very simple shape representation of boxes. Starting from boxes and their facets which the
algorithm extracts from 3D point data, we extended the idea of “grasping on boxes” towards an applicable
grasping strategy. This strategy includes various heuristical selection criteria based on efficient geometrical
calculations, as also learning from off-line simulation. The strength of our approach can be seen in its
simplicity and its modularity. The simplicity is obvious by using boxes and rectangular facets in 3D space.

The proposed framework presented is one of few that approach 3D shape approximation from dense stereo
data instead of 3D range data or 3D meshes for the purpose of grasping. The source of data for the pre-
sented algorithms is arbitrary, as long as it represents 3D point clouds. Nevertheless, the high complexity
and manifold difficulties of a vision-based approach were pointed out. A conclusion drawn is clearly that
experimental setups applying complete models from a database of known objects [A3] result in higher per-
formance in terms of shape approximation as those applying online data gathered from single-view camera
dense stereo [A4]. However, we believe that the proposed framework is flexible enough to be extended
toward such issues. Merging the 3D data from stereo with 3D data from haptic contact points along regions
of shape uncertainty of objects may therefore be a solution, and motivates fine correction based on haptic
feedback [5] or haptic data acquisition and exploration.

Some examples for generated grasps from box-based shape approximation can be seen in Fig. 3.
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Figure 3: Exemplary grasps generated from box-based grasp generation system.

4. Haptic Exploration

Our approach on haptic exploration is based on dynamic potential fields for motion guidance of the fingers
of a humanoid hand along the contours of an unknown object. During the exploration process oriented
point sets from tactile contact information are acquired in terms of a 3D object model. Fig. 4 gives an
overview on our tactile exploration module. We presented an initial version of this method earlier in [1].
Beyond this, we demonstrated concepts and preliminary results for applying the geometric object model
to extract grasp affordances from the data [A5, A6]. The grasp affordances comprise grasping points of
promising configurations which may be executed by a robot using parallel-grasps. For object recognition
we have outlined our approach which relies on transforming the sparse and non-uniform pointset from tactile
exploration to a model representation appropriate for 3D shape recognition methods known from computer
vision.

We believe that the underlying 3D object representation of our concept is a major advantage as it provides
a common basis for multimodal sensor fusion with a stereo vision system and other 3D sensors. As finger
motion control during exploration is directly influenced from the current model state via the potential field,
this approach becomes a promising starting point for developing visuo-haptic exploration strategies. We
also believe that the proposed scheme is transferable to different manipulator and robot hand kinematics by
adapting its parameters.
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Figure 4: Tactile exploration scheme based on dynamic potential field.
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[A1] Learning to Grasp Unknown Objects Based on 3D Edge Information
L. Bodenhagen, D. Kraft, M. Popovic, E. Baseski, P. Eggenberger Hotz and N. Krüger
Presented and published on International Symposium on Computational Intelligence in Robotics and
Automation 2009.

Abstract: In this work we refine an initial grasping behavior based on 3D edge information by learning.
Based on a set of autonomously generated evaluated grasps and relations between the semi-global 3D
edges, a prediction function is learned that computes a likelihood for the success of a grasp using either
an offline or an online learning scheme. Both methods are implemented using a hybrid artificial neural
network containing standard nodes with a sigmoid activation function and nodes with a radial basis
function. We show that a significant performance improvement can be achieved.

[A2] Learning of 2D Grasping Strategies from Box-Based 3D Object Approximations
S. Geidenstam, K. Huebner, D. Banksell and D. Kragic
Presented and published on Robotics, Science, and Systems Conference 2009.

Abstract: In this paper, we bridge and extend the approaches of 3D shape approximation and 2D
grasping strategies. We begin by applying a shape decomposition to an object, i.e. its extracted 3D
point data, using a flexible hierarchy of minimum volume bounding boxes. From this representation,
we use the projections of points onto each of the valid faces as a basis for finding planar grasps. These
grasp hypotheses are evaluated using a set of 2D and 3D heuristic quality measures. Finally on this set
of quality measures, we use a neural network to learn good grasps and therelevance of each quality
measure for a good grasp. We test and evaluate the algorithm in the GraspIt! Simulator.

[A3] Grasping Known Objects with Humanoid Robots: A Box-Based Approach
K. Huebner, K. Welke, M. Przybylski, N. Vahrenkamp, T. Asfour, D. Kragic and R. Dillmann
Presented and published on 14th International Conference on Advanced Robotics 2009.

Abstract: Autonomous grasping of household objects is one of the major skills that an intelligent ser-
vice robot necessarily has to provide in order to interact with the environment. In this paper, we propose
a grasping strategy for known objects, comprising an off-line, box-based grasp generation technique on
3D shape representations. The complete system is able to robustly detect an object and estimate its pose,
flexibly generate grasp hypotheses from the assigned model and perform such hypotheses using visual
servoing. We will present experiments implemented on the humanoid platform ARMAR-III.

[A4] Grasping by Parts: Robot Grasp Generation from 3D Box Primitives
K. Huebner and D. Kragic
Unpublished internal Technical Report, Royal Insitute of Technology (KTH), Stockholm.

Abstract: One of the core challenges in the eld of robotics is to equip robots with the ability to in-
telligently interact with the world. To achieve this, a robot necessarily needs to perceive and interpret
the environment in a proper way and understand the situations it is engaged in. The robot thus has to
be able to gather and interpret the sensory information in new, unforeseen situations being provided
some minimal knowledge in advance. For service robot applications, one of the key requirements is to
be able to detect, recognize and manipulate objects, autonomously or in collaboration with humans and
other robots. These capabilities should also include the generation of stable grasps to safely handle even
objects unknown to the robot. We believe that the key to this ability is not to select a good grasp de-
pending on the identication of an object (e.g. as a cup), but on its shape (e.g. as a composition of shape
primitives). In this paper, we envelop our previous work on shape approximation by box primitives for
the goal of simple and ecient grasping, and extend it with a deeper investigation of methods and robot
experiments.
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[A5] Grasp Affordances from Multi-Fingered Tactile Exploration using Dynamic Potential Field
A. Bierbaum, M. Rambow, T. Asfour and R. Dillmann
Accepted to IEEE/RAS International Conference on Humanoid Robots, Humanoids 2009.

Abstract: In this paper, we address the problem of tactile exploration and subsequent extraction of
grasp hypotheses for unknown objects with a multi-fingered anthropomorphic robot hand. We present
extensions on our tactile exploration strategy for unknown objects based on a dynamic potential field
approach resulting in selective exploration in regions of interest. In the subsequent feature extraction,
faces found in the object model are considered to generate grasp affordances. Candidate grasps are
validated in a four stage filtering pipeline to eliminate impossible grasps. To evaluate our approach,
experiments were carried out in a detailed physics simulation using models of the five-finger hand and
the test objects.

[A6] Dynamic Potential Fields for Dexterous Tactile Exploration
A. Bierbaum, T. Asfour and R. Dillmann
Presented and published on 3rd International Workshop on Human Centered Robotic Systems 2009.

Abstract: Haptic exploration of unknown objects is of great importance for acquiring multimodal object
representations, which enable a humanoid robot to autonomously execute grasping and manipulation
tasks. In this paper we present our ongoing work on tactile object exploration with an anthropomorphic
five-finger robot hand. In particular we present a method for guiding the hand along the surface of an
unknown object to acquire a 3D object representation from tactile contact data. The proposed method
is based on the dynamic potential fields which have originally been suggested in the context of mobile
robot navigation. In addition we give first results on how to extract grasp affordances of unknown objects
and how to perform object recognition based on the acquired 3D point sets.
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Strategy for Grasping Unknown Objects based on Co-Planarity and Colour Information. Robotics and
Autonomous Systems, 2010.

[5] J. Tegin, S. Ekvall, D. Kragic, B. Iliev, and J. Wikander. Demonstration-based Learning and Control for
Automatic Grasping. Intelligent Service Robotics, 2:23–30, 2009.



Learning to Grasp Unknown Objects Based on 3D Edge Information

Leon Bodenhagen, Dirk Kraft, Mila Popović,
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Abstract— In this work we refine an initial grasping behavior
based on 3D edge information by learning. Based on a set of
autonomously generated evaluated grasps and relations between
the semi-global 3D edges, a prediction function is learned that
computes a likelihood for the success of a grasp using either
an offline or an online learning scheme. Both methods are
implemented using a hybrid artificial neural network containing
standard nodes with a sigmoid activation function and nodes
with a radial basis function. We show that a significant
performance improvement can be achieved.

I. INTRODUCTION

Being able to grasp unknown objects is becoming a more
and more important goal within emerging application areas
e.g., service robotics which do not rely on strongly structured
environments as they are available in industrial robotics.
Furthermore, for many of these applications a system that
is able to learn how to do this—and potentially adapt to
changes later on—is preferable.

It has been shown that already rather high success rates of
grasping can be achieved for unknown objects by defining
grasps based on co-planar pairs of 3D contours ([1], [2]). In
this work, we show that the success rate of this approach
can be further increased by the introduction of learning. The
resulting system is a grasping behavior that decides which
grasp from a number of grasping options to perform, based
on a success prediction.

For each scene, a large number of grasps become com-
puted (see Fig. 4(b)) by using co-planar 3D contours as in
[1]. We then learn an evaluation function which associates a
success likelihood to each grasp by using a neural network.
The learning is based on labeled data in terms of executed
grasps that have been evaluated autonomously (i.e., the visual
features the grasp has been derived from and its haptically
measured success). We then apply a supervised learning
scheme on that autonomously generated data. This is pos-
sible by making use of a highly robust robot-vision system
with force-torque sensors, motion planning and collision
detection. The system is also able to deal with critical and
unforeseen situations such as collisions and non-successful
grasps. After learning, the system is able to compute success
likelihoods for potential grasps and hence a behavior which
selects the most promising grasp that can be performed. The
grasp selection can be learned offline and online and success
rate can be increased from 42.0% to 51.1% in the offline
learning case and from 42.0% to 47.9% in the online case.

Grasping in general, both with and without knowledge
about the object to grasp, is an area where a lot of effort has
been spent as grasping allows a robot to take control over
an object, manipulate it, and in general to interact actively
with the environment. Classically it has been assumed that an
object model is available either as given (e.g. a CAD-model)
or learned. A grasp can then be investigated and planned in
detail. Computing optimal grasps—where optimal can mean
different things, e.g., maximize different torques and forces
that the gripper can apply to the object—based on surface
models has been extensively treated in the literature (see [3]
for an overview). In contrast Borst et al. showed in [4] that
while finding the optimal grasp is hard, finding a good grasp
is not difficult.

If no object model is available, grasps need to be planned
based purely on sensor-information and heuristic knowledge.
Apart from e.g. laser range or ultrasound, vision sensors
are often used as they can provide significant amount of
information about the environment and the object to grasp.
The complexity of dealing with this information leads to
very different approaches about how to compute a grasp, of
which some are presented in the following. While using laser
scanners, a common approach is to segment the laser data
into point clouds and create practical grasping points (see
e.g., [5]). A possible approach based on vision sensors is
to perform a simple line scanning of the environment (see
e.g. [6]). Another approach is to build up a dense 3D model
of the environment by using a laser line in addition to the
stereo camera, which simplifies the stereo matching problem
(e.g. [7]). When such a dense description of the environment
is available, the planning of a grasp becomes similar to the
situation where the object is known. As in Saxena et al.
[8], sparse stereo can also be used by triangulating different
2D visual features. The position of the grasp can then be
defined by the reconstructed 3D points and the orientation
of the gripper is determined by the intention not to collide
with other objects and with the limitation of the robot having
only five degrees of freedom.

Learning how to choose grasps and generalizing this
information has been studied both in vision and robotics
community (see e.g., [9], [10]) where previously performed
grasping trials are used to predict the quality of future
grasps. Similar to our approach, [11], [12] learn a function
that allows to predict the outcome of a grasp based on
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Fig. 1. Hardware setup.

two dimensional visual features, proprioceptive and features
derived from these. On the other hand, the selection of the
features induces a high amount of prior knowledge. This
approach which focused on scenes containing a single planar
object with a solid color was extended by Speth et al. in [13]
to non-planar objects.

The most significant difference of our approach to the
approaches mentioned above is that we do learning of
grasping of unknown objects based on 3D contour relations
instead of 3D features. Moreover, our system is able to act
in complex environments with multiple objects since it does
not require any specific prior object knowledge. A particular
strength is also that we have a system, in which the training
data is generated autonomously by haptic evaluation during
exploration. This is in particular important in the context of
online learning as done in this paper.

II. SYSTEM

A. Robotic Setup

The hardware setup (see also Fig. 1) used for this work
consists of a six-degree-of-freedom industrial robot arm
(Stäubli RX60) with a force/torque (FT) sensor (Schunk
FTACL 50-80) and a two-finger-parallel gripper (Schunk PG
70) attached. The FT sensor is used to detect collisions.
Together with the foam floor, this permits graceful reactions
to collision situations which might occur because of limited
knowledge about the objects in the scene. In addition, a
calibrated stereo camera system (Point Grey BumbleBee2)
is mounted in a fixed position in the scene. The system also
makes use of a path-planning module which allows it to
verify the feasibility of grasps with respect to workspace
constraints and 3D structure discovered by the vision system.

B. Early Cognitive Vision System and Grasp Hypothesis
Definition

In this work, we make use of the visual representation
delivered by an early cognitive vision system [14], [15],
[16]. A calibrated stereo camera setup is used to create
sparse 2D and 3D features, so-called multi-modal primitives,

Fig. 2. The extraction of primitives. (a,b) show the original left and right
image. (c,d) show the corresponding 2D primitives. (e,f) show a close up
of the 2D primitives and their modalities: orientation (1), phase (2) and
color (3). (g) illustrates the reconstruction of a 3D primitive using two 2D
primitives. (h) shows the resulting 3D primitives.

along image contours. 2D features represent a small image
patch in terms of position, orientation, phase, color and
optical flow, denoted by π = (x, θ, φ, (cl, cm, cr) , f) (see
Fig. 2(f)). These are matched across two stereo views,
and pairs of corresponding 2D features permit the recon-
struction of a 3D equivalent encoded by the vector Π =
(X,Θ,Φ, (Cl,Cm,Cr)).

The procedure to create the visual representation is illus-
trated in Fig. 2 on an example stereo image pair. Note that the
resultant representation not only contains appearance-based
(e.g., color and phase) but also geometrical information (i.e.,
2D and 3D position and orientation).

2D and 3D primitives are organized into perceptual groups
in 2D and 3D (called 2D and 3D contours in the follow-
ing) based on good continuation in terms of geometry and
appearance. To ease the mathematical usage of contours a
parametric description is fitted to the primitives of a contour.
Hereby positions can be determined continuously at the
contour. In the following we will use the notation C(u) for
the 3D position on the contour at u, where u is in the interval
[0, 1]. This means that C(0.5) denotes the center of a contour.

The sparse and symbolic nature of the visual features
allows for defining perceptual relations on them that express



relevant spatial relations in 2D and 3D (e.g., co-planarity,
co-colority). This relational space is then used to trigger
grasping and to learn the success likelihood of grasping given
a certain constellation of contours. The perceptual relations
used in this work are briefly described in Section IV.

Given two co-planar and co-color 3D contours, four dif-
ferent grasping actions have been defined in [1] for a two-
finger gripper, as illustrated in Fig. 3. Note that, a grasp for a
two-finger gripper is defined through a 3D location and two
directions. While we initially based this definition on local
features and their relations, [1] already uses contour relations
to find more stable feature tuples.

In this work, in contrast to [1] entire contours are used
to define the grasps, rather than their center primitives. This
is necessary to preserve consistency between the grasping
hypotheses and the learning problem as the latter utilizes
relations defined on both contours used to define a grasp. Fur-
thermore this leads to a more robust definition as semi-global
rather than local entities are used [17]. The 3D position of a
grasping hypothesis is determined using the center positions
of the contours. The 3D orientation is determined using a
common plane fitted to both contours, and the tangents of
the contours at the position to be grasped. Fig. 4 shows an
example of different grasping actions.

III. BEHAVIOR FOR AUTONOMOUS EXPLORATION

For the generation and evaluation of a grasping hypothesis,
an autonomous grasping agent has been implemented (an
overall flow diagram is shown in Fig. 5). The evaluation is
done in two steps. First the gripper is closed (or opened if
it is an EGA2 grasp). If the gripper touches the object, the
jaws will apply a force to the object. As the force the gripper
applies is limited, the movement will stop. If the movement
stops but the gripper is not fully closed (resp. opened) the
grasp is assumed to be successful as the object must have
prevented the gripper from closing/opening fully.

When the robot returns to the home position and the grasp
has initially been detected to be successful, it is checked
again whether it is successful or not. If the grasp is found
to be unsuccessful, it is labeled as being unstable, as it is
assumed that the object has been lost during the movement,
hence the grasp was not sufficiently stable.

Fig. 3. Elementary grasping actions (EGAs). Red lines indicate 3D
contours, red dots their center. EGA3 and EGA4 can each be defined with
two different positions — one for each contour.

(a) (b)

Fig. 4. Generation of multiple grasping hypotheses. (a) A sample object.
(b) Grasping hypotheses generated for the sample object. Note that not all
of them will lead to successful grasps.

IV. FEATURES USED FOR LEARNING

To learn the success likelihood of grasping for a certain
visual feature constellation, the visual and geometrical events
that trigger the grasp are used as a feature vector β for
the learning algorithm (see Section V for the details of the
learning algorithm).

β = {Fpar, Fcop, Fcol, Fdist, Fcocol} (1)

Since the grasping hypotheses are defined based on sec-
ond order 3D contour relations, the feature vector contains
relations between the contours that have been used for the
definition of the grasp. In this section, we briefly discuss
these visual and geometrical relations which are based on
the visual representation presented in Section II-B.
Co-colority: Since contours are composed of image patches
that have a left, right and middle color, for every contour a
mean color is calculated for all sides. Note that the CIELAB1

standard is used to encode colors. The co-colority between
two contours is calculated as the color difference (CIE 1994,
[18]) between the sides that are facing each other. The co-
colority between contours CA and CB is defined as:

Fcocol(CA, CB) = dE (c1, c2) (2)

where c1 and c2 are the colors of the contours and dE is
the CIE 1994 color difference

To compute which sides of the contours are facing each
other, 2D-projections of the contours are used. For each
contour a line is defined (as illustrated in Fig. 6(a)) by its
center-point C(0.5) and the overall direction of the contour
u given by direction of the greatest positional variance which
is determined using principal component analysis. Further it
is checked whether the center of the other contour is on the
left or the right of this line and hereby which of the color
values to use.
Co-planarity: The co-planarity between two contours is
determined by combining their primitives to a set of pairs

1Color space defined by the International Commission on Illumination
with the goal to approximate human color perception.



Fig. 5. Flow diagram for the process of creating and evaluating grasping
hypotheses automatically. The bright part (top right) indicates the utilization
of active collision detection.

P (as illustrated in Fig. 6(b)) and by computing the mean
local co-planarity between all pairs.

Fcop(CA, CB) =
1
|P |

|P |∑
s=1

cop (P (s)) (3)

where P (s) denotes the s′th pair, |P | denotes the number
of the pairs and cop(P (s)) denotes the local co-planarity
between Πi and Πj . The local co-planarity between Πi and
Πj is defined as the angle between ni and nj where ni is
the vector defined as ni = Θi × v, Θi is the orientation of
Πi and v = Xi − Xj (vector between the 3D locations of
Πi and Πj),
Distance: The Euclidean distance between two contours is
defined as the distance between their centers:

Fdist(CA, CB) = ‖CA(0.5)− CB(0.5)‖ (4)

Parallelism: The parallelism between two contours CA and
CB is measured as the projection of the normalized overall
direction vector of CA (uA) and CB (uB).

Fpar(CA, CB) = |uA · uB | (5)

L2L1
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Fig. 6. (a) Whether the left or the right color of a contour is used for the co-
colority computation is determined by the contour’s position relative to the
line which is defined by the center and the first principal component vector
of the other contour. (b) Dashed lines indicate the pairing of primitives,
used for relations that do not address the entire contours.

Collinearity: Collinearity is an important relation as
collinear contours still can be co-planar and parallel. But for
collinear contours it is no longer possible to define grasps
properly, as the plane fitted to collinear contours is not valid
and subsequently the orientation determined by the plane
can be arbitrary. In order to determine if a pair of contours
is collinear, the normalized overall direction vector of the
contour combined with the positions of the contours are used:

v =
CA(0.5)− CB(0.5)
‖CA(0.5)− CB(0.5)‖

(6)

Fcol(CA, CA) =
|v · uA|+ |v · uB |

2
(7)

V. OFFLINE- AND ONLINE-LEARNING

Based on triplets, consisting of a feature-vector, a grasping
hypothesis and the evaluation of the grasp, learning can be
applied. The aim is to predict the success likelihood of an
unevaluated hypothesis. Learning is realized using a neural
network. The following sections describe the architecture of
the network and how both offline and online learning are
implemented.

A. Basic Structure of Neural Net

The network has been chosen to be a hybrid of a radial
basis function network (RBFN) and a standard neural net-
work. The benefit of RBFNs is that their Gaussian activation
h(x) is defined by a center position c in the feature space
and a width in each dimension of the feature-space:

h(x) = exp(−1 · (x− c)TS−1(x− c)) (8)

where S is a diagonal matrix defining the N widths of the
Gaussian function:

σ = {σ1, σ2, · · · , σN} (9)
S = diag(σ) (10)

Therefore a single RBFs affects the result only locally
which allows subsequently to investigate where in the feature
space something has been learned. Further individual RBF-
nodes can be removed or altered without side effects, which
is not possible in a standard neural network as the impact
of the individual neuron is difficult or even impossible to
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Fig. 7. Architecture of neural network. The input is given by an N-
dimensional feature vector and the type of the corresponding hypothesis. The
output reflects the likelihood for the grasping hypothesis to be successful.
The 0’th neuron in the hidden ANN-layer provides a bias for the other four
neurons. The dashed lines connecting them to the RBF-neurons represent
the weights that are obtained during learning.

determine. The drawback of RBFs, is that they are located
continuously in the feature space which makes it difficult to
integrate discrete inputs, as for instance the type of the grasp
which cannot be neglected. Therefore an additional layer has
been defined (see Fig. 7) containing four standard neurons
— one for each type. The type of the grasp presented to the
network will then activate exactly one of these neurons. An
alternative to this solution would be to independently train
four individual networks. This requires the entire training set
to be split, which has been considered to be worse than the
fact that the RBFs might not be chosen optimally for each
grasping type.

An additional neuron provides a bias to the other four
neurons. Without this bias, the response of the network would
depend highly on the fact whether the current input causes a
significant activation of one of the RBFs. If the outputs of the
all RBFs are close to zero, the estimate of the overall network
would be misleading. The weight for this additional neuron
depends on the overall grasping strategy. If it is desired to
select grasps with a high likelihood for being successful the
bias can force the output of the neural close to zero when no
RBF has a significant response. If on the hand it is desired to
explore the feature space further, the bias enables the system
to prefer grasping hypotheses with novel feature vectors.

Different learning methods are used to determine the RBFs
and the weights connecting them to the standard neurons.

B. Offline Learning

Apart from defining the individual RBFs it is also neces-
sary to determine how many of them are actually needed.
As each RBF corresponds to a limited area in the space
spanned by the features, it is natural to locate an RBF in
the feature space where grasps have occurred. Considering
a set of recorded grasps T , which form a training set for

an offline learning algorithm, the RBFs should be located at
regions where multiple grasps occurred. These positions can
easily be determined by applying a clustering algorithm like
k-means on T . The k-means-algorithm detects k clusters in
T , where k needs to be defined beforehand. The k-means
implementation from [19] was used in this work.

Several approaches exist to estimate k. As it cannot be
predicted if the training set is nicely clustered, a more
intuitive approach proposed by [20] is used.

The key idea is to create an artificial uniformly distributed
data set and to compare the performance of the clustering
using k clusters on the training set with respect to the
artificial data set (see [20]). The evaluation is based on
distance between the data points in a cluster. If a ‘required’
cluster is added, the distances in the real dataset are expected
to decrease more than the ones in the artificial data set.
When a superfluous cluster is added, the reduction of the
distances will stagnate (compared to the artificial data set).
Computing this distance for every appropriate value allows
us to determine the optimal value for k.

The positions of the clusters are used as the centers
for the RBFs. The widths are determined by the standard
deviation of the data points associated to each cluster. The
determined deviations are scaled by a constant α which is
chosen manually within the range [0; 1].

Now only the output weights need to be determined. For
this purpose a method from Orr (see [21]) is adapted which
is based on a global optimization of the weights with respect
to the training set. First the training set T is divided into four
subsets T1, · · · , T4, each containing the evaluated grasps of
one of the four types (e.g. EGA1). For each grasp the features
vector x is used as input for the radial basis functions hi(x)
with i = 1, · · · , k. The responses are stored in a matrix:

Hs =


h1(x1) h2(x1) · · · hk(x1)
h1(x2) h2(x2) · · · hk(x2)

...
...

. . .
...

h1(xt) h2(xt) · · · hk(xt)

 (11)

where t = |Ts| and s = 1, · · · , 4.
As the training set has been split based on the type of the

grasps, only one neuron in the second hidden layer needs to
be considered for each subset Ts. The input ys, which this
neuron receives, is the sum of the responses of the RBFs,
weighted by the k weights ws. For the set Ts ys can be
written as a vector:

ys = Hsws (12)

As the outcomes of the grasps are known, ys can be
defined based on these and then be used to determine
appropriate weights as described below. Usually g(y) is
chosen to be a sigmoid activation function φ(y), as it has
the advantages of being smooth, bounded to the range [0; 1]
and easily differentiable:

φ(y) =
1

1 + exp(−y)
(13)



For the determination of ws, it is advantageous to consider
a linear activation function that only computes the weighted
sum as this allows to apply linear least squares. For this
purpose the mean success ratio of all grasps associated to
a cluster is computed and the value of y which leads to an
output of φ(y) equaling the success ratio is determined. Each
entry of ys is set to the prior computed value. The weights
can then be found using the pseudo inverse:

ws =
(
HT
s Hs

)−1
HT
s ys s = 1, · · · , 4 (14)

The benefit of this method is that it provides a solution for the
weights that allows for an optimal estimate of the likelihoods
for being successful of the individual grasps, based on the
linear activation function. It is on the other hand important
to remember that the maximum value of k is limited by the
size of the individual sets Ts.

C. Online Learning

The online learning approach uses the same architecture
as the offline learning method presented in section V-B. In
contrast to offline learning it does not access the entire data
set at once, but uses the instances iteratively. Therefore no
global optimization can be used, which in general leads to a
performance that is worse than with offline learning.

The online learning algorithm has three different mecha-
nisms which can be applied:

1) Add an RBF when the current input is not recognized.
2) Adapt to current input.
3) Remove an RBF.
Similarities with Self-Organizing Maps (SOMs), or more

specifically growing SOMs, might become notable. The
concept of SOMs has been used to some extent in order to
define mechanisms that are considered useful for the online
learning strategy in this work.

1) Adding an RBF: When the input is not recognized, a
new RBF is added. Whether an input is recognized or not is
determined by the overall response of the RBFN — if it is
below a threshold thins, the input point is assumed not to
be recognized. When the learning is initiated with an empty
RBFN, the activation for any input will be zero, and an RBF
will be added with a center positioned at the location of first
input point.

2) Adaption: If an input is recognized, the RBF with the
highest activation will adapt to it if its activation is larger
than the threshold thadapt. The adaption consists of multiple
steps: the position and the width will be adjusted and the
output weight will be updated. When an RBF adapts to an
input point, its current center c will be updated to be the
weighted mean of c and the current input point x:

∆c = ηp(x− c) (15)

where ηp ∈ [0; 1] is the learning rate controlling the impact
of the individual data point. The center will then be updated
as c = c + ∆c.

The width σ is updated with the aim to make the RBF
“cover” the current point. This is a rather intuitive approach,

where input points close to the center will reduce the width
while input points close to the borders increase it. When
multiple input points have been evaluated, the widths are
expected to converge to an appropriate value. The RBF
should not flatten out to cover the whole feature space. A
new width, σgoal is defined, that will cause the RBF to have
a response of e.g. rgoal = 0.5 at the current input. The width
is then updated as:

∆σ = ησ(σgoal − σ) (16)

where ησ ∈ [0; 1] is the learning rate. These widths are
computed individually for each of the N dimensions:

exp

(
−1 · (ci − xi)2

σigoal

)
= rgoal (17)

⇓

σigoal =
(ci − xi)2

− log(rgoal)
(18)

σgoal = {σ1
goal, · · · , σNgoal} (19)

where i = 1, · · · , N , ci and xi are the i′th dimension of
the center position resp. the input point while σigoal denotes
i′th dimension of σigoal and rgoal ∈ ]0; 1[.

Although the outlined updating of the widths is straight
forward, it suffers from some issues. One of them is the
fact that the computation of the new width is non-linear.
Points close to the center will have a significantly larger
impact than those close to the border — especially as not
all input points are desired to cause an adaption. Only points
close to the RBF, thus causing an activation higher than some
threshold thlσ will cause an adaption. If this issue would not
be handled, input points close to the center will dominate
the updating of the width and cause it only to shrink.

A possible solution is to apply a second threshold thuσ
as an upper bound for the activation. Input points close to
the center, causing a higher activation than thuσ , will then be
ignored. As the input point is multidimensional and σgoal
is defined individually on each dimension it is important to
apply the threshold on each dimension as well. The value
of thuσ depends mainly on thlσ . The value of thuσ is chosen
to ensure that input points close to the center have the same
net effect as those further away which allows their effects to
cancel out. thuσ is determined numerically to fulfill:∫ rgoal

thlσ

∆σdσ =
∫ thuσ

rgoal

∆σdσ (20)

The impact of the distribution of the input points has been
considered to be negligible as it within reasonable bounds
has significantly less impact than the choice thlσ . As an
alternative to this solution a history can be associated to
each RBF and reflect the distribution of the input points. The
width can then be adjusted according to the distribution. As
only rather short learning phases have been addressed until
now, the first solution was found to be sufficient.



The two adaption mechanisms outlined above cause the
center of the winning RBF to wander towards the current
input point and the width of the RBF to shrink/grow. The
only remaining elements to update are the output weights.
Only one of the four sets of weights must be adjusted, the
one corresponding to the type of the grasp that caused the
adaption. As the grasp is considered either successful or not,
the weights will either be increased or reduced.

As all RBFs have a response, also all RBFs will contribute
to the output of the network. Therefore it is intuitive to
update all weights according to their impact in the current
estimate. For this purpose the back-propagation mechanism
(see e.g. [22]) has been considered as a useful standard tool.
The basic concept is to define an error function E(x) and
to differentiate this function with respect to the parameter to
update. The derivative is then used to adjust the parameter.
An appropriate error function is the squared difference be-
tween the desired output dout, and the actual output g(ys)
where s ∈ {1, · · · , 4}, depending on the type:

ys =
M∑
i=1

wsihi(x) (21)

E(x) =
1
2

(dout − g (ys))
2 (22)

∆wsi = −ηout
δE(x)
δwsi

= ηout(dout − g(ys))
δg(ys)
δwsi

(23)

The method to update the weights, defined in (23) where
ηout is the learning rate, is a common method for updating
weights using backpropagation.

3) Removal of RBFs: The need for a mechanism to
remove RBFs arises from the fact that the adding-mechanism
will add new RBFs whenever an input is not recognized.
Thus, if not counteracted, the network will keep growing
until the entire search space is covered. A significant amount
of the RBFs will most likely not be of any value, as the points
that triggered their existence might be unique, or induced by
noisy data. Further, a crowded network becomes computa-
tionally inefficient and a potential interpretation of what has
been learned becomes also difficult or even impossible.

A simple strategy for removing RBFs is to remove all
those who have a winning ratio lower than some threshold
thdel. The winning ratio is the ratio between the number
of input vectors presented to the RBF and how often this
RBF was the one with the highest activation. The value of
thdel needs to be chosen carefully as it limits the size of
the network to 1

thdel
. If the distribution of the input points

causes some RBFs to win more often than others, the size
of the network will be reduced further.

The limited size of the data sets used for online learning in
this paper is considered to be a potential issue. This has been
partly compensated by careful manual choice of learning
parameters:

thadapt = 0.37, thins = 0.15, thdel = 0.0
ησ = 0.125, ηc = 0.125, ηout = 0.29

Fig. 8. Objects used for the evaluation. Cylindrical objects in the top row,
non-cylindrical in the bottom row.

Especially the ηout is chosen to be large as the weights are
updated individually for each type. For the tests, the removal-
mechanism was disabled. As the manual selection of these
parameters might not result in an optimal neural network,
differential evolution (DE) has been considered to determine
an appropriate choice of parameters. Currently the usage of
DE was experienced to be very time consuming. Therefore
manually selected parameters have been used, especially as
any change to the system induces the risk that the parameters
determined using DE are not optimal any longer.

VI. EVALUATION

In order to test the learning mechanism outlined above,
two sets of grasping hypotheses have been recorded. The
first set (S1) is based on partly cylindrical objects (Fig. 8 top
row) whereas the second set (S2) is based on non-cylindrical
objects (Fig. 8 bottom row). Each set contains 256 grasp
attempts and each attempt is labeled as successful or unsuc-
cessful based on the evaluation discussed in Section III. Note
that in this data set creation phase, the grasping hypotheses
are chosen without any constraint, as it is done in [1], and
a success rate of 38.3% was obtained for cylindrical and
45.7% for non-cylindrical objects.

The effect of learning has been tested by dividing a set
of grasps (either S1, S2 or a combination of both) into a
training and a test set. The test set was ensured to contain
different objects than the training set. The training set has
been used to train the neural network using offline learning
and subsequently the 20% of the grasps in the test set
which received the highest estimates have been selected. This
procedure has been repeated 500 times and the mean success
rates of the selections are shown in Table I.

A similar test has been done using online learning. In this
case, the hidden RBF layer of the neural network started
empty and became build up while all grasps of the training
set are given as input one by one. Once the RBF layer is
created by using the training data, the evaluation was done
with the test data. Note that, the procedure was repeated 500
times as well and since the order of the grasps in the training
set has an influence, they are reshuffled at each iteration. The
mean success rates of the grasps selected from the test set
are listed in Table II.



Learning Set Test Set

Cylindrical Non-cylindrical Combined

Cylindrical 57.6% 54.6% 55.9%
Non-cylindrical 33.3% 51.3% 43.1%
Combined 57.5% 45.7% 51.1%

Without Learning 38.3% 45.7% 42.0%

TABLE I
SUCCESS RATIOS ACHIEVED WITH OFFLINE LEARNING FOR DIFFERENT

COMBINATIONS OF TRAINING AND TEST SETS.

Learning Set Test Set

Cylindrical Non-cylindrical Combined

Cylindrical 44.4% 52.7% 48.9%
Non-cylindrical 40.1% 47.8% 44.3%
Combined 43.0% 52.1% 47.9%

Without Learning 38.3% 45.7% 42.0%

TABLE II
SUCCESS RATIOS ACHIEVED WITH ONLINE LEARNING FOR DIFFERENT

COMBINATIONS OF TRAINING AND TEST SETS.

For the results of online learning in the case when only
S1 was used as training set, it is conspicuous that high
success rates where achieved when grasps from S2 were
present in the test set. The two possible reasons that can
potentially explain this are: (1) generalization from S1 to
S2 was possible, and (2) S2 already achieved higher success
ratios initially.

The usage of both online and offline learning creates an
improvement of the overall success rate for all combinations
of training and test sets. As expected, offline learning in
general yields better results.

VII. CONCLUSIONS

We have presented a system to autonomously create and
evaluate grasping hypotheses. The integration of learning,
both offline and online, enabled us to increase the overall
success ratio of grasps by predicting their outcome. Espe-
cially the integration of online learning allows to define more
complex grasping strategies, addressing the exploration of
the feature space. In the future it is considered to expand the
feature set, in particular by a feature reflecting the curvature
of contours.

ACKNOWLEDGMENTS

This work was supported by the EU project PACO-PLUS
(IST-FP6-IP-027657).

REFERENCES

[1] M. Popović, D. Kraft, L. Bodenhagen, E. Başeski, N. Pugeault,
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Abstract— In this paper, we bridge and extend the approaches
of 3D shape approximation and 2D grasping strategies. We begin
by applying a shape decomposition to an object, i.e. its extracted
3D point data, using a flexible hierarchy of minimum volume
bounding boxes. From this representation, we use the projections
of points onto each of the valid faces as a basis for finding planar
grasps. These grasp hypotheses are evaluated using a set of 2D
and 3D heuristic quality measures. Finally on this set of quality
measures, we use a neural network to learn good grasps and the
relevance of each quality measure for a good grasp. We test and
evaluate the algorithm in the GraspIt! simulator.

I. INTRODUCTION

In the field of intelligent grasping and manipulation, a robot
may recognize an object first and then reference an internal
object model. For unknown objects, however, it needs to
evaluate from data it can collect on the spot. How to grasp
a novel object is an ongoing field of research. Difficulties in
this area include (i) the high dimensionality of the problem, (ii)
incomplete information about the environment and the objects
to be grasped, and also (iii) generalizable measures of quality
for a planned grasp.

Since contacts and forces of the fingers on an object’s
surface make up a grasp, it is very important to have good
information both about the hand and the object to be grasped.
Both hand and object constraints together with the constraints
for the task to be performed need to be considered [1]. Though
there is interesting work on producing grasp hypotheses from
2D image features only, e.g. [2, 3], most techniques rely on
3D data. Due to the complexity of the task, much work has
been done for simplifications of 3D shape, such as planar
[4] or 3D-contour-based [5] representations. Other approaches
involve modelling an object perfectly, i.e. known a-priori, or
with high-level shape primitives, such as the use of grasp pre-
shapes or Eigengrasps [6, 7, 8]. One work that uses high-level
shape primitives, and is similar to ours in terms of learning,
but by using an SVM approach, is [9]. Another approach to
learning from 2D grasp qualities, using neural networks and
genetic algorithms, is presented in [10].

This paper builds on the work of Huebner et al . [11, 12],
which uses a hierarchy of minimum volume bounding boxes to
approximate an object from a set of 3D points delivered by an
arbitrary 3D sensor, e.g. laser scanners or stereo camera setups.
Grasping is then done by approaching each face of a box until
contact, backing up, and then grasping the object. What this
work lacked however, was a way to explicitly place the fingers

of the hand and to choose the best configuration of the hand.
Learning to predict successful grasps was done only with raw
data from the projections of points inside a box onto the face
to be grasped. Secondly, our work makes use of an algorithm
for finding and predicting the success of a grasp, but for planar
objects, as proposed by Morales et al . [4, 13]. The approach
uses 2D image analysis to find contact point configurations
that are valid given specific kinematic hand constraints. From
the geometrical properties of an object, it then calculates a
set of quality measures that can later be used for learning to
predict the success of found grasp hypotheses. The limitations
of this work lie mainly in the fact that really ‘planar’ objects
and representations are discussed in which information about
3D shape is discarded.

In this paper, we bridge and extend these two methods to
enable 2D grasping strategies for 3D object representations.

II. 3D BOX APPROXIMATION

We will shortly revisit the pre-computation of approximat-
ing a 3D point cloud by a constellation of minimum volume
bounding boxes (MVBBs). The fit-and-split approach starts
with fitting a root bounding box and estimating a best split
by using the 2D projections of the enclosed points to each
of the box surfaces. Depending on a volume gain parameter
t, two child boxes might be produced and then be tested for
splitting. To provide an insight to this algorithm as a base for
the experiments in this paper, the two core algorithms have
been sketched in Fig. 1. For more details and examples, we
refer to Huebner et al . [11]. However, it is important to note
that in that work (i) 2D projections have been used to estimate
a split and (ii) only edge-parallel planar splits have been tested.

From these constraints, three main problems were evident
relating to the original split estimation. These problems are
outlined as follows.

1) Splitting of non-convex regions, e.g. u-shapes: As shown
in [11], the presented algorithm will not do any splitting in
case of u-shaped 2D projections. This is due to the fact that it
uses upper bounds and area minimization, which are constant
in such cases. This means that a split does not result in a
substantial change in the area of a region. A solution for
this problem remains a challenge [11], especially when sparse
and noisy data is provided. For 3D data from real vision
systems or laser scanners, such distortions are unavoidable,
in part because of occlusion or sensor inaccuracies. Thus,



Algorithm II.1: BOXAPPROXIMATE(points3D)

box← findBoundingBox(points3D)
faces← nonOppositeFaces(box)
(p, q)← split(FINDBESTSPLIT(faces, points3D))
if (percentualV olume(p+ q, box) < t)

then
{

BOXAPPROXIMATE(p)
BOXAPPROXIMATE(q)

else return (box)

Algorithm II.2: FINDBESTSPLIT(faces, points3D)

for i← 1 to 3

do



p2D ← project(points3D, faces[i])
for x← 1 to width(faces[i])

do



(p1, p2)← verticalSplit(p2D, x)
a1← boundArea2D(p1)
a2← boundArea2D(p2)
if (a1 + a2 < minArea)

then
{
minArea← (a1 + a2)
bestSplit← (i, x)

for y ← 1 to height(faces[i])

do



(p1, p2)← horizontalSplit(p2D, y)
a1← boundArea2D(p1)
a2← boundArea2D(p2)
if (a1 + a2 < minArea)

then
{
minArea← (a1 + a2)
bestSplit← (i, y)

return (bestSplit)

Fig. 1. Pseudocode (original algorithm): a point set and its bounding box,
respectively, are recursively split (II.1). A good split was estimated through
analysis of 2D splits of the projected points onto each of the box faces (II.2).

how to distinguish between a real non-convex object region
and just incompleteness of the data becomes a critical issue.
The models used in [11] were ideal models, extracted from
simulated 3D mesh data. As it is our aim to evaluate our
algorithm also on real sensory data, we can not generally
assume such ideal conditions.

2) Splitting along non-edge-parallel directions: The mini-
mum volume box fitting approach naturally fits extensions of
the shape into corners of a box, as this keeps the box smaller.
The handle of a cup, for example, will fit best diagonally into
one of the box corners. However, such diagonal structures in
particular can rarely be cut parallel to one of the box edges
as proposed in the previous algorithm.

3) Sensitivity to noise: The box decomposition’s robustness
showed the splitting to be very sensitive to noise. This is
not a main issue in terms of single box or face grasping in
general, since any constellation of boxes will produce grasp
hypotheses. However, if one would like to take into account
and learn from a whole constellation of boxes, then robustness
and repeatability are necessary.

A. Improved Split Algorithm using 2D Convex Hulls

For the experiments presented in this paper, we have there-
fore implemented a new algorithm based on convex hulls. The
new algorithm replaces II.2, solving the above mentioned is-
sues, and in addition producing much more confident splitting

Root
(MVBB of all points)

(a) Decomposition

(b) 1st step: Θ∗=0.67

p2

p1

CH(p1)

CH(p2)

F

(c) Final constellation

Fig. 2. (a) Example of a decomposition hierarchy, using a gain parameter
of t=0.98. With Θ∗ < t, a valid cut is detected, as presented for the first
step in (b). Otherwise, the box is a leaf box (dashed), i.e. a part of the final
constellation which is plotted in (c).

results. For efficiently computing convex hulls on a set of 2D
points p, like our projections (see Fig. 2), we use a monotone
chain algorithm [14]. Starting from the convex hull CH(p) of
the whole projection set p, we select those segments of the hull
that exceed a given threshold in length. We thereby assume
that those segments either span a non-convex region of the
outer contour of the data, or that they represent a very straight
edge. On these segments, we interpolate a number of sample
points. Between each pair of points on each pair of segments,
we simulate a cut that splits the point set p into two subsets
p1 and p2. The two segment points that minimize,

Θ = [A(CH(p1)) +A(CH(p2))]/F, (1)

where A is the area function for a convex hull and F the
overall rectangular area of the face (see Fig. 2b), define our
best split. An example of such a decomposition tree produced
with the new hull algorithm is presented in Fig. 2.

B. Evaluation

To be able to make a large scale test of the box decom-
positions stability, an algorithm was developed that estimates
if two box decompositions are similar or not. First, the
algorithm summarizes the total volume Vi of all boxes which
a decomposition i is composed of. Secondly, it calculates the
Euclidean distances between the centers of all pairs of leaf
boxes and summarizes them as Di. In order to determine if
two compositions i, j are similar, the differences in overall
volume and distance measures between the decompositions
are simply compared with empirically found thresholds:

if |Di−Dj | ≤ 0.1∧ |Vi−Vj | ≤ 0.9 then similar(i, j). (2)



TABLE I
PERCENTAGE OF DECOMPOSITIONS WITH SIMILAR COUNTERPARTS. 19 NOISE LEVELS AND 14 LEVELS OF POINT REMOVAL WERE USED.

3D
Bunny Car Cup Duck Goblet Goose Heart Homer Horse Human Mug PaperCup Pen Pillow Radio Squirrel ToyDog

Old 78,62 100,00 77,78 61,59 21,21 24,28 100,00 55,07 53,99 19,93 80,43 100,00 91,67 91,67 84,62 59,42 27,54
New 94,00 100,00 97,78 91,67 22,77 46,00 100,00 66,67 30,33 58,00 62,67 74,24 92,00 100,00 100,00 75,00 28,33

To test the stability of the box decomposition algorithms,
we simulated 17 different object models and modified them:
19 different levels of close proximity noise and 14 different
levels of point removal were used for the experiment to
let modified point clouds emerge from each original object
point cloud. Both algorithms were then executed (t=0.9) on
each of those point clouds before comparing the resulting
box decompositions of each unmodified with its modified
models. The results presented in Table I show that the previous
algorithm is quite sensitive to noise. However, simpler objects
like Car or Pen gave very good results. This is mainly because
they all produced only one box due to their compact shape. On
the other hand, more complex models like the toydog or the
human model gave quite poor results. We note that the bound-
based algorithm tends to produce a single large box enveloping
the whole object also in such cases. This raises the similarity
rate significantly, but is not preferred in our application.

The new hull-based algorithm produces much better approx-
imation for the objects, very few single-box decompositions,
and a significantly better similarity rate. The models that
produced single-box decompositions with the bound-based
algorithm produce worse values in some cases. This is caused
by better approximations with multiple boxes that are more
sensitive to the comparison than a single-box-to-single-box
comparison. Since we prefer multi-box decompositions which
give better object approximation, this is a good improvement,
while the new algorithm is considerably less affected by noise.

The old and the new techniques are also compared to each
other in Fig. 3 according to robustness to the change of the
gain parameter t (for t, see II.1 and Fig. 2), e.g. the duck
model decomposition repeatedly shows the same constellation.
Another visible effect is that the decompositions seem more
intuitive, e.g. in case of the cup handle.

III. 2D GRASP HYPOTHESES

In this paper, we are concerned with finding 2D grasps
for 3D objects. Thus, we need to find a suitable grasping
strategy based on the above mentioned box decomposition.
We base our grasping hypotheses on the faces of the final box
decomposition. The set of hypotheses is further reduced by
including geometrical heuristics on which faces are valid in
terms of visibility, reachability, and more [12]. For each leaf
box in the hierarchy, the points enveloped by it are projected
onto the valid faces of the box and stored in a grayscale image.
The distance of the closest point to each pixel cell onto which
it is projected is stored as a grayscale value between 0 and

255, where 1 is the depth of the box and 255 means zero depth
(see Fig. 4a). This provides us with 2.5D representations of
the object parts. The decomposition captures symmetries of
objects quite well, resulting in faces and thus projections that
are often perpendicular to the axes of most variance. This
yields suitable information about approach directions of planar
grasps and a good dissection of the object. In short, for each
of the projections attained, grasps will be planned similarly
to a top-view on a planar object. Thus grasp points on the
contour of the projection images need to be found.

For grasp hypotheses from 2D contours, we will use an
algorithm that is closely related to the work of Morales [4].
This algorithm involves a four step procedure for finding a
number of grasp hypotheses, followed by a fifth to disqualify
unfeasible grasps and selecting the best of the hypotheses.

A. Finding Good Regions to Grasp

We use the notion of grasp region, as defined in [4] and
assume that a good region for grasping is a region that is
as straight as possible. The fact that studies have shown that
slightly concave curvature may be better suited [15] is left as a
possible extension to the work. For this task a combination of
the Canny edge detector and the k-angular bending algorithm
[16] was used. First, the projection images described above
are preprocessed by erosion and dilation steps. By removing
pixels with fewer than 2 neighbours the number of outliers
in the image is reduced. Expanding each remaining pixel (a
projected point from 3D) to its neigbouring 8 pixels, gaps
caused by sparse 3D point information are filled. Without these
steps internal contours will be found that do not actually exist
in the object and many grasp regions will be invalid. By using

t = 0.90

t = 0.94

t = 0.98

Old (bound-based) New (hull-based)

Fig. 3. Results of the box approximation for two models. Compared
to the results produced with the bound-based algorithm [11] to the left,
new hull-based constellations (right) stay more robust despite of different
decomposition granularities (described by gain thresholds t in each row).
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Fig. 4. (a) Projection image of the Duck model’s head box (from above).
(b) Canny edges image. Size of the Gaussian, lower and higher thresholds are
automatically chosen by the Matlab edge algorithm. (c) A set of grasp regions
(contour and 2D normal vectors) and grasp points (diamonds). The regions are
found with σ = 2.5, curvature threshold tκ = 0.4 (max. angle in radians),
accumulated curvature threshold Tκ = 4, minimum length lmin = 20mm
(similar to Barrett finger width), and maximum length lmax = 50mm.

the edge detector with comparably high smoothing, see Fig. 4
for an example, we extract edges in the image.1 These edges
correspond to inner and outer contours of the projected object
part as well as places where depth is rapidly changing. We
assume that for these edges, grasps can be executed similarly
to planar objects.

With the discrete edge points detected, these are ordered in
a list following the contour. From the contour we will extract
regions that satisfy four main conditions:

1) The curvature in any point of the region should be low,
2) the total accumulated curvature of a region should not

be too high,
3) a minimum length of a region should be achieved, in

order to reduce the number of hypotheses and reduce
the effect of positioning errors,

4) a maximum length of a region should not be exceeded,
in order to break long straight parts of the contour into
several regions such that two fingers can be placed at
the same side of an object such as a cube.

The curvature part is handled by the k-angular bending
algorithm [16], that considers k neighbours in each direction
of a point to determine its curvature by calculating the angles
to these neighbours. Let C be the ordered list of points on the
contour, ci = (xi, yi) the ith point in this list, ~ai,k = ci+k−ci
and ~bi,k = ci−k − ci. The angle between these vectors is then
calculated as,

κi = arccos(~aki · −~bki). (3)

Convolving κ with a Gaussian provides smooth curvature
values at any point along the contour. This removes remaining
noise in the image so that a pixelated straight diagonal will
not be discarded because the angle between each pixel and the
next is too high. This enables us to assign a threshold on the
local curvature, i.e. a region is only chosen considering that
no point in it has a curvature value above the threshold.

An additional requirement for a region on the contour to
be accepted is that the accumulated curvature of a region is

1We use the Matlab standard function edge with parameter ‘Canny’ and a
value for σ = 2.5 and automatically calculated threshold.

not higher than a chosen threshold. This condition is checked
by summing up all κ-values for the region and comparing to
the threshold. This takes care of problems with low constant
curvature such as for a circle. Without the use of accumulated
curvature, the circle would be regarded to have either no
feasible regions to grasp or one region going straight through
the center. With accumulated curvature, the circle will be
broken into several regions. This also applies to other shapes
with regions of low curvature with the same sign. Each region
is approximated with the line connecting the endpoints of that
region. Thus, each region is only represented by these two
points and the inwards pointing normal, see Fig. 4.

The two remaining conditions for a region to be considered
are the minimum and maximum length of a region. A mini-
mum length is needed in order to account for positioning errors
and to have a value close to the finger width. A maximum
length is needed so that the representation does not become
too simplified. If for a simple object like a cube no maximum
length of regions was set, its projection images would only be
represented by four regions that would be very hard to combine
into a working grasp. By dividing the regions such that none
are larger than the assigned maximum length produces more
regions and therefore enables the possibility to place two
fingers on one single side of the square, for example. Lower
maximum length gives more regions and thus higher number
of hypotheses, which means more possibilities. One should be
cautious, however, since computation time increases rapidly
with the number of regions.

B. Determining Finger Positions on the Regions

For each possible triplet (in the case of a 3-finger hand such
as the Barrett hand [17] that is used) of regions, two criteria
must be met. The normals must positively span the plane and
finger placement must be such that all the friction cones of
these fingers intersect. In this paper we will assume Coulomb
friction and point contacts. By considering the union of all
friction cones of one region and looking at the intersection
of such ‘combined friction cones’, one can determine if the
intersections of all three regions are empty and the hypothesis
discarded, or non-empty and considered. This becomes a
geometrical problem for each triplet and can be solved with
standard linear programming methods. In the case of non-
empty intersections, the centroid of the intersection area is
calculated and projected back to the regions. These points will
be used for finger positions, as discussed in [4].

C. Determining Hand Configuration

From the finger positions and the Barrett hand kinematics
one can test if there is a configuration that can reach the
selected points. By varying the angle of the thumb2 to the
surface and searching for those angles that correspond to
configuration of the hand that can reach all three grasp points,
one can find hypotheses for grasps. The angle of the thumb
is varied on the interval (-arctanµ, arctanµ) in 100 steps,

2Note that the thumb of the Barrett hand does not allow rotation. Thus, the
angle of the thumb to the object is closely connected to the hand orientation.
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Fig. 5. Plot of 2000 random grasps, hypotheses found with the method from
[11], and hypotheses found with our new approach, on the Bunny model. On
the axes are the two built-in quality measures from GraspIt!. Only one grasp
per finger positioning is chosen randomly and plotted. As can be seen, the
best hypotheses are close to the best of the 2000 random grasps, suggesting
that with only these 23 hypotheses one could get one or more good grasp.

where µ is the same friction coefficient used for calculating
the friction cones in the previous section. Those configurations
that satisfy the conditions are stored as grasp hypotheses. For
a more detailed description, see [13]. A plot of the quality
for grasp hypotheses found for the Bunny compared to 2000
random grasps is shown in Fig. 5.

D. Determining the Quality of a Grasp

From the algorithm presented one can generate a number
of grasp hypotheses. However, we still need to determine
which grasps are more likely to be successful. This is done
by different measures of quality. Firstly however one needs to
discard grasp hypotheses that are not reachable. This means
that all grasp hypotheses outside of the physical reach of the
hand will be discarded. This includes those grasps where one
part of the object is in the way for grasping another part of the
object. One example for the duck appears when a top grasp
is attempted, but with finger positionings on the body of the
duck: the head would be occluding the body, thus this grasp
is discarded even before attempting it.

Many of the quantitative quality measures are the same
as the ones developed by Morales et al . [4, 13], and will
thus only be mentioned by name. There is one important
difference, however: the empirical normalization constants
used by Morales et al . will not be used here, as an artificial
neural network will be used to determine the weights of each
measure instead.

The measures derived from Morales are the following:

q1: Grasp Triangle Size, q5: Finger Spread,
q2: Point Arrangement, q6: Focus Deviation,
q3: Force Line, q7: 2D Force Focus.
q4: Finger Extension,

These measures however are developed for planar objects.
To adapt to non-planar objects to be grasped in our case we
add two extra quality measures. These are:

1) Finger Depth Difference: The projection image contains
information about the depth of the shape. Thus, it is possible
to compare the selected grasp point depths di for each finger
i with the linear approximations of the real finger extensions
g(ei) by

q8 = (g(e1)− d1)2 + (g(e2)− d2)2 + (g(e3)− d3)2, (4)

where g(·) is the linear depth approximation function.3 This
measure depicts how close to the desired grasp points the grasp
is likely to be. Note that this measure is the one that explicitely
takes into account the 2.5D information provided by the box
approximation and projection steps from Section II.

2) 3D Force Focus: Ideally, one would like to measure
the distance from the force focus in three dimensions to
the actual center of gravity. This is, however, not possible
since the information about the object is incomplete and the
representations of grasps are only in two dimensions. We
provide a rough approximation of this quality by using the
center of the root box in the decomposition (containing all
points in the point cloud) and the mean of the calculated finger
positions in three dimensions,

q9 = ||p̄finger − prootCenter||. (5)

IV. EVALUATION

The evaluation of the algorithm has mainly been made
with data from simulation. This object data consists of 42
different 3D models, consisting of 14 different objects in 3
different scales to provide more data to train on. First, each
model was decomposed with the box decomposition algorithm,
using a gain threshold t=0.90. Over all models, this resulted
in 570 projections from leaf boxes. 5951 grasp triplets were
finally found from those projections and used as the data set
for evaluation of grasps. Different types of results for the
used models and decompositions are presented in Fig. 6. In a
next step, the presented quality measures were computed, and
grasp success measures extracted by simulating the grasps in
GraspIt! [18]. The correlation between these quality measures
and success measures is going to be learned by a neural
network. We also explore how different network architectures
affect the overall result.

A. Measure for Success

We want to produce a set of grasp hypotheses where the
outcome is known in order to supervise the training. Since to
do this with a real robot would be both time-consuming and
costly in order to get enough data to train on, a more time and
cost-efficient simulation option was used. By simulating the
grasp hypotheses found for different objects, and by measuring
the success for these in the simulator a set of input / output

3For the Barrett hand: g(e) = 0.953∗e+128.8, empirically found. Using
this linear approximation causes little loss in precision compared to calculating
the actual inverse kinematics for the hand.
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Fig. 6. The 14 models used in the experiment in order of complexity. The number of boxes resulting from the final decomposition hierarchies (2nd and 5th
row) is assigned to each model in brackets. Since (a)-(e) are very compact and only the root box is included, the 3rd row visualizes examples of box face
projections that will be used for the experiments. For the more complex models (h)-(n), the 6th row depicts the final box constellations. We refrained from
showing constellations for (a)-(g), since they would only show 1-2 boxes, as also from showing projections for (h)-(n), since they would be hard to recognize.

pairs was found. The GraspIt! simulator [18] provides two
different measures of success, introduced in [19].

The first measure, denoted ν here, measures the volume of
the intersection of friction cones from the finger contacts. The
second measure, called ε here, is a measure of the radius of
the largest sphere that can fit in this space. For the purpose
of learning it is more suitable to use only one measure since
it is easier to learn a one-dimensional function than a two-
dimensional. However, in order to utilize all of the information
provided and since there is no firm consensus on which
measure is best [20], we use a combination of the two:

si = (νi/νmax)2 + (εi/εmax)2
, (6)

where si is the success of grasp i, νmax and εmax are the
maximum ν and ε values found for the current object and all
hypotheses, respectively.

Other measures that could be used would be the division of
grasps into two classes, namely successful and unsuccessful,
or to train the system using only one of the above measures.
Since potentially this could be a waste of useful grasp quality
information, the above combination measure was chosen.

Given that the net is used to grasp an unknown object
in the final application, the system will continue learning
from newly observed hypotheses. However, since we have
the possibility to initially gather vast amounts of simulation
data to use for training, one additional example will not
impact the prediction results noticeably. Combining this with
the possibility to retrain an eager learner when the system
is offline makes the advantages of a lazy learner, like kNN,
diminish. Therefore, we used a feed-forward neural network to
implement a supervised eager learning approach. The training
algorithm used was the Levenberg-Marquardt backpropagation



algorithm included in the Matlab Neural Networks Toolbox. It
is a fast training algorithm with good generalization properties,
which is needed for predicting unknown objects.

B. Leave-One-Object-Out Validation
For evaluation, we apply a leave-one-object-out validation.

This method validates by picking out one of the 14 objects that
is not the test object, while all grasp hypotheses that belong
to this object will be used as part of the validation set. There
are both advantages and disadvantages to this approach. Con-
sidering that the prediction error for an unknown validation
object is at a minimum, it would be intuitive to assume that
the prediction error for an unknown test object would also be
minimal. However, these two objects can be very different,
both in complexity and suitable grasps, more than the ones in
the training set and the test set. Another drawback with this
technique is that the size of the validation set is different for
each object used for validation. An advantage to using this
approach is that it seldom overfits and thus stops the training
when generalization still performs well.

C. Network Architecture
We used a network architecture with 9 input nodes, from

the 9 quality measures, and 1 output node corresponding to
the success measure s. From here, we still must decide how
many hidden layers and how many hidden nodes in each layer
to use. To be able to decide what is a good architecture and
what is not we need to measure the overall success of the
network. This measure should incorporate the s-measure for a
grasp, but being as independent of an object as possible, e.g.
an easy object to grasp will give better s-measures, but should
(with the same prediction success) give the same success of
the net, Snet. We want to rank the grasp hypotheses and only
use the ones highest ranked. This is reflected in the network
success measure by using only the top-ranked 10% hypotheses
and comparing them with the lowest-ranked 10%:

Snet =
(shigh − slow)

0.1n
=

(∑0.1n
i=1 ri −

∑n
i=0.9n ri

)
0.1n

, (7)

where ri is the ranked list of hypotheses, the hypothesis with
highest predicted success being at index 1, and n is the total
number of hypotheses.

To test the effect of adding hidden layers, three different
setups were used: the first had only one hidden layer with 10
hidden nodes, the second had two hidden layers each with 10
hidden nodes, and the third had three hidden layers each with
10 hidden nodes. There was no improvement of prediction
success for more than one hidden layer. The time for training,
however, increased dramatically.

Extensive testing was performed in order to choose the
number of nodes in the one hidden layer. This testing was
done with the leave-one-object-out validation described above.
Tests were made with 1 to 30 hidden nodes. After studying
the performance results depicted in Fig. 7, the optimal number
of hidden nodes was chosen to be 8. Using this architecture,
no training phase in our experiment required more than 100
epochs.

D. Learning to Grasp Unknown Objects

In order to learn to grasp unknown objects, the leave-one-
object-out validation method was applied again. Each time the
network is trained one object is left out of the training data
to be used for testing. This unknown object will be used to
determine how well the algorithm has performed. In order to
get a reliable result these tests were run 10 times. As such, one
can conclude that the method for grasp synthesis, the quality
measures and the learning approach used can indeed find and
rank a set of grasps for an unknown object. Fig. 8 shows
distribution of predicted success measures for each model.
Some of the high-ranked grasps are presented in Fig. 9. These
were encountered after separately performing a training on all
other models in the set (except for one validation object). Note
that the input for the overall approach is only a 3D point cloud
representation that could also be delivered from real sensor
input. The approach therefore does neither need training on
every possible object model, nor does it rely on connected
surface structure, like triangle meshes.
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Fig. 7. Success (solid) and training time (dashed) for different number of
hidden nodes with the leave-one-object-out validation, averaged over 10 runs.
The maximum success value of Snet = 0.078 was detected at 8 nodes.
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Fig. 8. Prediction results for the 14 models used (see Fig. 6). Upwards
pointing triangles represent mean of the best 10% grasps, downwards the
worst. Lines correspond to the possible span of predictions, with a perfect
prediction of the best in the top and a perfect prediction of the worst in the
bottom. The squares represent the best and the worst grasp for each object.



Fig. 9. Visualization of some high-ranked predicted grasps for all models.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach for grasping 3D
objects by using 2D grasping strategies and heuristics. We
applied and extended approaches from each of these domains,
namely the 3D box approximation [11] and the 2D grasping
quality measures [4]. We showed that, given a point cloud of
3D data, an optimized version of box approximation produced
repeatable decompositions in addition to resolving the issues
encountered in our previous algorithm. This will contribute
to further connected applications based on box constellation
representations, e.g. learning from and grasping on whole
constellations instead of just single boxes. Learning might
also include a classification of the enveloped point cloud of
each box and object part as another shape primitive, i.e. cylin-
ders or spheres. Another classification will be approached by
learning from the box constellation itself. Not only similarities
between constellations could be used, e.g. all ‘duck’-like box
decompositions afford similar types of grasps, but also finger
positioning on more than one face will be enabled.

From a 2.5D representation such as the ones used here,
one can produce a set of feasible grasp hypotheses. For these
hypotheses one can evaluate a set of physically intuitive quality
measures for a 3D object and use them for learning to predict
success. It is important to note that representation, synthesis
and evaluation are three independent parts and do not need
the other parts to be present. The only requirement for a
representation is that it has to contain information not only
about the position in image space for a point, but also the
depth. The grasp synthesis algorithm works independently of
the other two and only needs the contour and the kinematics of
the hand used. For the last step, most of the quality measures
are extendible to all hands with the same or a higher degree
of freedom than the Barrett hand used here. This can be done
either by the use of virtual fingers, or by an extension of the
measures themselves to include sums and differences for more
than three fingers. A continuation of the work could include an
extension of the quality measures to better take into account

3D shape. With the use of more flexible hands the complete
inverse kinematics could be used for finding reachable points
in 3D space. A natural extension to the learning part is to
include not only data from simulation, but to continue learning
from real-world objects. By retraining the network with the
increased data set, the evaluation would get more precise and
be a useful learning system.
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Grasping Known Objects with Humanoid Robots:
A Box-Based Approach

Kai Huebner, Kai Welke, Markus Przybylski, Nikolaus Vahrenkamp,
Tamim Asfour, Danica Kragic and Rüdiger Dillmann

Abstract— Autonomous grasping of household objects is one
of the major skills that an intelligent service robot necessarily
has to provide in order to interact with the environment. In
this paper, we propose a grasping strategy for known objects,
comprising an off-line, box-based grasp generation technique
on 3D shape representations. The complete system is able to
robustly detect an object and estimate its pose, flexibly generate
grasp hypotheses from the assigned model and perform such
hypotheses using visual servoing. We will present experiments
implemented on the humanoid platform ARMAR-III.

I. INTRODUCTION
Future applications of service robots require advanced

object grasping and manipulation capabilities. According to
Gibson [1], one of the main properties that characterizes an
object is how it can be acted upon, namely what kind of
actions it affords. In the work presented here, we deal with
the problem of object grasping on a humanoid robot.

The development of humanoid robots for human daily
environments is an emerging research field of robotics and
challenging tasks. Recently, considerable results in this field
have been achieved and several humanoid robots have been
realized with various capabilities and skills. Integrated hu-
manoid robots for daily-life environment tasks have been
successfully presented with various complex behaviors (see
e.g. [2], [3]). However, in order for humanoid robots to
enter daily environments, it is indispensable to equip them
with fundamental capabilities of grasping. This includes
manipulating objects encountered in the environment and
dealing with kitchen appliances and furniture such as fridges,
dishwashers and doors. Research on humanoid grasping and
manipulation has been done on humanoid platforms such as
the HRP2 [4], ARMAR [3], the NASA Robonaut [5], Justin
[6], or Dexter [7], where the problem of grasping has been
approached from different perspectives.

The work to be presented in this paper is part of the
EU PACO-PLUS project (www.paco-plus.org) and follows
the concept of Object-Action Complexes [8], [9], [10].
Although humans master object grasping easily, few suitable
representations of the entire process have yet been proposed
in the neuroscientific literature. Thus, the development of
robotic systems that can mimic human grasping behavior is
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still a challenging field of research. In addition, the robot
embodiment usually does not resemble that of a human, i.e.
grasps suitable for a human may not be suitable for a robot,
and vice versa.

In our earlier work, we proposed and motivated a flexible
framework for object grasping [11]. In this framework, we
took advantage of closely connecting grasps to an efficient
shape approximation technique based on box primitives and
various dependencies that have to be considered in the field
of grasping. However, this work was done in simulation only,
using the grasp simulator GraspIt! [12].

For real experiments, object grasping with mobile manipu-
lators requires several additional modules to be at place. Our
early work demonstrated that it is possible to perform tasks
through a careful design and implementation of individual
modules [13]. The work presented here will also take into ac-
count the system integration aspects and demonstrate object
grasping tasks on a humanoid robot. It is an extension of our
previous work [3], [14] toward the realization of complexes
humanoid manipulation and grasping tasks in a kitchen
environment. Another main contribution of this paper will
be the transfer of the above mentioned grasping approach
from simulated environments to a real-world application.

This paper is organized as follows: in Section II, we
will describe the central modules of our system. In Section
III, the robot platform will be sketched, before we present
experimental grasping results in Section IV.

II. OUR APPROACH

We will now present a strategy for grasping known objects,
comprising an off-line, box-based grasp generation technique
on 3D shape representations. Since the focus of this paper
is the presentation of an integrated system, the applied
sub-modules will be described very briefly. We provide
references to our related work in which details on technical
implementations and algorithms can be found. The subtasks
of our system are:

A. An Object Database, representing 3D models of
known objects,

B. a visual Object Identification and Pose Estimation
module to recognize such an object in a real scene,

C. a Shape Approximation module to transform offline
models into primitive shape representations,

D. a Grasp Generation module to dynamically generate
grasp hypotheses from such representations, and

E. a Grasp Execution module, based on visual servoing,
to execute such hypotheses on a humanoid robot.

http://www.paco-plus.org
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Fig. 1. System architecture for the proposed grasp generation approach.

The architecture of these modules and their interaction, as
also links to the following subsections describing each single
module, is presented in Fig. 1.

A. An Object Model Database

The grasping experiments we will present in this paper
are performed on household objects with known geometry.
The respective object models are part of the public available
KIT ObjectModels Web Database [15]. In order to obtain
such models, we use the interactive object modeling sys-
tem introduced in [16],[17]. To acquire a 3D model, the
respective object is placed on a rotation plate which is
situated in front of a Minolta VI-9OO laser scanner. The
scanner uses an active triangulation measurement method,
providing a resolution of 640×480 measurement points and
an accuracy of less than 0.2mm. Different aspects of the
object are generated using different rotation angles of the
plate. The measurement process results in a registered and
triangulated mesh which is available in OpenInventor, VRML
and Wavefront OBJ formats. In addititon, an Allied Vision
Marlin stereo camera pair mounted on a rotating rig takes
images of the object during the process described above.
These images are used to generate texture information for the
object model. The meshes from the database are registered
with the recognition system (see Section II-B) and made
available for box decomposition (see Section II-C).

B. Object Identification and Pose Estimation

A two-step approach using local features is applied in
order to identify and localize textured objects in a scene, as
presented in [18]. First, the object is recognized including
2D localization, which is accomplished using 2D feature
correspondences between the image of the scene and images
in the database. 2D localization is computed from a homog-
raphy based on SIFT descriptor correspondences. Based on
the 2D localization result, a 6D pose estimate of the object is
computed by making use of the stereo camera system. For 6D
pose estimation, interest points within the localized 2D area
of the object are collected and correlated with the second
camera image, yielding a sparse depth map. The resulting
point cloud is registered with the object model.

(a) (b) (c)

Fig. 2. Visual representations and 3D models, like (a-b), are used to
describe objects in the database. (c) Result of the final pose estimate for an
example scene, after application of the calibrated rigid body transformation.

To later associate object-centered grasps with objects on
the basis of 3D meshes generated in the object modeling step,
the fixed rigid body transformation between the object mesh
and the estimated object pose has to be determined. For this
purpose, we developed a tool which computes the pose of
the object of interest by using the recognition module for one
given scene. In parallel, the scanned model is mapped into
the stereo image pair of this scene, and its pose is adjusted
manually so that the model projection matches the stereo
views. The desired rigid body transformation is then given
by the transformation between the automatically computed
pose estimate and the manually adjusted pose. An exemplary
result of a final pose estimate, as also corresponding samples
from the database, are shown in Fig. 2.

C. Shape Approximation through Box Decomposition

We base the generation of grasp hypotheses on a box-
based 3D shape approximation technique that we presented
in [19] and recently optimized in [20]. Originating from an
arbitrary 3D point set and the computation of its oriented
minimum volume bounding box (MVBB) [21], our method
recursively splits a set of boxes to tightly envelop the point
set by a set of MVBBs. By this split-and-fit strategy we
aim at approximating the object shape with a minimum
number of tight fitting MVBBs. The main parameter for a
decomposition is a volume gain value. In case a box split
will not result in a sufficient cutting-off of unoccupied space,
it will not be split any further. For more details on the
algorithm, we refer to [19], [20]. It is important to note that
we can approximate a set of points by a box constellation.
In the application here, we first decompose all 3D models
(like the one in Fig. 2b) by extracting the point data from
the meshes in the database in an offline step and store their
respective box constellations.

D. Grasp Hypotheses Generation and Selection

Grasp hypotheses directly emerge from each face of the
final box decomposition, where the approach of the gripper
is aligned to the face’s normal, and orientations aligned to
the face’s edges. The set of valid faces is reduced by mainly
applying geometrical heuristics that decribe various depen-
dencies, e.g. like spatial constellation, visibility or task at
hand, as presented in [11]. To include grasp quality learning,
we earlier presented two approaches based on supervised
neural networks that use the grasp simulator GraspIt! [12]
for learning stable grasps from 2.5D representations of object
parts. Applying boxes as shape primitives efficiently allows
us to generate such part-based 2.5D ‘depth maps’ from the
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is also learned separately even if it equals (eps > 0). From this model, off-line learning of grasp qualities from face representations is possible.

3D data and the box constellation (see Fig. 3). In this paper,
we will use only one specific grasp pre-shape, namely a
power-grasp with a model of the robot hand that we will
use. How an additional dependency concerning the gripper
kinematics can be introduced in order to control finger fine-
positioning was presented in [20].

E. Grasp Execution

The grasp execution on ARMAR-III [22] (see also Section
III) comprises three different stages: the first two stages
describe the approach of the end-effector to the final grasp
pose, while in the third stage the object is grasped by closing
the five-fingered hand. For approaching, two sequential poses
are generated for the end-effector: (i) a pre-grasp pose which
assures a collision free approach towards the grasp pose,
and (ii) the grasp pose itself, which determines the final
position and orientation of the end-effector before closing
the fingers. While reaching for the grasp pose requires high
accuracy in order to guarantee a stable grasp execution,
the approach of the pre-grasp pose does not demand high
accuracy. Consequently, the approach of the pre-grasp pose
is realized by solving the inverse kinematics (IK) problem,
while reaching for the final grasp pose is accomplished using
a visual servoing approach. For both stages, the 7 joints of
either the left or the right arm and the torso yaw of ARMAR-
III (around the body axis) are considered.

In order to find a solution to the IK problem, we use a
probabilistic approach which randomly samples start config-
urations. Using a Jacobian pseudoinverse method, the end-
effector is moved from the sampled configurations towards
the desired target pose. Thus local minima resulting from
the numerical approach can be overcome and invalid pos-
tures resulting from joint limits and self-collisions can be
handled. For providing natural postures as solutions for the
IK problem, the resulting configuration is rated using the
distance from a pre-defined grasp posture in joint space,
e.g. grasping an object from the right hand side when using
the right arm. The generated rating together with the ability
to find a solution for the IK problem is used to rate grasp
hypotheses with respect to the embodiment.

In order to execute a grasp, the torso and arm have to be
moved from the pre-grasp pose to the final grasping pose.
Since there are inaccuracies both in the perception of the
object pose and in the execution of arm movements, we make
use of a visual servoing approach to achieve exact alignment

of the end effector and the object [14]. With this approach
it is possible to track the hand in a robust manner and thus
to adjust the pose of the hand to the feasible grasping pose.

III. EXPERIMENTAL PLATFORM

As already mentioned, we integrated the system presented
in the last section on a humanoid platform, ARMAR-III. The
humanoid robot ARMAR-III (see Fig. 4) was designed under
a comprehensive view so that a wide range of tasks can be
performed. From the kinematics control point of view, the
robot consists of seven subsystems: head, left arm, right arm,
left hand, right hand, torso, and a mobile platform.

The head has seven degrees-of-freedom (DoF) and is
equipped with two eyes. The eyes have a common tilt and
can pan independently. Each eye is equipped with two color
cameras, one with a wide-angle lens for peripheral vision and
one with a narrow-angle lens for foveal vision. The visual
system is mounted on a four DoF neck mechanism (lower
pitch, roll, yaw, upper pitch). For the acoustic localization,
the head is equipped with a microphone array consisting of
six microphones (two in the ears, two in the front and two in
back of the head). Furthermore, an inertial sensor is installed
in the head for stabilization control of the camera images.

The upper body of the robot provides 33 DoF: 14 for
the arms, 16 for the hands and 3 for the torso. The arms are
designed in an anthropomorphic way: 3 DoF in the shoulder,
2 DoF in the elbow and 2 DoF in the wrist. Each arm is
equipped with a five-fingered hand with 8 DoF (see [23]).
Each joint of the arms is equipped with a motor encoder, an
axis sensor and a joint torque sensor to allow for position,
velocity and torque control. In the wrists, 6D force/torque
sensors are used for hybrid position and force control. Four
planar skin pads (see [24]) are mounted to the front and back
side of each shoulder, thus also serving as a protective cover

Fig. 4. ARMAR-III in the experimental kitchen environment. The robot
is equipped with an active head including peripheral and foveated vision,
two arms, two five-fingered hands and a holonomic mobile platform.



for the shoulder joints. Similarly, cylindrical skin pads are
mounted to the upper and lower arms respectively.

The locomotion of the robot is realized using a wheel-
based holonomic platform, where the wheels are equipped
with passive rolls at the circumference (Mecanum wheels or
Omniwheels). In addition, a spring-damper combination is
used to reduce vibrations. The sensor system of the platform
consists of a combination of three laser range finders and
optical encoders to localize the platform. The platform hosts
the power supply of the robot and the main part of the robot
computer system.

For detailed information the reader is referred to [3], as
also to [25] for a detailed description of the mechanics.

IV. GRASPING EXPERIMENTS

In this section, we will demonstrate the proposed method
using the ARMAR-III humanoid platform in a kitchen envi-
ronment, grasping common household objects.

A. Experimental Setup

For the experiments, meshes for all database objects were
generated using the interactive modeling center. We will
present results for three of those objects: a zwieback box,
a cylindrical salt container and a complex shaped detergent
sprayer bottle (see Fig. 5). In the end, the process steps for
the experiment resemble the architecture modeled in Fig. 1.

In the offline preparation, all objects were registered with
the recognition system as described in II-B. In order to
generate a set of grasp hypotheses on each object, the
decomposition of the high quality meshes (generated in the
modeling step) into boxes was performed. These hypotheses
are reduced using constellation and gripper embodiment
dependencies, i.e. grasp hypotheses on blocked or too large
surfaces will be removed. In order to rate the hypotheses
related to grasp stability, grasp quality learning from a
different set of training objects was performed for the left and
the right hand of ARMAR-III using the GraspIt! simulator.

For the online experiments, each object is placed on the
kitchen sideboard, in the field of view of the robot, and
localized using the recognition system. The resulting object
pose is used to transform the object-centered grasp hypothe-
ses to the current scene. The resulting grasp hypotheses
comprise approach direction, pre-grasp pose and grasp pose.
The inverse kinematics solver is deployed in order to derive
a rating for the reachability of the generated hypotheses.
Reachable grasp hypotheses are then executable using the
configuration resulting from the solver in order to align with

Fig. 5. Objects used in the experiment: zwieback, salt, sprayer bottle.

the pre-grasp position. Finally, we manually select three of
those valid grasps for each object. To perform each of them,
the final poses are approached using visual servoing with a
red colored ball at the wrists of both hands. Once the final
grasp pose has been reached, the robot closes the hand in
order to lift the object.

B. Experimental Results

The experimental results are depicted in Tab. I. In the
first column, the corresponding models and their box ap-
proximations are shown, along with some statistics about the
decomposition. The database point meshes were generated
as described in Section II-A. Since both the zwieback and
the salt are compact shapes, only one box was found to be
necessary to suit the shape. In the case of the detergent bot-
tle, the decomposition procedure yielded an approximation
consisting of five boxes. The recursive fitting-and-splitting
strategy is also reason for the higher effort in offline com-
putation time for this object. Also note that here, though 6
boxes originally yield 30 facets, 9 of them were automatically
removed because of occlusion in the constellation.

In the second column, the complete sets of generated
hypotheses are depicted. The visual representations also in-
clude the grasp hypotheses removed from constellation (dark
triangles). While 4 hypothesis (orientation-aligned to the four
edges) emerge from each of the valid facets, some of them
are removed by further constellation or gripper dependencies.
Note, for example, that the zwieback box provides no grasp
hypotheses from the back or front side, since the dimensions
of these facets exceed the gripper aperture.

As one can see from the selected grasps in the third
column, the zwieback box was successfully grasped from
the left hand side, the right hand side and from the top.
Similar grasps were performed on the salt can. It should be
noted that it is a more difficult task to grasp the salt can from
the top because of its circular lid. The box approximation of
the object yielded a successful grasp even for this difficult
case. It also has to be mentioned that grasps are selected
manually since representations of the supporting table or
other distracting objects have not been considered in this
experiment, i.e. grasp hypotheses from the bottom of the
object would theoretically be valid, too. Grasps on the
detergent bottle were performed on two different boxes of the
set: the bottom and the central box, approaching the object
from the left hand side as well as from the right hand side,
also resulting in stable grasps.

Despite the fact that no haptic sensor feedback is used,
and that all objects turn more or less when force is applied
to them during the gripping phase, all grasps are stable even
during the lifting, as also they look quite intuitive and natural.
It is also emphasized how grasp hypotheses selection and
grasp planning can point to task-dependent grasping. For
example, a power-grasp on a large box (e.g. sprayer, bottom)
is suitable one for a ‘transport’ action, while a pinch-grasp
on a small box (e.g. sprayer, middle) is suitable for a ‘show’
or ‘hand-over’. However, the current hand model does not
support a lot of such grasp pre-shapes.
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V. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a grasping strategy for known

objects, comprising an off-line, box-based grasp generation
technique on 3D shape representations. The complete system
is able to robustly detect an object and estimate its pose,
flexibly generate grasp hypotheses from the assigned model
and perform such hypotheses using visual servoing. Through
the presented systems integration approach, we showed for
the first time that grasp hypotheses delivered from box
approximations of object models are well applicable on a real
robot system. Throughout the presented experiments, object
pose changes dependent on the force applied to it. Though
grasps are generally stable and look human-like, we keep
in mind the issue of what one can call the grip component.
For the sake of efficiency and intuitive motivation, we are
aware that our approach is a pre-grip component on very
robust shape information. A sophisticated grip component
would greatly contribute in terms of corrective movements
by analyzing haptic feedback.

The box representation of an object is simple. However,
the projection of an object onto the box faces ignores the real
3D shape of the object in the box, not considering the correct
surface normals of the object in the grasp planning. Thus,
there is a possibility that planned grasps are infeasible, which
addresses the limitation of the grasp planning. In [20], we
examined the integration of gripper kinematics using finger
positioning estimates on the described projection patterns.
However, and as future work, one can imagine higher-level
part classification from point sets of the model that have
been segmented through decomposition. This topic relates to
work on part-based shape representations. Classification of
shape is a beneficial, but also complex task, as additionally,
the box constellation might be very different and unstable
as influenced by noise, perspective view and uncertainties.
For the purpose of grasp hypothesis generation, this is not a
severe problem, while it will be in part and object classifica-
tion tasks. Finally, the evaluation of the proposed method
on unknown, i.e. unmodeled, objects based on 3D input
perceived from a real vision system will be a challenging
future work task, due to the same uncertainties.

VI. ACKNOWLEDGMENTS
This work was supported by EU through the projects

PACO-PLUS, IST-FP6-IP-027657 and GRASP, IST-FP7-
IP-215821, and the German Humanoid Research project
SFB588 funded by the German Research Foundation (DFG:
Deutsche Forschungsgemeinschaft).

REFERENCES

[1] J. Gibson, “The Theory of Affordances,” in Perceiving, Acting, and
Knowing: Toward an Ecological Psychology, R. Shaw and J. Brans-
ford, Eds. Erlbaum, NJ, 1977, pp. 67–82.

[2] K. Okada, M. Kojima, Y. Sagawa, T. Ichino, K. Sato, and M. Inaba,
“Vision Based Behavior Verification System of Humanoid Robot for
Daily Environment Tasks,” in IEEE/RAS International Conference on
Humanoid Robots, 2006, pp. 7–12.

[3] T. Asfour, P. Azad, N. Vahrenkamp, K. Regenstein, A. Bierbaum,
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Abstract

One of the core challenges in the field of robotics is to equip robots
with the ability to intelligently interact with the world. To achieve this,
a robot necessarily needs to perceive and interpret the environment in
a proper way and understand the situations it is engaged in. The robot
thus has to be able to gather and interpret the sensory information in
new, unforeseen situations being provided some minimal knowledge in
advance. For service robot applications, one of the key requirements is to
be able to detect, recognize and manipulate objects, autonomously or in
collaboration with humans and other robots.

These capabilities should also include the generation of stable grasps to
safely handle even objects unknown to the robot. We believe that the key
to this ability is not to select a good grasp depending on the identification
of an object (e.g. as a cup), but on its shape (e.g. as a composition of shape
primitives). In this paper, we envelop our previous work on shape approxi-
mation by box primitives for the goal of simple and efficient grasping, and
extend it with a deeper investigation of methods and robot experiments.

1 Introduction

Researchers and programmers are working on providing robots with tasks to
fulfill in order to aid and support humans in everyday situations, e.g. cleaning
a table, filling a dishwasher. As only one example, such tasks are analyzed in
the project PACO-PLUS1 which our work is embedded in. The goal in the de-
velopment of such cognitive systems is oriented towards enabling the robot to
form useful object representations or categories by being actively engaged in the
environment. This means that the robot should, like a human, learn about ob-
jects and their representations through interaction. It has been recognized that
in order to achieve this, we need to integrate findings from disciplines such as
neuroscience, cognitive science, robotics, multi-modal perception and machine
learning. In cognitive systems, representation of objects plays a major role. A
robot’s local world model is built of objects that are ought to be recognized,

1http://www.paco-plus.org
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classified, interpreted and manipulated. The representations and aims may be ei-
ther hard-coded or learned in an active, on-line manner. However, whether in an
office, in health care or in a domestic scenario, robots should finally operate in-
dependently to satisfy various goals. The robot thus has to be able to gather and
interpret the sensory information in new, unforeseen situations being provided
some minimal knowledge in advance. In order to evolve this basic knowledge,
learning skills, for example from exploration or observation and imitation are
widely investigated and applied.

Robot grasping capabilities are essential for perceiving, interpreting and act-
ing in arbitrary and dynamic environments. While classical computer vision and
visual interpretation of scenes focus on the robot’s internal representation of the
world rather passively, robot grasping capabilities are needed to actively execute
tasks, modify scenarios and thereby reach versatile goals. Grasping is a central
issue of various robot applications, especially when unknown objects have to be
manipulated by the system.

Due to the demerit of model-based recognition, a closely related approach
which is focussed on the functionalities or affordances of objects is motivated.
The affordance theory by Gibson (1977) is quite attractive in current research
on intertwining objects and actions, claiming that actions are directly perceived
from being applied on objects, e.g. filling a cup. A cup is solid, it can stand
stable and it is hollow so it can keep fluid in it. Maybe each object that holds
the same attributes can also be used as a filling device, which humans might
name a cup. However, the filling device property is alone more general and allows
to put in flowers, which would make one name it a vase instead. This line of
argument from objects to actions is also formalized into an upcoming concept,
the Object Action Complexes (Geib et al., 2006; Kraft et al., 2008; Krüger
et al., 2009; Wörgötter et al., 2009). Learning object categories by interacting
based on such Object Action Complexes (OACs) is part of our long-term goal
in PACO-PLUS. However, this concept depends on and strongly demands three
core abilities from the system:

• the O-ability to recognize object properties like color or shape;

• the A-ability to perform actions; and

• the C-ability to put such observations into a higher level context, allowing
learning and evolving of OACs.

In this paper, we present an approach aimed at all three items. We will
mostly focus on the object description, but constrain it by performable actions.
In particular, we will connect box-like representations of objects with grasping,
and motivate this approach in a number of ways. Implicitly, and to show the
applicability of the concept, we have some preliminary C-abilities in our sys-
tem. In the entire PACO-PLUS project, C-components are investigated in a
wider scope, where we refer to the OAC references mentioned above. We briefly
introduce our basic work as also other related work in Section 2.
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2 Related Work

The work presented here relates to grasping in robotics, as also to methods for
shape approximation in computer vision and computer graphics. Related works
from those fields will be summarized in the following subsections.

2.1 Grasping in Robotics

In robotic object grasping there has been a lot of effort during the past few
decades (e.g. see Siciliano and Khatib (2008) for a survey). However, the exist-
ing artificial systems performing grasping and manipulation of objects are still
far away from closely emulating the human perception-action system. One of the
reasons is the hardware: most robot hands feature very simple contact surfaces
not comparable to human hands having five soft fingers with high dexterity and
compliance. Apart from the hands, robotic arms also have less dexterity and
flexibility. Current robotic systems dealing with object grasping and manipula-
tion rarely take into account task dependency, planning or exception handling,
especially when the whole eye-hand coordination problem is considered.

On the processing side, it has been widely recognized that high-level task-
related grasp planning is difficult due to the large search space resulting from
all possible hand configurations, grasp types, and object properties that occur
in realistic settings. Innovative work in this field included kinematic constraints
of the hand in order to prune the search space, e.g. (Borst et al., 2003; Miller
et al., 2003). The most common way to approach the problem has been the
model-based approach. Different grasp-related components such as objects, sur-
faces, contacts, forces, etc., are modeled according to very specific physical laws
assuming a good knowledge of the environment. Thus, the research has mainly
focused on (i) grasp analysis, i.e. the study of the physical properties of a given
grasp (Bicchi and Kumar, 2000; Zhu et al., 2003), and (ii) grasp synthesis, the
computation of grasps that meet certain pre-defined properties (Liu et al., 2004;
Miller et al., 2003; Morales et al., 2004; Pollard, 1994, 2004; Shimoga, 1996). Un-
fortunately, these approaches have failed to deliver practical implementations
that can be implemented on different platforms independent of the hardware
properties. The most crucial problem has been that the methods mostly rely
on assumptions that are not satisfied in complex environments with a high de-
gree of uncertainty. Examples of these assumptions are the use of accurate object
models, contact surface properties, or disregard of dynamic properties of grasps.

Early work on contact-level grasp synthesis focused mainly on finding a fixed
number of contact locations without regarding hand geometry (Liu et al., 2004).
Considering specifically object manipulation tasks, the work on automatic grasp
synthesis and planning is of significant relevance (Miller et al., 2003; Morales
et al., 2004; Okamura et al., 2000; Shimoga, 1996). In these approaches, finger
contact locations, forces and grasp wrench spaces can be simulated. Different
criterions can be defined to rate grasp configurations, e.g. force closure, dexter-
ity, equilibrium, stability and dynamic behavior (Shimoga, 1996). However, the
dependency on a-priori known or dense and detailed object models is apparent.
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Miller et al. (2003) therefore proposed grasp planning on simple shape primitives
like spheres, cylinders and cones, clearly demanding a pre-classification of object
shape. Dependent on the primitive shape, one can test several grasp configu-
rations for their static stability. Ekvall and Kragic (2007) showed how a robot
system can learn grasping by human demonstration using a grasp experience
database. The human grasp is recognized with the help of a magnetic tracking
system and mapped to the kinematics of the robot hand using a predefined
lookup-table. Other than in (Miller et al., 2003), the system can distinguish
between ten different human grasps, adapted from Cutkosky’s grasp taxonomy
(Cutkosky, 1989). The grasp controller takes into account not only the object
pose and the kind of grasp to be executed, but also the approach strategy of the
human demonstrator. The training for the system has also been proceeded on
models approximating the real objects by shape primitives. However, the classi-
cal work on contact-level planning concentrates on known primitives, or known
shape, from the very beginning. In our work, we do only take into account the
contact-level at the very end, in order to check how far we can get with simple
shape approximation.

Hence, control and object models are commonly tailored for specific tasks,
e.g. for ball catching (Namiki et al., 2003). The main issue here is the auto-
matic generation of stable grasps assuming that the model of the hand is known
and/or that certain assumptions about the object (e.g. shape, pose) can be
made, e.g. see (Pollard, 2004). An important question is: how can we equip
robots with capabilities of gathering and interpreting the necessary information
for novel tasks through interaction with the environment, but in combination
with minimal prior knowledge?

In order to overcome these difficulties, machine vision has been proposed
as a solution to obtain the lacking information about object shapes, or con-
tact information to explore the object. Another trend has focused on machine
learning approaches to determine the relevant features indicating a successful
grasp (Morales et al., 2004; Saxena et al., 2008). Finally, there have been ef-
forts to use human demonstrations for learning grasp tasks. Problematically,
these approaches also commonly consider grasps as a fixed number of contact
locations without any regard of hand geometry and hand kinematics (Bicchi
and Kumar, 2000). An alternative paradigm, often motivated by studies on hu-
man grasping, is the so-called knowledge-based approach. It tries to simplify
the visual grasp planning problem by reasoning on a more symbolic level. In
this paradigm, object shapes are often described using shape primitives, like
constellations of cubes or ellipsoids. Grasp prototypes are defined in terms of
purposeful hand pre-shapes, e.g. power-grasp or pinch-grasp, and planning and
selection of grasps is made according to programmed decision rules. Taking into
account both hand kinematics and a-priori knowledge about the feasible grasps
has been acknowledged as a more flexible and natural approach towards auto-
matic grasp planning (Miller et al., 2003). It is obvious that knowledge about
the object shape and task is quite meaningful for grasp planning (Borst et al.,
2004), which thereby motivates a more particular view on shape approximation
in context of grasping.
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2.2 Shape Approximation

When addressing robotic grasping of unknown objects, one has to think about
a representation that not only eases grasping, but which can also be efficiently
delivered from the sensor data. Though there is interesting work on producing
grasp hypotheses by visual features from 2D images only, e.g. (Saxena et al.,
2008), most techniques rely on 3D data. 3D data, which in its simplest form may
be a set of 3D points belonging to an object’s surface, can be produced by several
kinds of sensors and techniques, e.g. distance imaging cameras, laser scanners
or stereo camera systems. Since the last solution is cheap, easy to integrate and
close to the human sensory system, a multitude of concepts in the area use 3D
point distance data for feature points from stereo disparity. Entire point clouds
originating from a scene are usually affected with sensor noise, distortion and
uncertainties, and thus scattered cloud of points of the scenario, which has to be
taken into account for precise shape approximation of such data. A higher-level
representation of these points as a set of shape primitives (e.g. planes, boxes,
spheres or cylinders) thus gives more valuable clues for object recognition and
grasping by compressing information to their core.

Most approaches that consider this problem are likewise bottom-up, start-
ing from point-clouds and synthesizing object shapes by using superquadrics
(SQs). Superquadrics are parameterizable models that offer a large variety of
different shapes. In the problem of 3D volume approximation stated here, only
superellipsoids are used out of the group of SQs, as these are the only ones repre-
senting closed shapes. There is a multitude of state-of-the-art approaches based
on parameterized superellipsoids for modeling 3D range data with shape prim-
itives (Biegelbauer and Vincze, 2007; Chevalier et al., 2003; Goldfeder et al.,
2007; Katsoulas, 2003; Solina and Bajcsy, 1990). If we assume that an arbi-
trary point cloud has to be approximated, one SQ is obviously not enough for
most objects. The more complex the shape is, the more SQs have to be used
to conveniently represent its different parts. Just for such cases, good generality
is not possible using SQs with few parameters (Biegelbauer and Vincze, 2007).
Besides the advantages of immense parameterization capabilities with at least
11 parameters, intensive research on SQs has also yielded disadvantages in two
common strategies for SQ approximation. The first strategy is region-growing,
starting with a set of hypotheses, the seeds, and let these adapt to the point
set. However, this approach has not proved to be effective (Chevalier et al.,
2003) and suffers from refinement problem of the seeds (Katsoulas, 2003). The
second strategy uses a split-and-merge technique splitting up an overall shape
and merging parts again, which is more adapted to unorganized and irregular
data (Chevalier et al., 2003). Independent of the strategy used, the models and
seeds, respectively, have to be fitted to the 3D data. This is usually done by
least square minimization of an inside-outside fitting function, as there is no
analytical method to compute the distance between a point and a superquadric
(Goldfeder et al., 2007). Thus, SQs are though a good trade-off between flexi-
bility and computational simplicity, but sensitive to noise and outliers that will
cause imperfect approximations. This is an important issue, as our work will be
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based on dense stereo data, which results in more distorted and incomplete data
in contrast to data points provided by range scanners which are mainly applied
in related work.

The work of (Lopez-Damian, 2006; Lopez-Damian et al., 2005) is related to
ours in terms of object decomposition and grasping. Additionally, they propose
a grasp planner to find a stable grasp. However, their concept uses polygonal
structures instead of 3D points. Though one could produce polygonal surfaces
from 3D point data, for example by the Power Crust algorithm (Amenta et al.,
2001), this introduces another step causing additional effort both in processing
time and noise handling.

2.3 Previous Work, Paper Structure and Contributions

On the issue of shape approximation, we first presented a bounding box decom-
position approach for arbitrary object shape approximation and robot grasping
in (Huebner et al., 2008). The initial technique based on Minimum Volume
Bounding Boxes from 3D point clouds proposed in this work will be revisited in
Section 4, Box Decomposition, in particular in Section 4.3. We have further im-
proved the decomposition algorithm to be more robust under influence of noise
and clutter. The new technique will be presented in Section 4.4. The content of
that section holds the box decomposition itself, leading from an arbitrary point
cloud to a constellation of 3D boxes. In Section 5, we will summarize and dis-
cuss how we continue with such a box constellation for the purpose of grasping.
The basic ideas were introduced in (Huebner and Kragic, 2008): in the work
presented here, we decribe an improved algorithm and extend it with additional
detail and experiments. In Section 6, we present an experiment demonstrating
the framework capabilities, and then conclude our work in Section 7. We first
start with an outline of our system.

The contributions of work presented here are two-fold: in terms of shape
approximation, we provide an algorithm for a 3D box primitive representation to
identify object parts from 3D point clouds. We motivate and evaluate this choice
particularly toward the task of grasping. For this purpose, and as a contribution
in the field of grasping, we additionally provide a grasp hypothesis generation
framework that utilizes the chosen box presentation in a highly flexible manner.

3 Outline of the System

We have observed that modeling 3D data by shape primitives is a valuable step
for object representation. Sets of such primitives can be used to describe in-
stances of the same object classes, e.g. cups or tables. However, it is not our aim
to focus on such high-level classifications or identification of objects, but specif-
ically on grasping. As discussed, we moreover approach a deeper understanding
of objects by interaction instead of observation for that purpose, e.g., if there
is an object that can be picked up and filled, it can be used as a cup.
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The very basic features we work with are 3D point clouds. From a stereo
vision system like ours (described in Section 6.1), these are typically, but very
dependent on image resolution, disparity processing method, or an object’s seg-
mentation, between 20.000 and 200.000 points per scene. Processing an enor-
mous number of data points takes time, both in approaches that use raw points
for grasp hypotheses and in those that try to approximate them as good as pos-
sible by shape primitives. Thus, the question remains how rudimentary a model
of an object can be in order to be handled successfully and efficiently. While
comparable work uses pairs of primitive feature points, e.g. (Aarno et al., 2007),
or a-priori known models for each object (Tegin et al., 2006), we are interested
in looking into which primitive shape representations might be sufficient for the
task of grasping arbitrary, unseen objects.

We believe that a mid-level solution is a promising trade-off between good
approximation and efficiency for this purpose. Complex shapes are difficult to
process, while simple ones will give bad approximations, resulting in unsuccessful
grasps. However, we can keep in mind the capabilities of accessible methods to
handle immanent approximation inaccuracies for grasping: e.g., haptic feedback,
visual servoing and advanced grasp controllers for online correction of grasps.
We prefer general fast online techniques instead of pre-learned offline examples,
thus the algorithm’s efficiency is the most important. Unknown objects are
difficult to parameterize but need real-time application for robot grasping. A
computation in terms of minutes for a superquadric approximation is therefore
not feasible.

We aim for simplicity stating the question: Do humans approach an apple
for grasping with their hand in another way as they approach a cup, or a pen
in another way as a fork? While there are surely differences in fine grasping and
task dependencies, differences in approaching these objects seem quite marginal,
but lead us to the analysis of steps that are involved in a manipulative action.

3.1 Components of Manipulative Actions

While classical contact-level solutions include a merge of both transport
(leading the hand to the grasp position) and grip (closing the fingers to perform
the grasp), we see a benefit in loosely decoupling these two components.
The psychophysical shortcomings of completely decoupling the grip from the
transport component have been discussed in (Smeets and Brenner, 1999), even
if that is described to be the classical approach. It is also hardly questioned
that the transport component refers to extrinsic object properties only (e.g.
position, orientation) while the grip component depends on intrinsic properties
(e.g. size, shape, weight). Derbyshire et al. (2006) even motivate action to
be an intrinsic property. As we will later see, our work here will neither
separate nor combine these two components. In contrast, and as a result of
putting focus on rough shape representation, it can be seen as a connecting
module in-between which we call the pre-grip component. We will briefly de-
scribe the components that we consider to be important for any grasping action:
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The pre-grip component is responsible for the hand configuration (wrist
position, approach vector, or even finger configuration) of the gripper before
an action execution like grasp or push is initialized. The pre-grip component
might be constrained explicitly by kinematics of the gripper. In our case, this
is generally not the case due to the use of grasp pre-shapes (e.g. following
(Cutkosky, 1989)). The final location of the hand is also clearly dependent on
the task at hand, making the task another extrinsic property.

The transport component is a temporal pre-decessor in the sequence of
actions for the pre-grip component. However, the pre-grip component can be
used to initialize a manipulation action by providing a goal position to which
the gripper shall be transported. It has to be noted that it would demand
grasp planning and collision detection in a definition of successful robot hand
transport, making this problem a research area for itself.

The grip component is the direct successor of the grasp approach vector
generation in the pre-grip phase. It is not handled in a comparable way to
classical contact-level grasp planning, as that one connects directly to all
perceptually sensed intrinsic properties. In our definition, the grip is the step
from the initial pre-grip configuration to the state where all effectors included in
the manipulation are in contact with the object. No additional object-centered
properties are introduced for this component, but haptic or visual feedback will
allow handling of inaccuracies and lacks of the preceding components.

The post-grip component is ought to be realized as a fine-controller based on
tactile feedback and corrective movements, like included in (Tegin et al., 2009).
Precise shape, weight or surface texture properties, as information that has not
been accessible before will be introduced with this component. In our work, we
abstract from higher-level manipulative components, e.g. turning the lock for
opening a bottle. We will mainly focus on very elementary grasping actions.

Grasp
Component

Extrinsic
Properties

Intrinsic
Properties

Methods

Transport position – Path Planning

Pre-Grip
orientation,
task

size,
rough shape

3D Shape
Approximation

Grip – – Haptic Feedback,
Visual Servoing

Post-Grip –
precise shape,
weight,
surface texture

Haptic Exploration,
Corrective Movements

Table 1: Grasp components, involved object properties and methods.
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These considerations are concluded and visualized in Tab. 1, showing the
components, as also properties and methods connected to them. In our frame-
work, we see the pre-grip component as the initial trigger for each object ma-
nipulation, considering a number of basic, both extrinsic and intrinsic, object
properties. Accordingly, our main clue to approach this component is a basic 3D
shape approximation which is capable to connect to the necessary properties.

4 Box Decomposition

4.1 Minimum Volume Bounding Box Algorithm

We base our algorithm on the minimum volume bounding box computation
proposed by Barequet and Har-Peled (2001). Given a set of n 3D points, the
implementation of the algorithm computes their Minimum Volume Bounding
Box (MVBB) in O(n log n + n/ε3) time, where ε is a factor of approximation.
The algorithm is quite efficient and parameterizable by sample and grid opti-
mizations, as also performing the computation on an arbitrary point cloud yields
one tight-fitting, oriented MVBB enclosing the data points.

Our aim is now to iteratively split the box and the data points, respectively,
in such a way that the new point sets yield a better box approximation of
the shape. Iterative splitting of a root box corresponds to the build-up of a
hierarchy of boxes. Gottschalk et al. (1996) present the OBBTree (Oriented
Bounding Box Tree) for this purpose. The goal is to efficiently detect collisions
between polygonal objects by the OBBTree representation. The realization of
the splitting step is quite straightforward: each box is cut at the gravity center
point of the vertices, perpendicular to the longest axis. This is done iteratively,
until a box cannot be divided any further.

4.2 Fit-and-Split Adaptation

In our case, the above commonly used strategy is suboptimal. We want to con-
veniently approximate a shape with as few boxes as possible, thus a splitting
into as many small boxes as possible is against our overall aim, if we refrain from
merging them again. Additionally, though the MVBB algorithm is efficient, a
fitting step after each splitting consumes valuable computation time. On the
other hand, splitting at the central point is then not optimal. A heuristic to find
a ‘good’ split is needed. Therefore, we will have to define what a ‘good’ split is.

Fig. 1a shows a central cut, similar to the ones used by Gottschalk’s algo-
rithm. It is obvious that this one is not optimal for our task, as it does not
improve the approximation by the boxes of both new halves. It is neither intu-
itive, since it does not divide the bunny in semantic parts, e.g. head and body,
as is shown in Fig. 1b. Such a semantic division is hard to find. Due to efficiency,
we yet restricted to planar instead of non-linear cuts in the examples. But even
with planes, finding the best intuitive cut would correspond to an extensive
search and comparison of a lot of planes, differing in position and orientation.
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Thus, we decide to test only those planes parallel to the MVBB’s faces.
As a measure of a good split, we consult the relation of the box volume

before and after performing the split. A split of the parent box is the better, the
less volume the two child MVBBs include. Intuitively, this is clear, as shape ap-
proximation is better with highly tight-fitting boxes. We proposed the following
efficient algorithm to find the best split:

4.3 Simple Best Split Computation

In (Huebner et al., 2008), we tested planes parallel to the box surfaces for
the best splitting plane. Each MVBB has six sides, whereof opposing pairs are
parallel and symmetric. In-between each of these pairs, we can shift a cutting
plane. Fig. 1d depicts this restriction on a splitting parallel to A, shifted by a
distance a, and B by b and C by c, respectively. A computation of new MVBBs
for each value of the split parameters a, b and c would take a lot of computational
effort. Therefore, we estimated the best cut by projecting the data on 2D grids
which correspond to the surfaces A, B and C. The bunny sample data projection
onto the three surface grids of the root MVBB are shown in Fig. 2. For the sake
of efficiency, it is thereby abstracted from the real 3D volume of the shape.

We defined the best split as the one that minimizes the summed volume
of the two partitions. Thus, we now test each discretized grid split along the
six axes, using the split parameters. We define a split measure θ(F , f , i) with
F ∈ {A,B,C} being the projection plane to split, f being one of the two axes
that span F , and i as the grid value on this axis that defines the current split.
Consequently, we have six possible split measures

θ1(A, c, i1), i1 ∈ N<cmax , θ2(A, b, i2), i2 ∈ N<bmax ,

θ3(B, c, i3), i3 ∈ N<cmax , θ4(B, a, i4), i4 ∈ N<amax ,

θ5(C, a, i5), i5 ∈ N<amax , θ6(C, b, i6), i6 ∈ N<bmax , (1)

to compare, of which the minimum is supposed to lead to the best split.
The minimization of each θ(F , f , i) was implemented as follows. For each

i that cuts F perpendicular to f in two rectangular shapes, we compute
the two resulting minimal volumes by lower and upper bounds. The i that
yields the minimum value is the best cut of θ(F , f , i). θ(F , f , i) was defined
as the fraction between the sum of the two best cut rectangles and the whole
projection rectangular. The two core algorithms have been sketched in Fig. 3,
Alg. 4.1 and 4.2. Though this is a very approximative method, it is quite fast,
as rectangle volume and bound computation are easy to process. Fig. 2 shows
the best cuts for which rectangular volume and the corresponding values θ1...6
are minimal. However, several problems arose from the proposed kind of split
estimation and led us to later improve the performance:

Cutting Non-Convex Shapes. In projections with a ‘valley’ between two
equally high ‘hills’, both upper bounds and thus the volume to minimize will
be constant. For example, in Fig. 2 (θ6) it would intuitively be a valuable next
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Figure 1: Exemplary cuts of the bunny: (a) a central cut, (b) an intuitively best
cut and (c) a good cut parallel to one of the root MVBB planes. (d) Restriction
to surface-parallel cutting planes in the simple approach.

Figure 2: Best cuts along the six box directions and cut positions i (triangles).
The corresponding volume values θ(F , f , i) (according to (1)) are also presented.

cut below the bunny’s ear. Nevertheless, the computation presented will not
detect this cut. In earlier work, we stated that finding such is not that simple,
especially when distorted, sparse and insecure data is provided. The issue is how
to distinguish between a real ‘valley’ and just incompleteness of the data. An
add-on for the solution of this problem would therefore be more complex and
time-consuming. The bunny is a very ideal model, as it is artificial, complete,
and data points are very dense. Since it is our aim to evaluate our algorithm
also on real sensory data, we can not generally assume such ideal conditions.

Cutting Shape Extremities. The minimum volume box fitting approach
naturally prefers fitting extremities of the shape into the corners of the boxes,
as this keeps the box smaller. The bunny’s ear is again an example for this,
since it is almost diagonally suited into one of the box corners. However, espe-
cially such extremities can rarely be nicely cut by a face-parallel cut as proposed.

Sensitivity to Noise. A third reason is the result of the box decomposition’s
robustness evaluation that we presented in (Geidenstam et al., 2009). Briefly
summarizing, the evaluation shows that face-parallel splitting is very sensitive
to each kind of inaccuracy that can emerge from a real 3D scene and sensors:
noise, outliers, shape incompleteness due to viewpoint or viewpoint change, etc.
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Algorithm 4.1: BoxApproximate(points3d)

P ← findBoundingBox(points3d)
{A,B,C} ← nonOppositeFaces(P )
(p3d

1 , p
3d
2 )← split(FindBestSplit({A,B,C}, points3d))

(C1, C2)← (findBoundingBox(p3d
1 ), findBoundingBox(p3d

2 )
if (percentualV olume(C1 + C2, P ) < t) ← see (3)
then BoxApproximate(p3d

1 ) and BoxApproximate(p3d
2 )

else return (P )

Algorithm 4.2: FindBestSplit Bound({A,B,C}, points3d)

for F ← A to C

do



p2d ← project(points3d, F )
for i← 1 to fxmax

do


(p2d

1 , p
2d
2 )← verticalSplit(p2D, i)

θ = boundArea(p2d1 )+boundArea(p2d2 )

area(F )

if (θ < θ∗)
then (θ∗ ← θ) and (bestSplit← (F , fx, i))

for i← 1 to fymax

do


(p2d

1 , p
2d
2 )← horizontalSplit(p2D, i)

θ = boundArea(p2d1 )+boundArea(p2d2 )

area(F )

if (θ < θ∗)
then (θ∗ ← θ) and (bestSplit← (F , fy, i))

return (bestSplit)

Algorithm 4.3: FindBestSplit ConvexHull({A,B,C}, points3d)

for F ← A to C

do



points2D ← project(points3d, F )
S ← longSegments(CH(points2D), lengthThreshold)
for each (S(i,j), S(k,l))
with (i, k = segmentIndex; i 6= k), (j, l = pointIndex; j, l < n)

do


(p1, p2)← split(p2D, S(i,j), S(k,l))

θ′ = area(CH(p1))+area(CH(p2))
area(CH(points2D)

← see (2)
if (θ′ < θ∗)
then (θ∗ ← θ′) and (bestSplit← (S(i,j), S(k,l)))

return (bestSplit)

Figure 3: Pseudocode: a point set and its bounding box, respectively, are recur-
sively split (Alg. 4.1). A good split is estimated through analysis of 2D splits of
the projected points onto each of the box faces, either using edge-parallel cuts
(Alg. 4.2) or convex hull computations (Alg. 4.3).
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4.4 Advanced Best Split Computation

These issues prompted us to revisit the split computation. Finally, we developed
an algorithm based on convex hulls that solves all the three issues of the simple
best splitting and additionally presents much more confident splitting results.
For efficiently computing convex hulls on a set of 2D points p, like our projec-
tions, we use a Monotone Chain Algorithm (Andrew, 1979). Starting from the
convex hull CH(p) of the whole projection, we select those segments Si of the
hull which exceed a given threshold in length. We thereby assume that those
either span a ‘valley’ of the outer contour of the data, or they represent a very
straight edge. On these segments, we interpolate a number n of sample points
Si,j , j < n. Between each pair of points (Si,j , Sk,l) with i 6= k, we simulate a cut
that splits the point set p into two subsets p1 and p2. The two segment points
that minimize

θ′ =
area(CH(p1)) + area(CH(p2))

area(CH(p))
(2)

define our best split, where A is the area function for a convex hull. Practically,
we use n = 6 (see also Fig. 4). Increasing n might produce more precise cuts,
but for the price of additional convex hull computation cost. Pseudocode of this
algorithm is sketched in Fig. 3, Alg. 4.3.

Performance of both the old and the new technique can be compared taking
a look at Fig. 5. The new technique is more robust to the change of the gain
threshold t which will be discussed below. The duck model (Fig. 5f) is not even
affected in the cases tested, but stays with the same constellation of three boxes.
Another visible effect is that the decompositions seem more intuitive, e.g. the
cuts of the handle of the cup (Fig. 5e), or the ears of the bunny (Fig. 5h). This
is due to the now unrestricted pose of the 2D cutting lines.

4.5 Fit-and-Split Hierarchy Building

According to the best split θ∗, which would be θ1 or θ2 and θ′
A

respectively in
our examples above, the original point cloud can be divided into two subsets of

(a) θ′
A

= 0.69 (b) θ′
B

= 0.71 (c) θ′
C

= 0.72

Figure 4: The three best projection splits when using the advanced convex hull
algorithm. The result is much more confident than those derived from Fig. 1,
while the additional computational effort is still acceptable.
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the data points. These can be used as inputs to the MVBB algorithm again and
will produce two child MVBBs of the root MVBB. In this way, the complete
technique of fit-and-split can iteratively be performed. It is important to note
that by MVBB computation, the MVBBs are not axis-aligned, but will greatly
differ from the box cuts depicted in Fig. 2 in both orientation and scale.

Additionally, the previous step of 2D cutting is just equal to computing an
approximative gain value, for the purpose of efficiency. As an iteration breaking
criterion, we subsequently test the real MVBB volume gain Θ∗ of the resulting
best split measure θ∗. Therefore, we compute the gain in volume defining

Θ∗ =
volume(C1) + volume(C2) + V (A\P )

volume(P ) + volume(A\P )
, (3)

where A is the overall set of boxes in the current hierarchy, P is the current
(parent) box, C1, C2 are the two child boxes that might be produced by the
split, and volume being a volume function.
We decide further process on two constraints:

• If the gain is too low, a split is not valuable. For this purpose, we include
a threshold value t that can also be used as a parameter. The precision
of the whole approximation can be parameterized by simply preventing a
split if Θ∗ exceeds t. A threshold between t = 0.90 and t = 0.95 has given
good results in most of our experiments.

• We do not preserve boxes in the hierarchy that include a very low number
of points. By this process, noise in the point data can be handled to a
certain extent.

Note that by t, both the depth of the hierarchy, the number of leaf boxes,
and thereby the detail of approximation can be controlled. Where a split is done
is not dependent on t. Thus, we can later on easily let t evolve, e.g. from a rough
root box approximation in the beginning that already can be used for transport,
size attribution or grasping, to a higher degree of decomposition into parts.

An example of a decomposition hierarchy can be seen in Fig. 6 which led to
the rightmost result in Fig. 5g, using a gain threshold t = 0.98. Each time, a
best volume split value Θ∗ is below t, a valid cut is detected and it is continued
separately with two new point clouds. Otherwise, the treated box is a leaf box
and thereby part of the final constellation. Besides the result for t = 0.98,
which is the whole binary tree presented, sub-graphs represent the state of lower
thresholds, e.g. those presented for t = 0.90, 0.94 in Fig. 5g.

5 Pre-Grasp Heuristics on Box Representations

The common way to evaluate grasping strategies is extensive evaluation which
is practically possible only in simulation (Goldfeder et al., 2007; Miller et al.,
2003). Miller et al. have simulated pre-models and shape primitives using their
public grasp simulation environment GraspIt! (Miller et al., 2003). We also base

14



Simple Best Split Advanced Best Split

(a) Mug: MVBBs (2,3,5) produced with
t=0.90, 0.94, 0.98.

(b) Duck: MVBBs (3,5,9) produced with
t=0.90, 0.94, 0.98.

(c) Homer: MVBBs (4,5,7) produced with
t=0.90, 0.94, 0.98.

(d) Bunny: MVBBs (2,4,11) produced with
t=0.90, 0.94, 0.98.

(e) Mug: MVBBs (2,2,17) produced
with t=0.90, 0.94, 0.98.

(f) Duck: MVBBs (3,3,3) produced with
t=0.90, 0.94, 0.98.

(g) Homer: MVBBs (4,5,6) produced with
t=0.90, 0.94, 0.98.

(h) Bunny: MVBBs (2,3,4) produced
with t=0.90, 0.94, 0.98.

Figure 5: Examples of box decomposition using different gain thresholds t=0.90,
0.94, 0.98, where numbers in brackets correspond to numbers of boxes. (a)-(d)
show the results with the simple cutting proposed in Section 4.3, while (e)-(h)
shows the advanced cutting proposed in Section 4.4.

most of our following experiments on model-based grasping in the GraspIt!
simulator. For the evaluation, we create lots of GraspIt! worlds, each of which
contains a model of a gripper mounted on a freely movable ‘Euler’ robot, since
the hand is not able to move itself in free space. Additionally, an object that is
to be grasped is included into the world, being the only difference between the
world files (one for each object).
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Figure 6: Visualization of a decomposition hierarchy. The example shows a
model decomposition, using a gain threshold t = 0.98. Is the best volume split
value Θ∗ below this threshold, a valid cut is detected. Otherwise, the box is a
leaf box (dashed), a part of the final constellation. One can also trace the results
with lower thresholds (t = 0.9 dotted gray; t = 0.94 solid gray) from Fig. 5g.
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5.1 Connecting Box Faces to Grasp Hypotheses

After an experiment has been initialized, the first iteration of the MVBB
algorithm is performed as proposed in Section 4. All levels of generated boxes
are subsequently inserted into the hierarchy. The first iteration will produce a
root box with six faces. It is important to note that faces will be very closely
connected to our grasp hypotheses. In our experiments, each face will be used
for grasp hypotheses parallel to the edges spanning it. There are two types of ap-
proach techniques that we will apply: a (backup) power-grasp and a pinch-grasp.

The Power Grasp (Backup) will put each pre-grasp position to a constant
distance from the face’s center aligned to its normal. We let the hand approach
the object along the normal until an arbitrary contact is detected. Afterwards,
the hand retreats a small distance (the backup) to call the autograsping
function (see below). The backup is mainly used due to technical constraints of
the simulator, and based on contact instead of shape representation. Despite
this technical discrepance, we will call this type of grasp a power grasp, to be
in line with common grasp taxonomies.

The Pinch Grasp will force a grasp towards the center of mass by approx-
imating the distance to the box center the current face belongs to. The pinch
is therefore based on the shape representation of the object. In contrast to the
power grasp, this technique is assumed better for small part grasping, as our
power grasp will usually retreat due to contact with another object first (e.g. a
table under a pen). From the approximated distance, the autograsp is called.

The Autograsp is a built-in grasping technique of GraspIt! which closes all
fingers of a gripper simultaneously. We apply just one initial posture for each
hand and do not consider different grasp pre-shapes at this point. Of course, the
boxes themselves are not only transparent in the simulator, but also physically
penetrable for each object in the scene. Thus, the fingers will grasp through
the box representation and perform contact on the real object model.

When all fingers are in contact, GraspIt! provides computation of two dif-
ferent grasp quality measures, namely epsL1 and volL1. Both measures rely on
the intersection of force cones derivable from the contact points. While volL1

describes the volume of intersection as a measure of grasp quality, epsL1 cor-
responds the the radius of the maximum sphere that can be placed inside this
volume. After the grasps on the root box have been performed and evaluated,
we continue the proposed fit-and-split algorithm until it is finished. We collect
all faces of boxes from the final approximation and remove occluded, ungras-
pable faces from the set. Finally, the same grasping process is made for each
remaining face as described for the root box.
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5.1.1 Experimental Results

In this work, we will evaluate the box decomposition with two robotic hand
models: a three-finger, 4 DOF Barrett Hand (Townsend, 2000), and a five-finger,
7 DOF Karlsruhe Hand (Fukaya et al., 2000). For each of the models from the
complete model data set, we go through this grasping evaluation for the root box
and the boxes produced with gain parameters 0.90, 0.94 and 0.98. The boxes are
computed according to the MVBB fit-and-split algorithm proposed in Section
4.5 and resulting faces grasped with power and pinch grasp, respectively. For
each try, we take a look at the final grasp qualities and the one grasp that is
best rated according to these quality measures. The results can be seen in Tab.
2 and 3 for the two different hand models.

For each object model, the number of overall faces is 24 times the number
of boxes, since each box has 6 faces. Here, we use 4 different grasp orientations
parallel to the face edges. Geometrical detection of blocked faces reduces the
number of graspable faces drastically, as also the consideration of maximum
width that the hand can grasp between its fingers. For example, there are no
valid grasps for the Bunny root box using the Karlsruhe hand, as this is a
too large model (see best grasps in Fig. 7 and 8). Sometimes, mainly for the
Karlsruhe hand and the pinch grasp, setting the hand near to the box directly
causes a collision with another object part. As these cases are also defined as
invalid, the number of valid faces for a pinch grasp are often much fewer than
those for the power grasp (compare Tab. 3).

For most objects, the best grasp type in terms of the level of decomposition
is quite comparable, independent of the chosen hand model. The main difference
can be seen in the face that both hands select for the most stable grasp. A clear
difference can be seen for the homer model. The most stable grasp using the
Karlsruhe hand is a pinch grasp on the highest decomposition level (0.98), while
with the Barrett hand, it is a power grasp on the root box. We can make the
following observations from the experiment:

• Considering the grasp quality values only, more stable grasps are generated
for the five-finger hand. This is due to a higher number of contact points
from more fingers, different material of the hands in the simulator, and
the grasp pre-shape of the Barrett hand, which is very similar to a two-
finger grasp. This motivates a deeper investigation on grasp pre-shapes.
However, such pre-shapes are clearly task-dependent.

• The same observation also relates to the percentage of force closure grasps,
which is equal to epsL1 > 0. While with the Barrett hand, only 15% of
the hypotheses result in force-closure grasps (Tab. 2), the Karlsruhe hand
experiments show that 56% of grasp hypotheses produced by our box
decomposition approach are successful force-closure grasps (Tab. 3).

• The epsL1 quality measure seems to yield even more intuitive results.
While a human probably would rate the best epsL1 grasps in Fig. 7 and 8
as quite stable, the best volL1 look unstable in many cases.
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Box set Grasp #FC #VF #OF eps∗L1 vol∗L1

Duck Root Power 0 24 24 ——— 0.00942

Duck Root Pinch 2 24 24 0.01050 0.00879

Duck 0.90 Power 0 24 72 ——— 0.00944

Duck 0.90 Pinch 6 24 72 0.02675 0.00529

Duck 0.94 Power 0 24 72 ——— 0.00944

Duck 0.94 Pinch 6 24 72 0.02675 0.00529

Duck 0.98 Power 0 24 72 ——— 0.00944

Duck 0.98 Pinch 6 24 72 0.02675 0.00529

Mug Root Power 8 24 24 0.01330 0.00122

Mug Root Pinch 10 24 24 0.01811 0.00144

Mug 0.90 Power 6 24 48 0.01044 0.00057

Mug 0.90 Pinch 7 24 48 0.01670 0.00043

Mug 0.94 Power 6 24 48 0.01044 0.00057

Mug 0.94 Pinch 7 24 48 0.01670 0.00043

Mug 0.98 Power 1 38 408 0.02075 0.00114

Mug 0.98 Pinch 0 34 408 ——— 0.00201

Bunny Root Power 2 24 24 0.01590 0.00670

Bunny Root Pinch 0 24 24 ——— 0.00233

Bunny 0.90 Power 5 28 48 0.00491 0.00689

Bunny 0.90 Pinch 6 28 48 0.03268 0.00517

Bunny 0.94 Power 3 20 72 0.00943 0.00599

Bunny 0.94 Pinch 5 20 72 0.05053 0.00446

Bunny 0.98 Power 5 32 96 0.00491 0.00689

Bunny 0.98 Pinch 6 32 96 0.03268 0.00517

Homer Root Power 6 24 24 0.03257 0.01086

Homer Root Pinch 3 24 24 0.00458 0.00446

Homer 0.90 Power 2 30 96 0.00355 0.00208

Homer 0.90 Pinch 6 30 96 0.02553 0.00126

Homer 0.94 Power 2 32 120 0.00355 0.00208

Homer 0.94 Pinch 6 32 120 0.02553 0.00126

Homer 0.98 Power 2 36 144 0.01031 0.00149

Homer 0.98 Pinch 5 36 144 0.02553 0.00266

Average 129 860 = 15%

Table 2: Table of the experimental grasping results (Barrett hand). FC = Force
Closure Grasps (epsL1 > 0). VF = Valid Faces (after heuristical selection). OF
= Overall Faces (after box decomposition).
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Box set Grasp #FC #VF #OF eps∗L1 vol∗L1

Duck Root Power 8 16 24 0.35045 1.32220

Duck Root Pinch 5 8 24 0.15746 1.07563

Duck 0.90 Power 11 18 72 0.15366 1.44921

Duck 0.90 Pinch 10 18 72 0.31731 0.88817

Duck 0.94 Power 11 18 72 0.15366 1.44921

Duck 0.94 Pinch 10 14 72 0.31731 0.88817

Duck 0.98 Power 11 18 72 0.15366 1.44921

Duck 0.98 Pinch 10 14 72 0.31731 0.88817

Mug Root Power 0 0 24 ——— ———

Mug Root Pinch 0 0 24 ——— ———

Mug 0.90 Power 3 12 48 0.04535 0.14132

Mug 0.90 Pinch 2 5 48 0.04486 0.16683

Mug 0.94 Power 3 12 48 0.04535 0.14132

Mug 0.94 Pinch 2 5 48 0.04486 0.16683

Mug 0.98 Power 7 30 408 0.08689 0.15867

Mug 0.98 Pinch 5 20 408 0.05113 0.31882

Bunny Root Power 0 0 24 ——— ———

Bunny Root Pinch 0 0 24 ——— ———

Bunny 0.90 Power 5 20 48 0.15010 0.46843

Bunny 0.90 Pinch 4 4 48 0.11063 0.33039

Bunny 0.94 Power 5 20 72 0.08698 0.22224

Bunny 0.94 Pinch 6 6 72 0.11063 0.33039

Bunny 0.98 Power 5 20 96 0.15010 0.46843

Bunny 0.98 Pinch 3 3 96 0.05245 0.03133

Homer Root Power 7 8 24 0.15218 0.19584

Homer Root Pinch 6 6 24 0.15996 0.37877

Homer 0.90 Power 24 30 96 0.13771 0.35117

Homer 0.90 Pinch 20 25 96 0.15044 0.35336

Homer 0.94 Power 24 32 120 0.13771 0.35117

Homer 0.94 Pinch 20 26 120 0.15044 0.35336

Homer 0.98 Power 20 36 144 0.13771 0.35117

Homer 0.98 Pinch 17 29 144 0.20816 1.03122

Average 264 473 = 56%

Table 3: Table of the experimental grasping results (Karlsruhe hand). FC =
Force Closure Grasps (epsL1 > 0). VF = Valid Faces (after heuristical selection).
OF = Overall Faces (after box decomposition).
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• The experiments have been performed in static simulation using GraspIt!,
i.e. when contact appears between a finger and the object, that finger is
stopped at this position. In reality or dynamic simulation, forces would
naturally draw the object towards the palm or opposing fingers. More
contact points would be available, improving the quality measures. The
implementation of dynamic experiments in GraspIt! is our ongoing work
(Tegin et al., 2009).
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Figure 7: Best grasps for the experimental Barrett hand grasping results in Tab.
2. Upper row: best epsL1 grasps. Bottom row: best volL1 grasps.
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Figure 8: Best grasps for the experimental Karlsruhe hand grasping results in
Tab. 3. Upper row: best epsL1 grasps. Bottom row: best volL1 grasps.
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Figure 9: Grasp quality space for the Homer model. Note the depicted samples
as a contrast between box grasps and random grasps.

We conclude this experiment with the observation that generation of pre-
grasp hypotheses from box-based face representations reduces the number of
hypotheses drastically (Huebner et al., 2008). In that paper, a random pre-grasp
generation included 22104 hypotheses. Though box decomposition effectively
produced only very few valid hypotheses (usually <50), they still feature good
grasp quality. A demonstration of the comparison can be seen in Fig. 9.

5.2 Introducing Higher-Level Dependencies

It has been shown hereby that box shapes give efficient clues for planning grasps
on arbitrary objects or object parts. For most of the robot tasks we envision,
it should be sufficient to find one of the stable grasps, not necessarily the most
stable one. Additionally, the part-describing box concept enables grasp seman-
tics to be integrated in the representation, e.g. ‘approach the biggest part to
stably move the object’ or ‘approach the smallest part to show a most unoc-
cluded object to a viewer.’ The description of an object by a shape-based part
representation, which is claimed to be necessary for this kind of task-dependent
grasping, is made available, as also needed as a criterion what grasp is the ‘best’
in terms of a given task.

To briefly refer to the box decomposition approach, a compact box set

B = {B1, . . . , Bn} (4)

encloses a set of 3D points and thereby offers a primitive shape approximation.
For each box Bi in the set, we focus on its six rectangular faces

Fi = F(Bi) = {F(i,1), . . . , F(i,6)}. (5)
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In the last section, each face spawned up to four grasp hypotheses by using
the face normal as approach vector and the four edges as orientation vectors,
using a pre-defined grasp. Thus, we can define the overall set of hypotheses
emerging from the box representation as

H = {H(F )|F ∈ F(B)}, with H(F(i,j)) = {F 0
(i,j), F

90
(i,j), F

180
(i,j), F

270
(i,j)} (6)

In this section, we will extend this framework by introducing several grasp
selection criteria, whereof each is based on a different dependency. In each of
them, the matter of ‘good’ is connected to very different dependencies, e.g. a
task dependency might vote for a particular box, or a view-point dependency
might vote for particular faces only. Technically, all the dependencies will filter
out certain F k(i,j) fromH to aim for an even smaller set of valid grasp hypotheses.

5.2.1 Task Dependencies – restricting B

The dependency on a given task is a most important issue in grasping, demon-
strating that ‘best’ grasps do not have to be the most stable ones. Picking up
a cup from above will be unsuitable for the task of filling the cup, in the same
way as a very stable full-enclosing grasp will be unsuitable for handing over or
presenting the cup to someone else. Application of such re-usability semantics
by defined keep-out zones has been proposed in (Baier and Zhang, 2006). Object
properties like hollowness are hard to detect by the state-of-the-art vision sys-
tems, as also are high-level properties like filled or empty. Our box set method
allows intuitive mapping of less complex actions to simple box properties.

Given a box set (Eq. 3), one can easily compute criteria like the overall mass
center (assuming uniformly distributed mass density), volume and dimension of
a box, or the relations between boxes. For example, we can define the outermost
or innermost, the largest or smallest, the top or the bottom, etc., or even rank
the boxes according to these criteria. Given a task, we can easily map an action
like pick-up, push, show, rotate, etc., to a selected box. For example, in order
to pick-up something to place it somewhere else, it may intuitively be a good
choice to grasp the largest box. When showing the same object to a viewer, it
may be better to grasp the outermost box instead.

Similarly, different tasks can be mapped to grasp configurations. We already
introduced two of these in Section 5.1: the power grasp, which approaches a
box until contact, retreats a bit and than closes fingers simultaneously, and the
pinch-grasp, which approaches the box until it is in position to close fingers
and contact the box most centrally. One might extend this idea towards the
selection of different grasp pre-shapes (Cutkosky, 1989), or even the selection of
controllers for different tasks. In fact, Prats et al. (2007) also use box representa-
tions for task-oriented grasping with hand pre-shapes and task frames. However,
they assume geometrical knowledge about each object (using a database of 3D
models) and structural and mechanical knowledge about a task, e.g. ‘turning’ a
door handle.
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5.2.2 Box Face Visibility – restricting F

Each box provides six rectangular faces in 3D space (Eq. 4). We have to consider
that incomplete data is produced by a single sensor view of an object, since the
back of the object is not visible. Thus, box decompositions are clearly view-
dependent and do only envelop visible data points. For this reason, it may be
helpful to take into account only those faces that are visible from the viewpoint.
Here, ‘visibility’ is defined as the face being oriented towards a viewpoint, not
being visible in case of occlusion by other objects. By definition, objects placed
on a table will never be approached from the bottom, as this face is generally not
oriented towards an external viewpoint. We see another motivation for a face
visibility check considering between an end-effector, i.e. a gripper, and the ob-
ject. Intuitively, humans tend to use grasping movements that involve minimum
energy effort (Alexander, 1997).

We have performed a simple experiment that showed some evidence for this:
Test persons had to grasp various objects on a table to describe their appearance,
thus the task of grasping was implicit. It showed up that in case of cups, the
handle was mostly pinch-grasped when it was orientated towards the human
hand, while otherwise the cup body was power-grasped (see Fig. 10). Though
this experiment is not compelling in terms of a psychophysical evaluation and
will therefore not be described any further, it is intuitive in the same way as
the viewpoint face check. Most people would not grasp an unoccluded object
from the backside, even if this might produce the most stable grasp. Introducing
viewpoints for the end-effectors of the robot can handle this issue. Valid faces
can thereby be selected by being accessible from a given end-effector viewpoint,
even if one end-effector might be busy, e.g. holding another object.

5.2.3 Box Face Occlusion and Blocking – restricting F and H

While the visibility criterion is a check for orientation of faces towards a cam-
era’s or an end-effector’s viewpoint, occlusions and blockings between faces in
the box set are also considered. As an example, grasping the head box of the
Homer model (revisit Fig. 6) from the bottom is not profitable, since this face
is ‘occluded’ by the body box. The corresponding face is then removed from F .
One may also classify other grasps on the head as being unprofitable. Imagine a
grasp towards the head box B1 from one of the sides. The fingers will not contact
the approached face F(1,a), but two of its neighbors, F(1,b) and F(1,c), depending
on the hand orientation k ∈ {0, 90, 180, 270}. We then define a grasp hypothesis
F k(1,a) as ‘blocked’ in this grasp orientation, if F(1,b) or F(1,c) is occluded, and
remove it from H.

This technique has proven to be very effective in reducing the number of
hypotheses. Technically, the detection of opposing faces is more complex than
the visibility check, since each face of a box has to be compared to each other
valid face in F . Therefore, it may form the end of the heuristical selection se-
quence. However, even if two faces face each other, this is usually not a sufficient
condition to mark the face as occluded, since a finger may fit in-between. The
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(a) An example of no occlusion / occlusion.

(b) An example of orientation (handle towards / averted).

(c) An example of position (closer to left hand).

Figure 10: Different test persons were asked to describe objects on a table,
whereof some were cups. The grasping task itself was implicit. The dependency
of the grasp on extrinsic attributes, like occlusion (by other objects), orienta-
tion, or position (also relative to the person) is clearly traceable. The first two
examples (left, center) show different runs and setups, respectively, in the third
one, the right-hand grasp was even rejected in favor of a left-hand grasp.

handling of such situations would demand additional computational effort. For
this reason, and since a more extensive restriction reduces the number of hy-
potheses drastically, we currently remove all occluded and blocked hypotheses
from our selection.

5.2.4 Reachability and Graspability – restricting H

If there is information available about the embodiment and the kinematics of
the robot platform, i.e. its arm and gripper, it is possible to use graspability
and reachability criteria to further reduce the number of hypotheses. In terms
of graspability, our approach already compares the gripper aperture with the
width of the approached face. In terms of reachability, an inverse kinematics
solver might be applied for dropping hypotheses that are not reachable with
one of the available hands. Practically, the integration of an IK solver is still an
issue of future work.
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5.2.5 Experimental Results

To demonstrate the heuristical hypothesis reduction techniques discussed in
Sections 5.2.1 to 5.2.4, we will apply them on the Homer model in GraspIt!.
The results of a ‘show’ instruction on the Homer model can be tracked in Fig.
11, given the following sequence:

Section 5.2.1: Rank the boxes Bi and select grasp pre-shape according to a
given task,

Section 5.2.2: restrict the produced face set F(Bi) according to a given
viewpoint,

Section 5.2.3: and restrict the thereby produced hypothesis set H by removing
occluded faces and blocked hypotheses.

Section 5.2.4: Also reduce the new hypotheses set H by removing those that
are wider than the gripper aperture.

Section 5.1.1: For the hypotheses that ‘survive’ the restriction process, we re-
peat the simulated evaluation process discussed in 5.1.1, i.e.
grasping them in simulation and select the best one for visual-
ization.

In Fig. 11b, one can see the process of grasp hypotheses reduction from
occlusion and blocking in the box constellation, e.g., all four grasp hypotheses
towards the chest have been rejected due to blocking, since there are occluding

(a) (b) (c)

(d)

(e)

Figure 11: (a) Point cloud and box constellation of the Homer model. (b) Re-
sulting hypothesis restrictions from viewpoint, occlusion and blocking. Invalid
hypotheses are depicted by dark (red) triangles, valid ones by light (green),
where the inward vertex correlates to the hand orientation (the thumb). (c) Ac-
cording to an outermost ranking, the head box is prior. Only valid hypotheses
of this box are kept. (d) The highlighted triangle corresponds to the most stable
hypothesis of those in (c). (e) Visualization of the final grasp on the original
model. Viewpoint has been changed to better show finger contact locations.
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boxes at the sides (head, arms and legs). Fig. 11c shows the influence of ranking,
introducing the task. We simply link tasks to certain rankings and grasp pre-
shapes, e.g.

(T1) task : pick → box : largest, grasp : power,
(T2) task : show → box : outermost, grasp : pinch.

Since in the example, we chose a ‘show’ instruction, boxes are ranked according
to an ‘outermost’ criterion. Beginning with the highest ranked box, the head in
the example, valid hypotheses are tested in GraspIt!. Out of those, the one that
gave the best grasp quality values is shown in 11d-e.

Concluding this experiment, we have shown how heuristical dependencies can
be integrated into the box framework. It may be mentioned that all calculations
necessary are purely geometrical problems on faces, points and volumes. Like
the whole grasp selection process, visibility, occlusion and blocking are currently
computed software-based, one might think about taking advantage of graphical
processors to speed up and optimize the geometrical operations.

The simplicity of the presented operations and rule-based connections be-
tween tasks and parts still offers space for optimizations. The rules might be
optimized towards other criteria and other attributes, e.g. the faces themselves,
such that the system might be triggered to approach an arm for a ‘show’ in-
struction. The computations of blocked faces might be optimized in such a way
that it could be checked if a finger fits between two opposing boxes.

Finally, the described heuristical and geometrical processes are restrictions
of the hypotheses, and thus only further reduce the set H of all hypotheses to a
smaller set. The final grasp in Fig. 11 resulted by comparing simulated grasps
on the model and taking the most stable one. To approach this issue, and find a
best grasp hypothesis H∗ from the box representation only, we will now extend
the system by enriching each face representation with a 2.5D projection image.
This will allow for learning of grasp qualities instead of grasp simulation.

5.3 Projection Grids and Learning – finding H∗

We can now use the presented box decomposition algorithm to perform a box
approximation of the point cloud and reduced hypotheses according the previ-
ously presented heuristics. Those were aiming at reducing the number of grasp
hypotheses according to the task, and 3D orientation or 3D shape of the object.
Also the size, i.e. the dimensions of a face, was considered. However, there is
usually a set of remaining hypotheses H′ after the restriction steps, from which
we would like to select one final ‘best’ grasp H∗. Our current approach to this
issue is learning of grasp qualities from 2.5D shape projections.

Considering a box and the points that it envelopes, each face produces a
projection of the points onto the face plane. In fact, these projections were
already computed for best cut detection (see Section 4.3 and 4.4). Discretiza-
tion was made by dividing each face into equally sized cells, thus projections
were represented as dynamically sized binary grids. Additionally, opposing faces
shared the same projection grid. These grids kept binary information and were
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B1

B2

B3

F(B1) F(B2) F(B3)

F(2,1)6 a grasp on F(2,1)

-

-

�

�

�

Box Decomposition & Face Projection - Neural Network Learner� GraspIt! Teacher

Figure 12: The applied neural network structure holds 228 input, 30 hidden
and 3 output neurons. As an input, a face projection F plus its box dimensions
dim(F) are fed into the network, since faces are normalized to 15×15. eps and
vol are the grasp quality measures that GraspIt! delivers. The force closure is
also learned separately even if it equals (eps > 0). From this model, off-line
learning of grasp qualities from face representations is made available.

dynamically sized. To adapt this representation and enrich it, we now compute
linear information, i.e. minimum distance information to the face plane, in a
normalized, fixed-sized grid. Thus, all six projections have to be stored instead
of three, since opposing faces do not share the same projection anymore. In
return, this representation both allows analyzing the 2.5D depth map of each
face and fulfills the input space conditions of a classical neural network learner
like the one we will use here (see Fig. 12).

By providing the two quality measures eps and vol which were introduced in
Section 5.1, GraspIt! (Miller and Allen, 2004) is used as a teacher for a supervised
network, estimating the stability of a grasp from a given face F and its 2.5D
projection grid proj(F), respectively. Since due to normalization in width, height
and depth, information about the dimension of F is lost, the box dimensions
dim(F) are added in terms of three additional neural network inputs. A sample
of projections and the neural network structure is shown in Fig. 12.

5.3.1 Final Grasp Decision and Learning

Finally, we have to decide where and how to grasp after initially having reduced
the hypotheses to a smaller set. The ‘where’ component equals a decision on
grasping one of the faces with one orientation. To do this, we apply the neu-
ral network approach presented above. The face projections of the remaining
hypotheses are fed into the net that has been previously off-line trained with
artificial examples. In our experiments, these are mostly complete models which
have been processed by the algorithm and their projections grasped in the grasp
simulator. By providing the two quality measures, GraspIt! was automatically
used as a teacher for the supervised network, estimating the stability of a grasp
on a given 2.5D projection grid. After sorting out hypotheses that do not re-
sult in good force-closure response (third network output) larger than 0.5, we
decide for the one hypothesis with maximum vol grasp quality (second network
output). According to the definition of grasp hypotheses in (5), this is
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H∗ = arg max
Fφ(i,j)∈H′ ∧ Nfc(Fφ(i,j)) ≥ 0.5

Nvol(Fφ(i,j)), (7)

where Nx is the corresponding output of our neural net N and H′ the set of
hypotheses after the heuristical selection processes.

As briefly described above, the ‘how’ component is currently a direct map-
ping between a manually given task description (e.g. pick, show) to a grasp
pre-shape (e.g. power, pinch). An extension which approaches the kinematic
properties of the applied gripper and connects them to the projection, in order
to estimate good finger contact positions by a set of quality measures, has been
proposed in (Geidenstam et al., 2009). However, this approach will not be used
here to keep the experiments clear and independent of any gripper kinematics.

At this point, we have completed a method of selecting a ‘best pre-grasp hy-
pothesis’ H∗ from a 3D point cloud, using box decomposition. In terms of ‘best’,
this not only considers ‘good’ stability, which is to some extent learned and sup-
ported by the neural network, but also the proposed heuristical dependencies,
i.e. being ‘good’ in relation to the task at hand, the gripper embodiment, or the
pose of the object.

6 Implementation

In this section, we will present an experiment showing the capabilities of the
presented techniques beyond those of artificial models. Earlier described exper-
iments have been performed in simulation, thus one interest is to test the box
decomposition on real 3D data which is influenced by natural dense stereo noise
and incompleteness.

6.1 Experimental Setup

Our experimental 3D data will be produced from disparity using the four-camera
Armar-III stereo head shown in Fig. 13b. More information about the whole
Armar-III robot, a humanoid platform at the University of Karlsruhe, can be
found in (Asfour et al., 2006) and on www.paco-plus.org. The whole system
consists of two foveal cameras for recognition and pose estimation, and two wide
field cameras for attention. We proposed a grasping strategy for known objects,
comprising an off-line, box-based grasp generation technique on 3D shape repre-
sentations on the complete platform in (Huebner et al., 2009). A general outline
of our system going beyond the scope of this paper, is presented in (Bohg et al.,
2009). our interest here will be the practical processing of the proposed heuris-
tical selection and a learning mechanism, including the considered decisions on
task, view-point, shape and size properties on unknown objects. Along the pre-
sentation of the experiments, we will point out connections to grasp learning
and shape classification.

As is depicted in Fig. 13c, 2D object segmentation from a single image, as
an optional part, will boost further performance of the perception system since
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(a) (b) (c)

(d)

Figure 13: (a) The Armar-III humanoid platform (Asfour et al., 2006) used in
the PACO-PLUS project. (b) A duplicate of the Armar-III stereo head, used in
our lab, including a clipped region of an acquired rectified image. (c) Result of
image differencing related to an image without the objects. This mask is applied
in (d) to results from the disparity processor. Note that apart from white being
the mask region, intensity corresponds to distance to the viewpoint.

local (2D) shape information also supports the binocular fixation of the system.
As an example, we assume the background image to be given in a static head
scenario. The object is segmented by image differencing and the 3D point cloud
from stereo can be masked easily to include only these points, as common uncer-
tainties and noise in the environment can be removed. Additionally, an estimate
of mean disparity can be computed from which the disparity algorithm benefits.
More sophisticated methods for object segmentation in the 2D image have not
been implemented in this system yet, but are clearly available in the literature.
Promising in this context are techniques like object segmentation from attention
or object segmentation from manipulation. However, even a simple differencing
subtraction method already demonstrates that a step of 2D segmentation is
factually valuable for the whole system.

For the purpose of grasping based on 3D shape, such 2D segmentation may
be helpful, but not sufficient. In general, and as long as there is no high-level
reasoning system to infer 3D shape properties for unknown objects from a 2D
image only, a mug on the cover of a magazine will not be distinguishable from
a real cup on the table without any further analysis of 3D data. Additionally,
estimation of an object’s size or shape in three dimensions is intuitively valuable
for its manipulation. 2.5D segmentation will help us to distinguish between
objects in three dimensions with options beyond those of 2D segmentation.

General high-dimensional segmentation, be it in 3D space or even enriched
with color space information, has high complexity and drawbacks. However, ef-
ficiently shortcutting this problem was successfully demonstrated through the
assumption of planar surfaces (Rusu et al., 2008; Triebel et al., 2007). In a num-
ber of manipulation scenarios, as also in ours, we can assume that manipulable
objects are very commonly placed on a horizontal plane, e.g., a table. In our
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table planetable plane

(a) (b) (c) (d)

Figure 14: (a) Scene reconstructed from Fig. 13d, purged by table plane assump-
tion. (b) Objects deduced from 2.5D segmentation on table plane projection.
Note that the table is not detected, but just the (infinite) table plane visualized.
(c) Reprojection of the segmented 3D objects (d) to the image.

current system and scenario, where there is only one table for reasons of sim-
plicity, detecting the table plane can either be done by Hough Transformation
in 3D, or, and both much more efficiently and online, by integrating the vector
of gravity. The vector of gravity corresponds to a good estimate of most table
planes’ normals, and can be deduced with minor effort from either the accel-
eration sensor or the kinematic chain of the head (see also Fig. 13b). Given a
table plane, the 3D scene can further be purged by removing points lying on or
below this plane. See Fig. 14 for an example.

In Fig. 14, the 3D data processing from stereo images, image differencing,
disparity processing, table plane reduction and 2.5D segmentation is visualized.
Both detected ‘objects’ are clearly influenced by incompleteness, observable by
some holes and by the backsides which are not visible. Additionally, and due to
disparity processing, there is noise in disparities, as also some false assumptions,
e.g. the uniformly colored top of the mug has been interpolated to a flat surface.
Most effects of these uncertainties become clear in Fig. 14d, where the 3D model
of both objects are shown from a different viewpoint. Of course, if objects are
standing close to each other, 2.5D segmentation will detect them as one. We see
this issue to be approached by a more sophisticated 2D segmentation module or
even as a trigger for explorative manipulation through expectation and surprise.

6.2 Technical Issues and Data Structure

In this subsection, we will briefly describe the technical data structure that
has emerged during the development of the framework proposed in Sections 4
and 5. While an input to the box decomposition can be an Inventor file format
(supported by GraspIt!) or a Coordinate file format (list of 3D values), such
Coordinate files can optionally be extended by assigning XY image coordinates
and corresponding color values to each 3D point.

The box decomposition can be controlled by a simple configuration file.
When running an experiment, the framework connects to GraspIt!, executes
the box decomposition and optionally grasping experiments, before saving the
final decomposition as a result.

Due to re-usability reasons, this output is divided in both an .xml file for
representation of shape, and .pgm image files for projection images. Projection
images will be described in detail in the next section. Concluding, the .xml file
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carries the following information for each 〈BoxDecomposition〉:

• For each 〈Box〉 in a 〈BoxDecomposition〉, its 〈ID〉, 〈HierarchyLevel〉,
〈Parent〉 and 〈Child〉 box IDs and a flag if it is a leaf box, 〈IsLeaf〉,
is stored. Additionally, the representation carries information about the
〈V olume〉, the 〈Center〉 point, the 3 box 〈Dimensions〉, the 8 box
〈Corners〉 and the 6 〈Faces〉.

• For each 〈Face〉 in a 〈Box〉, its 〈ID〉, 〈Center〉 point, outward-directed
〈Normal〉 vector, the 3 face 〈Dimensions〉, and a flag if it is an occluded
face, 〈Occluded〉, is stored. Additionally, the representation carries infor-
mation about the 4 face 〈Corners〉 and if the edges between them are
blocked, 〈EdgeBlock〉.

• In case a 〈Face〉 belongs to a leaf box, a path to the 〈ProjectionF ile〉 is
provided, as also a 〈ShapeClassID〉 and a flag if the projection is hollow,
〈ShapeClassHollow〉. The first will be used for different purposes of grasp
learning that will be discussed in the next section. The latter two tags are
prepared for evolving shape classification which is still under examination.
In addition, 〈GraspHypotheses〉 are assigned to each leaf box.

• Optionally, the representation can carry information about the original
〈Points〉, including 3D position (in model or camera frame), 2D origin in
the image, as color in the image.

Note that the representation provides information about the whole decompo-
sition process and hierarchy. The box with ID 0 will ever be the origin of the
hierarchy tree, being the root box.

To be able to visualize already processed decompositions and their proper-
ties, a graphical interface has been developed. This interface which only reads
the above mentioned data, namely .xml and .pgm images, will be used in the
following to visualize most of the experiments.

6.3 Experimental Box Decomposition and Grasping

Starting from the two segmented object point clouds in Fig. 14d, we trigger
the framework modules (decomposition, hypotheses generation and pre-grasp
generation) with the parameters shown in Fig. 15.

Decomposition results for the treated examples are presented in Fig. 16,
each (a) and (b). As one can see, both examples are decomposed in a very
similar way, resulting in three leaf boxes each. Though not ideally, handle of
the cup and head of the duck are separated from the other parts. Decompo-
sition time strongly depends on the complexity of the model, but is linear
in relation to splits. In our cases at hand, each split step takes around 4 seconds.

Hypotheses results for the treated examples are presented in Fig. 16, each (c)
to (f). (c) shows the occluded and blocked components opposed to the valid
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◦ Main parameters MVBB calculation (Barequet and Har-Peled, 2001)
• 200 sample points and Grid(B) parameter 3.

◦ Gain threshold t (see Section 4.4)
• 0.90.

◦ Enabled Task-Dependency (see Section 5.2.1)
• task : pick → box : largest, grasp : power

◦ Enabled View-Dependency (see Section 5.2.2)
• Respective to camera viewpoint

◦ Enabled Constellation-Dependency (see Section 5.2.3)
• Occlusion and Blocking

◦ Enabled Embodiment-Dependency (see Section 5.2.4)
• Graspability test with ARMAR hand (aperture of 120mm)
• No reachability check by Arm kinematics

◦ Enabled Grasp Quality Learning (see Section 5.3)
• With ARMAR hand model,
• trained on artificial object models (Homer, Mug, Duck)
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Figure 15: Algorithm parameters for the experiment.

ones. Note that also a lot of backsides are invalid, since the viewpoint in the
scene is almost equal to the one in the sketches. (d) provides a view on the face
projections of all faces (also invalid). On those, the network is tested at a later
stage. While in (e), all valid pre-grasp hypotheses are depicted, (f) only shows
those that relate to the chosen task-dependency box : largest.

The final Pre-Grasp is determined by applying the trained network on the
hypothesis set in (f). The pre-grasp that results in best grasp stability estimate
is chosen and performed (in GraspIt!). (g) shows the approach position with
fully opened hand, while (h) shows the state after approach and grasp.

6.4 Discussion

The presented results point to a couple of issues to discuss. As one can see,
the decomposition of objects into parts is only partially convincing. This is
caused by general features of using vision and dense stereo disparity, using a
dynamic programming approach from (Scharstein and Szeliski, 2002, 2007) for
point cloud generation.

In particular, artifacts appear in the point cloud for uniformly colored re-
gions, since unmatched image points can only be interpolated. This issue makes
the cup (Fig. 16b) appear to be closed at the top surface, as also the front shape
is quite erroneous. As an additional issue, the only data observable is the one
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seen from only one view, causing the point cloud to be highly incomplete. Due
to effect that more a 3D surface than a 3D model is considered by this, also the
decomposition fits boxes to those surfaces mainly and thereby looses valuable
information about 3D shape. As an example for this, the cup’s ‘cylindrical’ part
(Fig. 16b) is finally represented by two orthogonal surfaces which are separated
by the decomposition. In comparison to experiments which applied complete
models from a database of known objects (Huebner et al., 2009), performance
is therefore not as good in terms of shape approximation.

The various steps of hypotheses reduction were intentionally set relatively
strictly in the experiment. The view-point heuristic removes all hypotheses that
are not visible from the view-point, relating to the issues above. However, in case
of complete models, applying this heuristic would be rather unliked: grasps from
the backside are valid and interesting, especially when front-hypotheses are not
well-rated. The task-related box selection is clearly influenced by the unfavorable
box decomposition. Note, however, though in Fig. 16f only hypotheses connected
to one box are visualized, all of the hypotheses in Fig. 16e are considered through
ranking both related to size of box and grasp quality estimate. This will prevent
an empty result if there is no good hypothesis for, e.g. the largest, box by
switching to the second-largest, and so on. It can be noticed that the hypotheses
set is very restricted. However, the flexibility of the framework allows to disable
or enable heuristics to control the size of the final hypotheses set.

For the final pre-grasp generation from a set of hypotheses, the trained net-
work estimates grasp quality from the samples shown in Fig. 16d. The best
ranked are performed in Fig. 16g and 16h with a right-hand gripper. As one
can see, the grasps are awkward having in mind the embodiment of the right
hand on the right arm of the humanoid platform. This problem can be solved
by integrating an inverse kinematics solver which is then able to rate hypothe-
ses by their reachability, as also if the left or the right hand can be used. This
technique was applied in (Huebner et al., 2009). Another issue in this context
is that one separate neural network has to be trained for each hand and each
type of grasp pre-shape type (e.g. power-grasp, pinch-grasp). It has not been
analyzed yet if, and up to which degree, grasp quality measures are generaliz-
able over such options. In the experiment, only one network was trained for the
right hand gripper model and the power grasp (see Section 5.1).

Despite these issues, the framework presented in this paper is one of few
that approach 3D shape approximation from dense stereo data instead of 3D
range data or 3D meshes for the purpose of grasping. The source of data for
the presented algorithms is arbitrary, as long as it represents 3D point clouds.
Nevertheless, the high complexity and manifold difficulties of a vision-based ap-
proach have been pointed out. However, we believe that the proposed framework
is flexible enough to be extended toward such issues.
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7 Conclusions

We presented the continuation of box approximation for the purpose of robot
grasping. We specified the core algorithm and specific extensions of connecting
box shape approximation and grasp hypotheses generation in earlier work (Gei-
denstam et al., 2009; Huebner and Kragic, 2008; Huebner et al., 2008, 2009).
In our approach, we combined several motivations known from the shape ap-
proximation and grasping literature. In short, we prune the search space of
possible approximations and grasp hypotheses by rating and decomposing very
basic shapes, which intuitively corresponds to the ‘grasping-by-parts’ strategy.
In this paper, we focused in greater detail on all the parts of an entire framework
taking advantage of the very simple shape representation of boxes. Starting from
boxes and their faces that the core algorithm produces, we extended the idea
of ‘grasping on boxes’ towards an applicable grasping strategy. This strategy
includes various heuristical selection criteria based on efficient geometrical cal-
culations, as also learning from off-line simulation. Basic task-dependencies have
been included in this process. We see the strength of our approach in its sim-
plicity and its modularity. The simplicity is obvious by using boxes and faces in
3D space. Geometric calculations are much more easy to do in contrast to more
sophisticated shape primitives like superquadrics. As presented, boxes and faces
can additionally take advantage of linear shape projections. The modularity is
established by mostly independent criteria and heuristics that complement each
other and flexibly leave space for adaptation and extension.

There are many possibilities to extend and optimize the current framework.
Considerations have to be made for the neural net structure, e.g. if it is better to
extend the learning to grasp qualities dependent on the chosen grasp pre-shape,
i.e. setting three quality outputs for each available grasp pre-shape. Additionally,
the simulation part for learning is currently done using static simulation. Thus,
contact will stay static between gripper and object, while in dynamics, and
reality, the object pose will change dependent on the force applied to it. We are
working on this issue also with regard to what we called the grip component
(see Section 3.1). As discussed, we are aware that our approach is a pre-grip
component based on very robust shape information. The grip component, as an
additional module, would contribute in terms of fine correction based on haptic
feedback (Tegin et al., 2009). We see haptic feedback and exploration also as
a solution to approach the problem of incomplete models acquired from stereo
vision. Merging the 3D data from stereo with 3D data from haptic contact points
along the backsides of objects might therefore be an issue of future work.

As another issue, the projection of an object onto the box faces ignores to
some extent the real 3D shape of the object, disregarding correct surface normals
of the object in the grasp planning. Thus, there is a possibility that planned
grasps are infeasible, which addresses the limitation of the proposed planning. In
(Geidenstam et al., 2009), we tried to approach this issue using explicit gripper
kinematics in order to analyze finger position estimations on the projections,
extending work of Morales et al. (2003).

As future work, one could also imagine higher-level part classification to
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infer suitable grasp pre-shapes from a wider variety of primitives. Given all three
projections of a box or the enclosed point cloud itself, one could try to classify the
represented shape, which is ought to correspond to an object part. This relates
to work on view-based object (part) representation. Classification of shape is a
beneficial, but also complex task, as additionally, the box constellation might be
very different as influenced by noise, perspective view and uncertainties. For the
purpose of grasping on faces, this is not a very severe problem, while in part and
object classification, it probably will be. Evaluations of these high-level ideas
are not a topic of our short-term goal. However, we are planning to evaluate
a model-based part-matching technique like in (Detry et al., 2008), matching
3D data of shape primitives (e.g. cylinders, spheres, cones) to the point subsets
generated from the box decomposition.

Another high-level issue is task dependency. There are different task types
on which a grasp might depend. Just to pick up a cup and place it somewhere
else might yield a different grasping action as picking up the cup to show it or
hand it over. These grasp semantics can be mapped to boxes in the set, e.g.
‘grasp the largest box for a good force grasp to securely move the object’, ‘grasp
the smallest box for a good pinch grasp to show a most unoccluded object to
a viewer/camera’ or ‘grasp a very outlying box so that another human / robot
hand can overtake the object easily’. The latter semantics are quite valuable for
applications that are based upon interacting with objects before the exploration
and recognition stage, such as Ude et al. (2007). An issue like this has to be
analyzed in a wider scope than the one given in this paper, preferably in a
complete system architecture as proposed in (Bohg et al., 2009).
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Abstract— In this paper, we address the problem of tactile
exploration and subsequent extraction of grasp hypotheses
for unknown objects with a multi-fingered anthropomorphic
robot hand. We present extensions on our tactile exploration
strategy for unknown objects based on a dynamic potential field
approach resulting in selective exploration in regions of interest.
In the subsequent feature extraction, faces found in the object
model are considered to generate grasp affordances. Candidate
grasps are validated in a four stage filtering pipeline to eliminate
impossible grasps. To evaluate our approach, experiments were
carried out in a detailed physics simulation using models of the
five-finger hand and the test objects.

I. INTRODUCTION

Robotic grasping using multi-fingered hand constitutes a
complex task and introduces challenging problems. For well
known scenes a grasping or other manipulation process
may be pre-programmed when using todays robots. On the
other hand, adaptation of a grasping algorithm to formerly
unknown or only partially known scenes remains a difficult
task, to which different approaches have been investigated.
A classical approach consists in grasp analysis and plan-
ning, based on a geometric scene model. In force based
grasp planning the forces and moments at selected grasping
points are analyzed and matched against a grasp quality
criterion considering e.g. force closure. This approach is
usually independent of the hand kinematics. In contrast mere
geometry based algorithms are tailored to specific gripper
designs, especially in the context of multi-fingered hands.
Comprehensive overviews on grasp planning are given in [1],
[2]. Using grasp planning for previously unknown objects
consequently introduces the difficulty of model building
from sensor data which is delivered by robot perception.
As alternatives to the mere planning approach online control
algorithms driven by tactile information have been devel-
oped, which make use of a priori assumptions on the object
to grasp, and control the grasping process by displacing
robot fingers. Different control goals have been formulated
for grasping convex objects in [3], [4] and later [5], where
contact displacements are calculated in order to minimize a
grasp quality cost function. The function values are computed
using estimation of local surface parameters from haptic
feedback, thus resulting in an online control scheme. A
further extension capable of dealing with concavities on

an object’s surface was presented in [6]. Online grasping
approaches using a discrete set of hand postures or motions
have also been presented [7], [8].
Beside vision based methods tactile exploration may be
used for 3D reconstruction of an unknown object, as tactile
sensing solves some severe limitations of computer vision,
such as sensitivity to illumination and limited perspective.
A reconstructed 3D object model may be used for grasp
planning and execution as shown e.g. in [9].
Single finger tactile exploration strategies for recognizing
polyhedral objects have been presented and evaluated in
simulation, see [10] and [11]. In [12] a method for recon-
structing shape and motion of an unknown convex object
using three sensing fingers is presented. In this approach
friction properties must be known in advance and the surface
is required to be smooth, i.e. it must have no corners or
edges. Further, multiple simultaneous sensor contacts points
are required resulting in additional geometric constraints for
the setup.
In general, previous approaches in robot tactile exploration
for surface reconstruction did not cover the problem of
controlling multi-finger robot hands during the exploration
process. Also, real world constraints such as manipulator
limits or robustness over measurement errors have not been
considered. In [13] we have presented first results on the
application of a dynamic potential field control technique
for guiding a multi-finger robot hand across the surface of
an unknown object and simultaneously building a 3D model
from contact data.
In this paper we extend our approach in tactile exploration
to serve the purpose of extracting grasp affordances for
a previously unknown object. Therefore, we have added
modifications to our exploration strategy which lead to a
homogenous exploration process and prevent sparsely ex-
plored regions in the acquired 3D model. We have added a
grasp planning system based on a comprehensive geometric
reasoning approach as initially reported in [14]. We chose
a geometric reasoning approach here as object modelling
from tactile exploration currently does not deliver the details
required for force analysis and contact modelling, as it is
performed in force-based grasp planners, e.g. [15]. As we
believe that robustness and applicability of tactile exploration



and robotic grasping algorithms depend significantly upon
the deployed hardware configuration, we have evaluated our
approach in the framework of a physical simulator, reflecting
non-neglectable physical effects such as manipulator kine-
matics, joint constraints or contact friction. As in related
approaches we initially limit our scope to the exploration
of static scenes, which means the objects are fixated during
exploration and may not move during interaction, although
we wish later to develop means of pose estimation and
tracking for objects in dynamic scenes.
This paper is organized as follows. In the next section a
short introduction to the potential field technique is given
and the relevant details of the robot model are described.
In Sec. IV-A we present the tactile exploration process and
in Sec. IV-B grasp planning and execution. We give details
on our simulation scenario and exploration results in Sec. V.
Finally, our conclusions and outlook on our future work may
be found in Sec. VI.

II. POTENTIAL FIELD CONTROL

Artificial potential fields have originally been introduced for
the purpose of on-line collision avoidance in the context
of robot path planning [16]. In the original approach, real-
time efficiency was emphasized over obtaining a complete
planner. The basic idea is that the robot behaves like a
particle influenced in motion by a force field. The field is
generated by artificial potentials Φi, where obstacles are
represented as repulsive potentials Φr(x) > 0 and goal
regions are represented as attractive potentials Φa(x) < 0.
The superposition property allows to combine potentials in
an additive manner,

Φ(x) =
∑
i

Φr,i(x) +
∑
j

Φa,j(x) .

The force vector field or potential field F , which influences
a Robot Control Point (RCP) at position x is defined as

F = −∇Φ(x) .

A major drawback of potential fields is the existence of local
minima outside the goal configurations in which the imagi-
nary force exerted on an RCP is zero. By applying harmonic
potential functions it is possible to construct potential fields
without spurious local minima for point-like robots. This is
not the case with robots that can not be approximated by
a point, e.g. a manipulator arm. These are likely to exhibit
structural local minima which need to be treated by dedicated
escaping strategies [17].

III. ROBOT HAND KINEMATICS, CONTROL AND SENSORS

For exploration and grasping we consider a setup comprising
a 6-DoF manipulator arm with a five finger robot hand
attached to its Tool Center Point (TCP). The manipulator
arm was modelled according to the Mitsubishi RM-501 five
axis small-scale industrial manipulator, which is currently
used as a research platform for dexterous haptic exploration
in our lab. The model was augmented with a sixth DoF
before the TCP to provide a larger configuration space. In

Fig. 1. Kinematics of the robot hand with joint axes, contact sensor
locations (grey shaded) with assigned RCPs (black dots) and the TCP.

our exploration control scheme we apply controller outputs
to a set of five RCPs, located at the fingertips of the robot
hand and to the TCP of the manipulator. The kinematic
model of the robot hand is shown in Fig. 1. The hand model
provides nine degrees of freedom and is modelled according
to the FRH-4 anthropomorphic robot hand presented in [18].
During haptic exploration we are interested in controlling

the velocity vectors of the RCP’s, which is a different task
compared to trajectory control. In trajectory control the end-
effector is commanded to follow a desired trajectory with the
motion control goal of asymptotic tracking. Yet, the given
exploration task does not induce specific trajectories due
to the uncertainty in the environment. In our approach we
compute the velocity vector applied to an RCP directly from
the dynamic potential field, which guides the exploration
process. In order to evaluate our concept in a physics
simulation environment it was not required to develop a
solution to the multipoint end effector inverse kinematic
problem. Instead we chose to take advantage of the physical
model of the robot system and directly specify velocity
vectors to the RCPs by using a virtual actuator which is
commonly available in physics simulation frameworks. The
joint angles are then determined by solving the constrained
rigid body system and a stable and consistent configuration
of the robot hand is maintained. In general, this approach is
known as Virtual Model Control (VMC), which is described
in detail in [19]. In our case we specify joint constraints
and joint friction for the robot model for achieving an
appropriate force distribution over the joint serial paths,
while we do not model a compliant behavior. The physics
simulation is solved by using the Inventor Physics Modeling
API (IPSA) which was introduced in [20].
We also make use of the dynamic potential field concept
during initialization and grasp execution by placing attractive
sources at desired target locations.
For haptic exploration and contact sensing during grasping,
tactile sensors are required which we have modelled in our
physics simulation. Of course the simulation environment
itself may be regarded as omniscient and therefore it is



Fig. 2. Overview tactile exploration module.

possible to query all contact locations and force vectors
during the interaction of modelled physical bodies. We have
restricted contact sensing to dedicated sensor areas which
cover the fingertips and the palm of the robot hand, see also
Fig. 1. Further, we did not consider the contact force vector
but only the contact location on the sensor area to provide
a more realistic sensor model. This complies with current
tactile sensor technology which in general can not provide
both types of information. It is also possible to model more
specific sensor characteristics such as a certain resolution in
contact location or contact force tresholding, which we did
not yet consider in our experiments.

IV. EXPLORATION AND GRASPING SYSTEM

The goal of our work is a system enabling a robot with a
multi-fingered hand to explore an unknown object using tac-
tile sensing and subsequentially find suitable grasps. There-
fore, our system comprises a module for tactile exploration
as depicted in Fig. 2. In the following we will describe
the exploration and grasp planning process and transition
between both modes of operation. Tactile exploration is
executed in closed-loop and online in simulation. In contrast,
the extraction of grasp affordances is an offline planning
process executed subsequently to exploration. Please note
that major details of the dextrous tactile exploration process
have been reported in [13]. Therefore we will summarize the
basic concept and point out the improvements to the original
algorithm.

A. Dexterous tactile exploration
As a prerequisite the system requires a rough initial estimate
about the objects position, orientation and dimension. In
simulation we introduce this information to the system,
while this information will be provided by a stereo camera
system in the real application. From this information an
initial potential field containing only attractive sources is
constructed. The trajectories for the RCPs are continuously
calculated from the field gradient, while contact point lo-
cations and normals are sensed and stored as oriented 3D

point set. The normal vectors are estimated by averaging the
finger sensor orientations within a spherical neighborhood
around a contact point. The RCP trajectories are constrained
depending on the contact state of the sensor associated with
each RCP, which aims to produce tangential motion during
contact.
The potential field is updated from the tactile sensor infor-
mation as follows. If a contact is detected, a repelling source
is inserted at the corresponding location in the potential field.
Otherwise, if no contact is found in the circumference of an
attractive source, this source becomes deleted from the field.
The robot system is likely to reach structural minima during
potential field motion. We therefore introduced a recon-
figuration observer which detects when the TCP velocity
and the mean velocity of all RCPs fall below predefined
minimum velocity values. This situation leads to a so called
small reconfiguration which is performed by temporarily
inverting the attractive sources to repulsive sources. This
forces the robot into a new configuration from which pre-
viously unexplored goal regions may be explored. As this
method is not guaranteed to be free of limit cycles we
further perform a large reconfiguration if subsequent small
reconfigurations remain ineffective, i.e. the robot does not
escape the structural minimum. During a large configuration
the robot is moved to its initial configuration.
Our approach to extract grasp affordances relies on iden-
tifying suitable opposite and parallel faces for grasping.
Therefore, we needed to improve the tactile exploration
process as described above to explore the object surface
in a dense scheme and prevent sparsely explored regions.
The faces become extracted after applying a triangulation
algorithm [21] upon the acquired 3D point set. Triangulation
naturally generates large polygons in regions with a low
contact point count. We use this property to introduce new
attractive sources and guide the exploration process to fill
the contact information gaps. Within fixed time step intervals
we execute a full triangulation of the point cloud and rank
the calculated faces by their size of area. We then add an
attractive source at the centers of the ten largest faces. This



leads to preferred exploration of sparsely explored regions,
i.e. regions that need further exploration, and conseqently to
a more reliable estimate for the objects surface.
We apply a similar scheme to isolated contact points, i.e.
contacts that have no further contact points in their imme-
diate neighborhood. We surround these by eight cubically
arranged attractive charges. This leads to the effect that once
an isolated contact is added, the according RCP now explores
its neighborhood instead of being repelled to a more distant
unexplored region.

B. Grasping Phase

As an exemplary application for our exploration procedure
we have implemented a method for identifying grasp affor-
dances from the oriented point set.
We did not choose a traditional force-based grasp planning
algorithm as this would require to calculate a triangulated
geometric object model from the 3D point set. The point
set delivered by tactile exploration is inherently sparse and
irregular and we found that most triangulation algorithms
would fail to produce results in a usable way. Instead we
found that extraction of local features from the point set is
more robust than triangulation. We therefore chose a subset
of a geometric reasoning approach as proposed in [14] in
order to compute grasp affordances based on the acquired
object information.

1) Extraction of grasping features: A grasp affordance
contains a pair of object features from which the grasping
points are determined in subsequent steps. In general, planar
faces, edges and vertices of a polygonal object representation
may be used as object features. We only consider planar faces
in our implementation, as estimation and extraction of planar
faces from the given 3D point set is much more reliable
than that of edges or vertices. Therefore, we investigate the
oriented 3D point set for neighboured contact points with
similar normal vectors. Using a region growing method the
contact points in adequate dense regions are assigned to
faces. The original method is designed for parallel robot grip-
pers therefore the grasp affordances found are consequently
of a parallel type with opposing planar faces for grasping.
We apply a mapping scheme as described below in Sec. IV-
B.3 to compute the five finger tip target locations for the
robot hand within each face.

2) Geometric feature filters: Initially every possible face
pairing is considered as a potential grasp affordance. In a
sequential geometric filtering process all grasps unlikely
to be executed successfully with the given robot hand are
eliminated from the set of all pairings. The filter parameters
are chosen for the FRH-4 hand. We use a four stage filtering
pipeline in our approach. The results of the filter stages
are summed up to a score for each grasp affordance. Each
filter is designed to return a value of 0 when disqualifying
a pairing and value 1 ≤ o ≤ 1.1 for accepting a pairing. As
only grasp affordances with filter score ≥ 4 are considered
valid this automatically implies that valid grasps have to
pass all filter stages successfully.

• Parallelism: This filter tests the two faces for paral-
lelism. Let ~n1 and ~n2 be the normal vectors of the two
faces f1 and f2, φ the angle between ~n1 and ~n2 and
φmax the maximum angle for acceptance. The output o
of the filter is:

o =

{
0, if φ > φmax

1 + (φmax−φ)
φmax

· 0.1, otherwise.

• Minimum Face Size: This filter tests the two faces for
adequate size of area. Let a1 and a2 be the areas of the
faces f1 and f2. The minimum area for acceptance is
amin , ka is a normalization factor. Then the output o
of this filter is:

o =

{
0, if (a1 < amin) ∨ (a2 < amin)
1 + min(min( a1

ka
, a2
ka

), 0.1), otherwise.

• Mutual Visibility: With this filter the two faces are
projected into the grasping plane gp, which is the plane
with the mean normal vector ~ngp situated in the middle
of the two faces f1 and f2. So let f1↓gp and f2↓gp
be the projections of f1 and f2 onto gp. Then, aint is
the intersection area of f1↓gp and f2↓gp. The minimum
intersection area for acceptance is amin , kmv is a
normalization factor. The filter’s output is:

o =

{
0, if aint < amin

1 + min(aint

kmv
, 0.1), otherwise.

• Face Distance: The last filter incorporates the character-
istics of the used manipulator tool, i.e. the robot hand.
The filter checks if the robot hands spreading capability
matches the distance of the faces. Let d be the distance
between the centers of the faces f1 and f2, dmin and
dmax are the minimum respectively maximum admitted
distance values. Then the filters output is

o =

{
0, For d /∈ [dmin, dmax]
1, otherwise.

3) Grasp execution: The grasp affordance with the
highest score is used as the candidate for grasp execution.
In a first step we compute the grasping position ~ptcp,a of
the TCP and the grasping approach direction as depicted in
Fig. 3.

Initially we estimate the centers ~c1, ~c2 of the two faces f1, f2
as the centers of gravity of all contact points assigned to each
face. From this we determine the center point ~gp = ~c1+~c2

2
on the line connecting the centers of the two faces. Then we
analyse the first principle component ~pc of the acquired 3D
point cloud and calculate the grasping position as

~ptcp,a = ~gp+ (~ngp × ~pc) · d,

where d is a distance which considers the fingers length of
the robot hand. The cross product (~ngp × ~pc) becomes the
approach direction. We only consider grasping the object
from top. Therefore, in the case the coordinate ~ptcp,a is below
the object to grasp, we mirror its location across the center



Fig. 3. Calculation of the grasp center point and approach direction.

between c1 and c2 and along the approach direction to a
location above the object. Clearly, we make an assumption
about the object’s extension here. From the face pair of
the grasp affordance finger tip target locations need to
be computed. This is achieved by the following mapping
scheme.
The target for the thumb ~pthumb,a is set to be the center
of the smaller of the two faces. We choose target locations
~pindex,a, ~pmiddle,a, ~pring,a and ~ppinkie,a for the opponent
fingers around the center and in the plane of the larger
of the two faces. The arrangement is chosen, so that it is
perpendicular to the approach direction in the plane of target
face. If the target location of ring finger or pinkie is not
situated within the face area the fingers will not be used
for grasping. This way the number fingers involved during
grasping is automatically adapted.
Motion execution starts with the hand in an initial pose,
as it is always reached after a large reconfiguration. From
here we apply the potential field control to the RCPs and
the TCP. Unlike during the exploration phase, the TCP and
the RCPs share the set of repulsive potential sources while
having individual attractive potential sources as mentioned
above. Repulsive sources located in the target planes become
deleted.
As long as the TCP is distant from its target ~ptcp,a the
potential field velocity control is only applied to the TCP
while the finger joints remain open via direct joint control.
When the TCP is close to its target we additionally apply the
potential field control to the RCPs. If an RCP is not in use
because the finger is not involved in grasping, the associated
finger joints are still kept open. Further, the palm normal
~n is aligned towards ~gp by controlling forces acting on the
hand’s pitch and roll DoFs.
If the RCPs in use have approached the finger target loca-
tions, the fingers are closed and the corresponding sensors
are checked for contact. Once all assigned RCP sensors are
in contact with the object, potential field control is turned off
and the finger joints are closed directly. The virtual fixture of
the object then becomes disabled in the simulation and the
robot arm moves back to its initial position with the object
grasped and lifted.

V. SIMULATION RESULTS

We evaluated our exploration and grasping system in several
virtual scenes using our physics simulator with standard earth
gravity gN = 9.81 applied. For contacts Coulomb friction
with a friction coeefficient µ = 0.5 is considered. The virtual
scenes were set up with different rigid objects of suitable size
for grasping by the hand: a sphere, a telephone receiver and
a rabbit. The objects are placed approximately in the center
of the robots workspace. All objects are fixated floating
above the simulators virtual ground to avoid interference,
as we currently do not differ between contact between the
object of interest and any other obstacle in the workspace.
As described in Sec. IV-A the cubical bounding box of
the object is computed from position and space occupancy
estimates and used to initialize the exploration potential field.
Grasp affordances are extracted after a fixed number of 2000
control time steps, whereby each control time step comprises
ten simulation time steps with a temporal resolution of
T = 0.04s.
Fig. 4 shows typical results. Here figures in column (c) show
the 6 best candidate faces for grasping. The color indicates
score ranking in following order: red, green, blue, magenta,
cyan, yellow. Black dots indicate the center of a face, which
is calculated as mean value of all points in the face. Colored
lines connect corresponding centers of corresponding faces.
In colum (d) the grasp affordance with the highest score
is shown. Purple dots indicate grasping points for index,
middle, ring and pinkie finger. Ring and pinkie grasping
points are only plotted if they are used. The red dot marks
the location of the attractive potential source for the TCP
at start of the approaching phase. Naturally, the algorithm
performs worse with objects exposing curved regions as the
algorithm searches for planar faces. Therefore, only one
grasp affordance was found for the sphere in the given
exploration interval. The exploration of the rabbit shows
similar results. Still, successful grasps can be performed with
the grasp affordances identified.
In contrast, several affordances could be identified with the
model of the telephone receiver consisting of large polygons.
In general, the number of found grasp affordances increases
with exploration time. The video accompanying this paper
shows examples of tactile exploration and grasp execution
for the rabbit.
Beside experiments with different objects we also inves-
tigated performance of the system with objects placed at
different positions and orientations in the workspace. For
the experiments a grasp is considered successful if the
manipulator can grasp and lift the object in simulation.
We believe this is still a good approximation for reality as
the simulator only calculates with rigid body dynamics and
assumes point contacts. In reality such a robot system would
be equipped with deformable rubber finger tips which will
provide a significant larger contact area leading to higher
tangential forces. Therefore we assume that a real robot
system could execute the simulated successful grasps.
In a first experiment we placed the sphere, which is naturally



(a) (b) (c) (d)

Fig. 4. Typical simulation results from top to bottom: Sphere, telephone receiver, rabbit. Column (a) shows a virtual scene snapshot during exploration,(b)
final point cloud, (c) grasp affordances, (d) best grasp and grasping points.

(a) Sphere at different distances (b) Telephone receiver at different orientations

Fig. 5. Number of identified grasp affordances. Blue: successful grasp execution, red: failed grasp execution with best candidate.

invariant to rotations, at different distances ranging from
minimum to maximum reaching distance for the manipulator
arm in the workspace. Fig. 5(a) shows the number of found
grasp affordances after N = 2000 exploration steps. After
generation the grasp affordance with the highest score is
executed as desribed in Sec. IV-B.3. In the figure a red
bar indicates a failed grasp execution, a blue bar indicates
a successful grasp execution, both with the best candidate
grasp applied. The failed grasps may be deduced to the error

between the estimated grasping plane and the local tangential
plane of the sphere in combination with an inappropriate
situation of the sphere within the robots workspace. This
could be improved by increasing the exploration time in
order to collect more contact data points.
In a second experiment we investigated the scheme with the
robot model for sensitivity towards different orientations of
an elongated object as the telephone receiver. Therefore, the
receiver is placed in the scene with different orientations



around the Y-axis (direction of gravity). The initial configu-
ration can be seen in the mid image of Fig. 4(a). The receiver
was situated in the workspace center area of the manipulator
arm. The results are depicted in Fig. 5(b) and indicate that the
receiver provides less features to extract grasp affordances
from with its longer axis pointing toward the manipulator.
The reasons for the failed grasp agree with those from
experiment 1. Note that the receiver is not a symmetric
object, therefore the number of grasping candidates is also
not symmetric over rotation.

VI. CONCLUSIONS

In this paper we have presented a control scheme for tac-
tile exploration and subsequent extraction and execution of
grasp affordances for previously unknown objects using an
anthropomorphic multi-fingered robot hand. Our approach
is based on dynamic potential fields for motion guidance
of the fingers. We have shown that grasp affordances may
be generated from geometric features extracted from the
contact point set resulting from tactile exploration. The
complete control scheme was evaluated in a detailed physics
simulation of the robot system with test objects of different
shape and presented the results of the grasp planner based
on the exploration data. Finally, we tested the best grasp
candidate by executing the grasp within the physics simu-
lation. In further experiments we have reported results for
different object locations and orientations in the manipulator
workspace.
For the future we are working on an extension of the
presented set of geometric filters in order to further improve
the success rate upon grasp execution with our robot hand.
Further we will consider the incorporation of the palm during
grasp execution, which would enable power grasps.
Concluding, we are confident that the dynamic potential field
based approach presented may be used for real world tactile
exploration and grasping with an anthropomorphic robot
hand, as it appears robust enough to autonomously control
interaction of the robot hand with a previously unknown
object using tactile information. We assume that the proposed
scheme is transferable to different manipulator and robot
hand kinematics by adapting filter parameters, number of
RCPs and RCP locations. We further plan to investigate
possibilities of combination with exploration methods based
on sensors of different modalities than haptics, e.g. vision
based object exploration. The developed control scheme
based on VMC and dynamic potential fields is currently
subject to implementation on our real world robot system
equipped with five-finger hands [22].
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Dynamic Potential Fields for Dexterous Tactile
Exploration

Alexander Bierbaum, Tamim Asfour and Rüdiger Dillmann

Abstract Haptic exploration of unknown objects is of great importance for ac-
quiring multimodal object representations, which enable a humanoid robot to au-
tonomously execute grasping and manipulation tasks. In this paper we present our
ongoing work on tactile object exploration with an anthropomorphic five-finger
robot hand. In particular we present a method for guiding the hand along the surface
of an unknown object to acquire a 3D object representation from tactile contact data.
The proposed method is based on the dynamic potential fields which have originally
been suggested in the context of mobile robot navigation. In addition we give first
results on how to extract grasp affordances of unknown objects and how to perform
object recognition based on the acquired 3D point sets.

1 Introduction

Humans make use of different types of haptic exploratory procedures for perceiv-
ing physical object properties such as weight, size, rigidity, texture and shape [12].
For executing subsequent tasks on previously unknown objects such as grasping and
also for non-ambiguous object identification the shape property is of outmost impor-
tance. In robotics this information is usually obtained by means of computer vision
where known weaknesses such as changing lightning conditions and reflections seri-
ously limit the scope of application. For robots and especially for humanoid robots,
tactile perception is supplemental to the shape information given by visual percep-
tion and may directly be exploited to augment and stabilize a spatial representation
of real world objects. In the following we will give a short overview on the state of
the art in the field of robot tactile exploration and related approaches.
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Different strategies for creating polyhedral object models from single finger tactile
exploration have been presented with simulation results in [19] and [5]. Experimen-
tal shape recovery results from a surface tracking strategy for a single robot finger
have been presented in [6]. A different approach concentrates on the detection of
local surface features [15] from tactile sensing. In [13] a method for reconstructing
shape and motion of an unknown convex object using three sensing fingers is pre-
sented. In this approach friction properties must be known in advance and the sur-
face is required to be smooth, i.e. must have no corners or edges. Further, multiple
simultaneous sensor contacts points are required resulting in additional geometric
constraints for the setup.
In the works mentioned above the exploration process is based on dynamic inter-
action between the finger and object, in which a sensing finger tracks the contour
of a surface. Other approaches are based on a static exploration scheme in which
the object gets enclosed by the fingers and the shape is estimated from the robot
finger configuration. In [14], [9] and [20] the finger joint angle values acquired dur-
ing enclosure are fed to an appropriately trained SOM-type neural network which
classifies the objects according to their shape. Although this approach gives good
results in terms of shape classification, it is naturally limited in resolution and there-
fore does not provide sufficient information for general object identification as with
dynamic tactile exploration.
In this work we will present the current state and components of our system for
acquiring a 3D shape model of an unknown object using multi-fingered tactile ex-
ploration based on dynamic potential fields. In addition we give first results on how
to extract grasp affordances of unknown objects and how to perform object recog-
nition based on the acquired 3D point sets.

2 Dynamic potential fields for exploration

We have transferred the idea of potential field based exploration to tactile explo-
ration for surface recovery using an anthropomorphic robot hand. Potential field
techniques have a long history in robot motion planning [11]. Here, the manipula-
tor follows the streamlines of a field where the target position is modelled by an
attractive potential and obstacles are modelled as repulsive potentials. By assign-
ing regions of interest to attractive sources and already known space to repulsive
sources this scheme may also be exploited for spatial exploration purposes with
mobile robots [18]. The notion of dynamic potential fields evolves as the regions of
interest and therefore the field configuration changes over time due to the progress
in exploration. Yet, this method has not been reported for application in multifin-
gered tactile exploration. For this purpose we have defined a set of Robot Control
Points (RCPs) at the robot hand to which we apply velocity vectors calculated from
the local field gradient

v =−kv∇Φ(x) .
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The potential Φ(x) is calculated from superposition of all sources. We use har-
monic potential functions to avoid the formation of local minima in which the
imaginary force exerted on an RCP is zero. Further, we deploy a dedicated escape
strategy to resolve structural minima, which naturally evoke from the multiple end-
effector problem given by the fingers of the hand. The velocity vectors applied to the
RCPs are computed in the cartesian coordinate frame therefore an inverse kinematic
scheme is required to calculate joint angles for the robot hand and arm. In our case
we have chosen Virtual Model Control (VMC) [17] to solve for the joint angles, as
it links the potential field approach to inverse kinematics in an intuitive way.
Initially we have evaluated our approach in a detailed physical simulation using the
model of our humanoid robot hand [8]. During exploration the contact location and
estimated contact normals are acquired from the robot hands tactile sensor system
and stored as a oriented 3D point set. We have modelled tactile sensors in the sim-
ulation environment which determine contact location. The contact normals are es-
timated from the sensor orientation to reflect the fact that current sensor technology
can not measure contact normals reliably. The object representation may be used for
further applications such as grasping and object recognition as we will describe in
the following sections.

3 Tactile Exploration

Fig. 1 gives an overview on our tactile exploration module. An initial version of
this method has been presented in [3]. As prerequisite the system requires a rough
initial estimate about the objects position, orientation and dimension. In simulation
we introduce the information to the system, while this information will be provided
by a stereo camera system in the real application. From this information an initial
potential field containing only attractive sources is constructed in a uniform grid
which covers the exploration space in which the object is situated.

Fig. 1 Tactile exploration scheme based on dynamic potential field.
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Fig. 2 Tactile exploration of a phone receiver (left) and acquired 3D point set (right).

During exploration it is required to fixate the object as contact points are acquired
in world reference frame. The trajectories for the RCPs become continuously calcu-
lated from the field gradient, while contact point locations and normals are sensed
and stored as oriented 3D point set. The normal vectors are estimated from finger
sensor orientations. The RCP trajectories are constrained depending on the contact
state of the sensor associated with each RCP, which aims to produce tangential mo-
tion during contact.
The potential field is updated from the tactile sensor information as follows. If no
contact is found in the circumference of an attractive source it becomes deleted. If a
contact is detected a repelling source is inserted at the corresponding location in the
grid.
The robot system is likely to reach structural minima during potential field motion.
We therefore introduced a reconfiguration observer which detects when the TCP
velocity and the mean velocity of all RCPs fall below predefined minimum velocity
values. This situation leads to a so called small reconfiguration which is performed
by temporarily inverting the attractive sources to repulsive sources and thus forcing
the robot into a new configuration which allows to explore previously unexplored
goal regions. As this method is not guaranteed to be free of limit cycles we fur-
ther perform a large reconfiguration if subsequent small reconfigurations remain
ineffective, i.e. the robot does not escape the structural minimum. During a large
configuration the robot is moved to its initial configuration.
Our approach to extract grasp affordances relies on identifying suitable opposing
and parallel faces for grasping. Therefore, we needed to improve the original tac-
tile exploration process to explore the object surface with preferably homogenous
density and prevent sparsely explored regions. The faces become extracted after ap-
plying a triangulation algorithm upon the acquired 3D point set. Triangulation nat-
urally generates large polygons in regions with low contact point count. We use this
property in our improved exploration scheme to introduce new attractive sources
and guide the exploration process to fill contact information gaps. Within fixed time
step intervals we execute a full triangulation of the point cloud and rank the calcu-
lated faces by their size of area. In our modification we add an attractive source each
at the centers of the ten largest faces. This leads to preferred exploration of sparsely
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explored regions, i.e. regions that need further exploration, and consequently lead to
a more reliable estimate for the objects surface. As further improvement we apply
a similar scheme to isolated contact points, i.e. contacts which have no further con-
tact points in their immediate neighborhood, by surrounding these points with eight
cubically arranged attractive charges. This leads to the effect that once an isolated
contact is added, the according RCP now explores its neighborhood instead of being
repelled to a more distant unexplored region.

4 Extraction of Grasp Affordances

As an exemplary application for our exploration procedure we have implemented
a subset of the automatic robot grasp planner proposed in [16] in order to com-
pute possible grasps based on the acquired oriented 3D point set, we call grasp
affordances. A grasp affordance contains a pair of object features which refer to
grasping points of a promising grasp candidate using a parallel grasp. We prefered
to investigate this geometrical planning approach in contrast to grasp planning algo-
rithms using force closure criteria, e.g. [7], due to its robustness when planning with
incomplete geometric object models as they arise from the described exploration
scheme. In our case we only consider planar face pairings from the given 3D point
set as features for grasping, which we extract from the contact normal vector infor-
mation using a region growing algorithm. Initially every possible face pairing is

Fig. 3 Extracted grasp affordances for the telephone receiver.

considered as a potential symbolic grasp. All candidates are submitted to a geomet-
ric filter pipeline which eliminates impossible grasps from this set. The individual
filter j returns a value of fo, j = 0 when disqualifying and a value fo, j > 0 for ac-
cepting a pairing. For accepted pairings the individual filter outputs are summed to
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a score for each symbolic grasp, where the filter pairing with the highest score is the
most promising candidate for execution.
The filter pipeline comprises the following stages in order of their application.

• Parallelism: This filter tests the two faces for parallelism and exports a measure
indicating the angle between the two faces.

• Minimum Face Size: This filter compares the two faces to minimum and max-
imum thresholds. Selection of these values depends on the dimensions of the
robot hand and fingers.

• Mutual Visibility: This filter determines the size of overlapping area when the two
faces are projected into the so called grasping plane, which resides in parallel in
the middle between the faces.

• Face Distance: This filter tests the distance of the two faces which must match the
spreading capability of the robot hand. Therefore, this filter is also parameterized
by the dimensions of the robot hand.

Fig. 3 shows symbolic grasps found for the receiver from Fig. 2. Face pairings
are indicated by faces of the same color, the black spots mark the centers of the
overlapping region of opposing faces in respect to the grasping plane. These points
will later become the finger tip target locations during grasp execution.

5 Future concepts for object recognition

The oriented 3D point set acquired from tactile exploration is inherently sparse and
of irregular density which makes shape matching a difficult task. In a first approach
we have investigated a superquadric fitting technique which allows to estimate a
super quadric function from tactile contacts in a robust manner [2]. Fig. 4 (left)
shows a superquadric recovered from tactile exploration data using a hybrid ap-
proach where a genetic algorithm is used to identify the global minimum region

Fig. 4 Superquadric reconstructed from a tactile point set (left). A surface reconstructed using 3D
Fourier transform (right).
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and a least-squares-method converges to an optimum solution. Yet, this method is
limited to representing and recognizing shapes only from a set of major geomet-
ric primitives such as spheres, cylinders, boxes or pyramids. For representing more
complex shapes, different shape descriptors which may also become applied to par-
tial models have been investigated in the research fields of computer vision and
3D similarity search [4]. The methods reported are mainly designed for large 3d
data sets with uniform sampling density. Therefore, we have focused on investigat-
ing suitable point set processing methods which may interpolate the tactile contact
data in order to compute robust shape descriptors. Fig. 4 (right) shows an oriented
point set from tactile exploration which has been interpolated by using an algo-
rithm for reconstruction of solid models [10]. From uniform density point sets stable
shape descriptors may be computed using methods developed in the context of com-
puter vision. Promising candidates for distinct shape descriptors here are geometric
hash tables and spectra from spherical harmonic transforms. Both provide means
for translational and rotational invariance, which is essential in object recognition
from exploration data in human environments.

6 Discussion

In this paper we presented an overview on our system for tactile exploration. Our
approach is based on dynamic potential fields for motion guidance of the fingers of a
humanoid hand along the contours of an unknown object. We added a potential field
based reconfiguration strategy to eliminate structural minima which may arise from
limitations in configuration space. During the exploration process oriented point
sets from tactile contact information are acquired in terms of a 3D object model.
Further, we presented concepts and preliminary results for applying the geomet-
ric object model to extract grasp affordances from the data. The grasp affordances
comprise grasping points of promising configurations which may be executed by a
robot using parallel-grasps. For object recognition we have outlined our approach
which relies on transforming the sparse and non-uniform pointset from tactile ex-
ploration to a model representation appropriate for 3D shape recognition methods
known from computer vision.
We believe that the underlying 3D object representation of our concept is a major
advantage as it provides a common basis for multimodal sensor fusion with a stereo
vision system and other 3D sensors. As finger motion control during exploration is
directly influenced from the current model state via the potential field, this approach
becomes a promising starting point for developing visuo-haptic exploration strate-
gies.
Currently we extend our work in several ways. In a next step we will transfer the
developed tactile exploration scheme to our robot system Armar-III [1] which is
equipped with five-finger hands and evaluate the concept in a real world scenario.
Further, we are developing and implementing a motion controller which is capable
to execute and verify the grasp affordances extracted from exploration. For object



8 Alexander Bierbaum, Tamim Asfour and Rüdiger Dillmann

recognition we will continue to investigate suitable shape descriptors and evaluate
them with simulated and real world data from tactile exploration.

References

1. T. Asfour, K. Regenstein, P. Azad, J. Schroder, A. Bierbaum, N. Vahrenkamp, and R. Dill-
mann. Armar-iii: An integrated humanoid platform for sensory-motor control. In Humanoid
Robots, 2006 6th IEEE-RAS International Conference on, pages 169–175, Dec. 2006.

2. A. Bierbaum, I. Gubarev, and R. Dillmann. Robust shape recovery for sparse contact location
and normal data from haptic exploration. In IEEE/RSJ 2008 International Conference on
Intelligent Robots and Systems, Nice, France, pages 3200 – 3205, 2008.

3. A. Bierbaum, M. Rambow, T. Asfour, and R. Dillmann. A potential field approach to dexterous
tactile exploration. In International Conference on Humanoid Robots 2008, Daejeon, Korea,
2008.

4. Benjamin Bustos, Daniel A. Keim, Dietmar Saupe, Tobias Schreck, and Dejan V. Vranić.
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