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Abstract:

In this report, we present a real-time system for imitation of human motion on the humanoid robot
ARMAR-III and techniques for reaching using 3-D vision on the humanoid robot CBi. The imitation
system can perceive articulated upper body motion in real-time and reproduce captured movements on
a humanoid robot system online. For this purpose, captured joint angle trajectories are mapped via the
Master Motor Map to the kinematics of the robot using non-linear optimization. The processing rate
for perception and reproduction amounts to approx. 15 Hz in total. For reaching, the parameters of the
robot’s eyes under motion are updated to enable the use of 3-D vision to actively track objects using the
head and eye degrees of freedom. The reaching behavior is encoded as a dynamic movement primitive,
which was learned from a single demonstration.

Keyword list: Markerless human motion capture, Imitation on a humanoid robot, Reaching using 3-D
active vision
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1. Executive Summary

In this report, we present a real-time system for imitation of human motion combined with 3-D active vision
on humanoid robots. Note that the associated scientific contributions are part of the work done in WP2 and
WP3. In this deliverable, experimental results of the developed techniques are presented.

1.1 Imitation Learning System on ARMAR-III

The imitation system system is based on two approaches, which are presented in the following:

• Stereo-based markerless human motion capture

• Online reproduction of observed movements

The system can capture and reproduce human motion online with a processing rate of approx. 15 Hz.
References to related external work are given in the references section of each attached paper.

1.1.1 Stereo-based Markerless Human Motion Capture

The attached paper [A] presents an extension of the approach presented in [2] (see also D3.1.1, Section
4, from the last report period). The focus was on the acquisition of more accurate and smoother human
trajectories while increasing robustness, in particular for online application at lower frame rates. For this
purpose, the underlying problems for typical noisy estimation and local minima when using particle filters
for human motion capture were examined. In the work presented in [A], these problems and their solutions
are presented, which are summarized in the following:

• Prioritized fusion method: The gradient cue and the distance cue, as presented in [2], often hinder
each other in practice, when being fused with the conventional fusion method. Therefore, a prioritized
fusion method has been developed, which gives the distance cue the higher priority and activates the
gradient cue only in case the distance constraint is fulfilled.

• Adaptive noise: Often a static amount of noise is applied in the sampling step of the particle filter.
Instead we apply, for each arm, independent adaptive noise that depends on the overall edge error for
that arm. Experiments reveal that not only the estimated trajectories become smoother, but also a finer
search can be performed in the vicinity of the true configuration, leading to more accurate results.

• Adaptive shoulder position: For the purpose of markerless human motion capture, the state-of-the-
art approach is to use a simplified 3-D human model with a single ball joint for each shoulder and
a static shoulder position. However, such a simplified model is far away from reflecting the nature
of the human shoulder joint and thus does not allow proper alignment for the arms in many cases.
Therefore, the estimation of the shoulder position is incorporated into the particle filter for estimating
the arm configuration.

• Incorporation of redundant inverse kinematics problem: A typical problem with tracking ap-
proaches are local minima and recovery once tracking has got lost. A related problem is the robust
application of tracking approaches at low frame rates, where the de-facto benefits of temporal infor-
mation is limited. To tackle these problems, the redundant inverse kinematics problem, where the
redundant degree of freedom is the elbow, is incorporated into the sampling step of the particle filter.
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1.1.2 Online Imitation of Observed Movements

The attached paper [B] presents a method for imitation of human motion on a humanoid robot. For this pur-
pose, motion trajectories are first mapped to an intermediate representation: the Master Motor Map (MMM),
as specified in [1]. Using the MMM representation, a unifying interface is implemented, which allows the
connection between various human capture systems and a humanoid robot. In order to enable goal-directed
movements, the MMM representation is extended by a designated TCP target position corresponding to
the already specified joints. However, due to differences in the kinematic structure of the human and the
robot, a one-to-one mapping from the MMM to the robot would lead to an inaccurate reproduction of the
captured motion. The first major issue is due to the fact that not all joints described by the MMM model are
available on the robot. Therefore, a sole mapping of the existing robot joints, while disregarding the missing
ones, would fail. Furthermore, additional constraints given by the mechanics of the robot must be taken into
account in order to enable generating feasible robot motion.

In order to achieve feasible reproduction of observed human motion, that features goal-directedness as
well as human-likeness an approach was developed that transforms the motion trajectories given in the
MMM representation to the kinematics of ARMAR III. By solving a constrained optimization problem,
which incorporates the designated TCP position and the joint angle configuration of the observed human
motion, a compensation of the missing joints and prevention of joint constraint violations are attained.
As a result, one obtains robot joint angle configurations that allow to place the robot’s end-effector close
to given target positions, while achieving maximum similarity between the robot motion and the human
motion. The optimization problem is solved using the Levenberg-Marquardt algorithm with respect to the
above-mentioned requirements.

1.2 Reaching Using Active 3-D Vision

In D2.1.4 we described a computational process that can be utilized to update the parameters of the robot’s
eyes under motion, which enables the use of 3-D vision on an active humanoid head. This system was
utilized to realize reaching using active 3-D vision. In the attached video the reaching behavior was encoded
as a dynamic movement primitive, which was learned from a single demonstration. By introducing an
appropriate scaling into the nonlinear part of the movement primitive, the system could control the trade-
off between reaching the goal position and fitting the original example movement. In this way the robot
executed a reaching movement close to the original movement for goal positions in the neighborhood of the
example goal position, but could still reach the final position in a given time for reaching positions further
away from the example position. Based on this research we developed a motion generalization system which
enables the learning of reaching movements from a larger library of example movements. This system is
explained in D2.3.1.

2. Attached Videos

2.1 Online imitation of human motion on ARMAR-III

The video HumanMotionImitiationOnARMAR.avi first shows the visualization of the improved mark-
erless human motion capture system (see Section 1.1.1), which is running in real-time. In the second part
of the video, the reproduced motion after applying the presented mapping approach (see Section 1.1.2) can
be seen. Note that the complete chain, from acquisition to imitation, is running online in the video at a
processing frame rate of 15 Hz.
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2.2 Reaching Using Active 3-D Vision

In the movie CBiGrasp.mpg, the robot is actively tracking the object using the head and eye degrees of
freedom. The object position is estimated in the robot base coordinate system and the dynamic movement
primitive is instantiated using this estimate. Grasping is implemented as a power grasp and is initiated when
the robot arm reaches its final configuration.

Attached Papers

[A] P. Azad, T. Asfour, and R. Dillmann. Robust Real-time Stereo-based Markerless Human Motion Cap-
ture. In IEEE/RAS International Conference on Humanoid Robots, Daejeon, Korea, 2008.

[B] M. Do, P. Azad, T. Asfour, and R. Dillmann. Imitation of Human Motion on a Humanoid Robot using
Nonlinear Optimization. In IEEE/RAS International Conference on Humanoid Robots, Daejeon, Korea,
2008.
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University of Karlsruhe, Germany azad@ira.uka.de, asfour@ira.uka.de, dillmann@ira.uka.de

Abstract— The main problem of markerless human motion cap-
ture is the high-dimensional search space. Tracking approaches
therefore utilize temporal information and rely on the pose
differences between consecutive frames being small. Typically,
systems using a pure tracking approach are sensitive to fast
movements or require high frame rates, respectively. However,
on the other hand, the complexity of the problem does not allow
real-time processing at such high frame rates. Furthermore, pure
tracking approaches often only recover by chance once tracking
has got lost. In this paper, we present a novel approach building
on top of a particle filtering framework that combines an edge cue
and 3D hand/head tracking in a distance cue for human upper
body tracking, as proposed in our earlier work. To overcome
the mentioned deficiencies, the solutions of an inverse kinematics
problem for a – in the context of the problem – redundant arm
model are incorporated into the sampling of particles in a sim-
plified annealed particle filter. Furthermore, a prioritized fusion
method and adaptive shoulder positions are introduced in order
to allow proper model alignment and therefore smooth tracking.
Results of real-world experiments show that the proposed system
is capable of robust online tracking of 3D human motion at a
frame rate of 15 Hz. Initialization is accomplished automatically.

I. INTRODUCTION

Markerless human motion capture means to capture hu-
man motion without any additional arrangements required,
by operating on image sequences only. Commercial hu-
man motion capture systems such as the VICON system
(www.vicon.com), which are popular in the film industry as
well as in the biological research field, require reflective mark-
ers and time consuming manual post-processing of captured
sequences. In contrast, a real-time markerless human motion
capture system using the image data acquired by the robot’s
head would allow online imitation-learning in a natural way.
Another application for the data computed by such a system
is the recognition of human actions and activities, serving as
a perception component for human-robot interaction.

For application on an active head of a humanoid robot, a
number of restrictions has to be coped with. In addition to
the limitation to two cameras positioned at approximately eye
distance, one has to take into account that an active head
can move. Furthermore, computations have to be performed in
real-time, and most importantly for practical application, the
robustness of the tracking must not depend on a high frame
rate or slow movements, respectively.

In the following, a short overview of approaches to markerless
human motion capture that are relevant for application on

humanoid robot systems is given. Approaches operating on
3D data either extend the ICP algorithm for application to
articulated object tracking ([1], [2]) or utilize an optimiza-
tion method based on 3D-3D correspondences [3]. The 3D
point clouds used as input are either acquired by disparity
maps or a 3D sensor is used such as the SwissRanger
(www.mesa-imaging.ch). Image-based approaches are ei-
ther search-based ([4], [5]), utilize an optimization approach
based on 2D-3D correspondences [6], [7], [8] (resp. [9] for
articulated hand tracking), or are based on particle filtering.
In [10], it was shown that human motion can be successfully
tracked with particle filtering, using three cameras positioned
around the scene of interest. In [11], it was shown that with
the same principles, 3D human motion can be estimated from
monocular image sequences to some degree, when learning a
motion model. Recently, we have proposed the incorporation
of stereo-based 3D hand/head tracking for an additional dis-
tance cue in [12]. In [13], in addition, a certain percentage of
the particles is sampled with a Gaussian distribution around a
single solution computed by an analytical inverse kinematics
method for the purpose of re-initialization. Taking into account
all relevant solutions of the inverse kinematics problem is not
considered.

In Section II, the basic components of the used particle
filtering framework are introduced, namely the utilized 3D
human model and the used visual cues. The proposed approach
consisting of the components hierarchical search, a prioritized
fusion method, adaptive noise in sampling, adaptive shoulder
positions, and the incorporation of the solutions of an inverse
kinematics problem is presented in the Sections III–VII. The
results of real-world experiments are presented in Section VIII,
ending with a conclusion in Section IX.

II. BASIC COMPONENTS

A. Human Upper Body Model

In the proposed system, a kinematics model of the human
upper body consisting of 14 DoF is used, not modeling the
neck joint. The shoulder is modeled as a ball joint with 3 DoF,
and the elbow as a hinge joint with 1 DoF. Additional 6 DoF
are used for the base transformation. With this model, rotations
around the axis of the forearm cannot be modeled. Capturing
the forearm rotation would require tracking of the hand, which
is regarded as a separate problem.



The shoulder joints are implemented with an axis/angle repre-
sentation in order to avoid problems with singularities, which
can occur when using Euler angles. The base rotation is
modeled by Euler angles to allow a better imagination so that
joint space restrictions can be defined easily. For the geometric
model, the body sections are fleshed out by sections of a cone
with circular cross-sections.

B. Image Processing Pipeline

The image processing pipeline transforms each input image
pair into a binarized skin color image pair Is,l, Is,r and a
gradient image pair Ig,l, Ig,r, which are used by the likelihood
functions presented in Section II − C. In Fig. 1, the input
and outputs for a single image are illustrated. This pipeline
is applied twice: once for the left and once for the right
camera image. In order to allow for ego-motion, figure-ground
segmentation is performed by shirt color segmentation, which
is only needed for distinguishing edges that belong to the
person’s contour from edges belonging to the background.
Details are given in [14].

segmented shirt color gradient map

segmented skin color

input image

Fig. 1. Illustration of the input and outputs of the image processing pipeline.

C. Cues

In the following, the cues that are used in the proposed
system are presented. The formulations are given for a single
image; their application to stereo image pairs is explained in
Section IV.

1) Edge Cue: According to [10], for the edge cue, the gradient
values from the gradient image Ig are summed up along
the projected model contours. Assuming that the gradient
image has been remapped to the interval [0, 1], the evaluation
function is defined as:

wg(Ig, P ) = 1− 1
|P |

|P |∑
i=1

Ig(pi) , (1)

where P denotes the set of sampled 2D contour points. Note
that compared to [10], squaring is omitted, which turned out
not to have any significant effect. The likelihood function
reads:

pg(Ig | s) ∝ exp
{
− 1

2σ2
g

wg(Ig, fg(s))
}

, (2)

where the function fg computes the set of sampled 2D points
P for a given model configuration s.

2) Distance Cue: According to [12], the distance cue evalu-
ates the squared distances between distinct model points and
their absolute 3D measurements in the current stereo pair. In
the proposed system, the hands and the head of the person are
used as such points, which are tracked by a separate hand/head
tracking system. The evaluation function of the distance cue
is defined as follows:

wd(Id, P ) =
|P |∑
i=1

|pi − p′
i(Id)|2 , (3)

where P = {pi} denotes a set of transformed model points
and p′

i(Id) their measured positions that have been computed
on the basis of the observations Id. In the proposed system,
these observations are the skin color segmentation results
Is,l, Is,r (see Section II-B). In order to apply this evaluation
function for tracking, model points must be transformed into
the coordinate system the measurements are accomplished in,
yielding the point set P . For this purpose, the transformation
fd,i : Rdim(s) → Rdim(pi) is used, which maps a certain model
point pm,i to the coordinate system of the corresponding mea-
sured point p′

i, given a model configuration s. The function fd

performs this transformation fd,i for each desired model point
and thereby computes the point set P . Finally, the likelihood
function pd can be formulated as follows:

pd(Id | s) ∝ exp
{
− 1

2σ2
d

wd(Id, fd(s))
}

. (4)

III. HIERARCHICAL SEARCH

The most general approach is to use one particle filter for
estimating all degrees of freedom of the model, as done
in our earlier work ([12], [14]). The advantage is that by
estimating all degrees of freedom simultaneously, potentially
the orientation of the torso can be estimated as well. In
practice, however, the human model is not precise enough to
benefit from this potential – if the sensor system is restricted
to a single stereo camera system.

To reduce the number of particles, a hierarchical search is
performed i.e. the search space is partitioned explicitly. Since
the head is tracked for the distance cue anyway, the head’s
position can be used as the root of the kinematic chain. By
doing this, only 3 DoF of the base transformation remain to
be estimated. If not modeling the neck joint, these degrees
of freedom describe the orientation of the torso. Since the
torso orientation can hardly be estimated on the basis of 2D
measurements only, it is regarded as a separate problem. In
order to achieve robustness to small changes of the body
rotation without actually knowing it, the shoulder positions are
modeled to be adaptive, as will be described in Section VI.

With static shoulder positions (relative to the head), the final
estimation problem for the particle filter would consist of
4 DoF for each arm; the 3 DoF of the base translation are



estimated directly by a separate particle filter used for head
tracking. Intuitively, estimating the 4 DoF of one arm with a
separate particle filter sounds simple and one would assume
that this approach would lead to an almost perfect result –
given the restriction of a more or less frontal view of the
person. However, various extensions are necessary to allow
smooth and robust tracking of arm movements, which will be
introduced in the following sections.

IV. PRIORITIZED FUSION

The conventional approach for combining several cues within
a particle filtering framework is to multiply the results of
the respective likelihood functions. The quality and accuracy
achieved by such an approach strongly depends on the cues
agreeing on the way to the target configuration. In practice,
however, different cues have different characteristics. While
the likelihood functions of different cues in general have their
global maximum in the vicinity of the true configuration, i.e.
agree on the final goal, they often exhibit totally different
local maxima. This circumstance often causes the likelihood
functions to fight against each other, resulting in a typically
noisy estimation.

In the proposed system, the edge cue and the distance cue
have to be fused. Since the distance cue is the more reliable
cue due to the explicit measurement of the 3D head and hand
position, the idea is to introduce a prioritization scheme: If
the distance error of the hand for the current estimation is
above a predefined threshold, then the error of the edge cue
is ignored by assigning the maximum error of 1; otherwise
the distance error is set to zero. By doing this, the particle
filter rapidly approaches configurations in which the estimated
hand position is within the predefined minimum radius of
the measured hand position – without being disturbed by the
edge cue. All configurations that satisfy the hand position
condition suddenly produce a significantly smaller error, since
the distance error is set to zero and the edge error is < 1.
Therefore, within the minimum radius, the edge cue can
operate undisturbedly. Applying this fusion approach allows
the two cues to act complementary instead of hindering each
other.

Algorithm 1 ComputeLikelihoodArm(Ig,l, Ig,r, ph, s) → π

1) eg :=
wg(Ig,l, fg,l(s)) + wg(Ig,r, fg,r(s))

2
2) ed := |ph − fd(s)|2
3) If ed < t2d then set ed := 0 else set eg := 1.
4) ed :=

sd · ed

e
(t−1)
d

5) If ed > 50 then set ed := 50.
6) π := exp {−(ed + sg · eg)}

In addition, the range of the distance error is limited by divi-
sion by the distance error e

(t−1)
d for the estimated configuration

of the previous frame. Otherwise the range of the distance error

could become very large in some cases, potentially leading to
numerical instabilities. Finally, the argument to the exponential
function is cut off when it exceeds the value 50. The final
likelihood function fusing the errors calculated by the edge cue
and the distance cue is summarized in Algorithm 1. The inputs
to the algorithm are the gradient map stereo pair Ig,l, Ig,r,
the measured hand position ph, and the configuration s to be
evaluated. For the weighting factors sg := 1

2σ2
g

and sd := 1
2σ2

d

,
sg = sd = 10 is used. As the minimum radius, td = 30 mm is
used. The function fd computes the 3D position of the hand
for a given joint configuration s using the forward kinematics.
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Fig. 2. Illustration of the effect of the proposed fusion method on the overall
edge and distance error for a typical situation. The solid line indicates the
result computed using the proposed fusion method, the dashed line using
conventional fusion. Left: Euclidean distance error in [mm]. Right: edge error.

In Fig. 2, the results of 100 iterations of the particle filter
are plotted, after the particle filter has already converged.
As can be seen, using prioritized fusion does not only lead
to smaller edge and distance errors, but the variances are
also considerably smaller. The reason is that the cues do not
agree on the same goal and thus cannot find the optimal
configuration when using the conventional fusion method.

V. ADAPTIVE NOISE

In [15], the idea was raised to not apply a constant amount
of noise for sampling new particles, but to choose the amount
to be proportional to the variance of each parameter. Since
the variance of a parameter is not necessarily related to an
error of the parameter itself, we choose the amount for all
degrees of freedom of an arm to be proportional to the current
overall edge error of that arm. In Fig. 3, the overall errors are
plotted for the same example as used for Fig. 2, comparing the
application of adaptive noise to constant noise. In both cases,
prioritized fusion was applied (see Section IV).
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Fig. 3. Illustration of the effect of adaptive noise on the overall edge
and distance error for a typical example. The solid line indicates the result
computed using adaptive noise, the dashed line using a constant amount of
noise. Left: Euclidean distance error in [mm]. Right: edge error.



Note that not only the standard deviation of the estimated
trajectory is lower by a factor of approx. 2–3 – which is
reasonable when reducing the amount of noise – but also
the edge error exhibits a lower magnitude, compared to the
application of a constant amount of noise. This means that
the particle filter could find a better goal configuration when
applying adaptive noise. The reason is that when applying a
constant amount of noise, the amount must be chosen to be
relatively high in order to cope with (unpredictable) motion.
In the vicinity of the true configuration, however, this amount
is too high to allow a fine search, whereas adaptive noise
allows to search with a higher resolution in a smaller subspace.
The reason for the slightly higher distance error is that the
prioritized fusion method with td = 30 mm in Algorithm 1
gives the configurations the freedom to produce any distance
error smaller than 30 mm. If desired, td could be chosen to
be smaller. However, this would lead to less robustness to the
effects of clothing, and in particular to loose sleeves.

VI. ADAPTIVE SHOULDER POSITION

In general, one of the main problems with real image data is
that the model does not perfectly match the observations. In the
case of motion capture of the upper body, the problem often
occurs for the shoulder joint, which is usually approximated
by a single ball joint, the glenohumeral joint. In reality,
however, the position of this ball joint depends on two other
shoulder joints, namely the acromioclavicular joint and the
sternoclavicular joint. When not modeling these joints, the
upper body model is too stiff to allow proper alignment; an
exemplary situation is shown for the person’s right arm in
Fig. 4. Even more problematic situations occur, when the arm
is moved to the back.

Fig. 4. Illustration of the effect of adaptive shoulder positions. The main
difference can be observed for the person’s right arm; the model edges cannot
align with the image edges when using a static shoulder position, since the
shoulder position is too much inside. The white dots indicate joint positions
of the model, black dots mark the positions of the head and the hands of
the model, and red dots mark the respective measured positions. Left: static
shoulder position. Right: adaptive shoulder position.

In the proposed system, this problem becomes even more
severe, since the shoulder positions are inferred by the head
position, assuming a more or less frontal view. Our solution
is to estimate the shoulder position within the particle filter of
the arm, i.e. going from 4 DoF to 7 DoF. As it turns out, the
higher dimensionality does not lead to any practical problems,
whereas the freedom of the shoulder positions for aligning the
model results in a significantly more powerful system.

The three additional degrees of freedom define a translation
in 3D space. The limits are defined as a cuboid, i.e. by
[xmin, xmax]× [ymin, ymax]× [zmin, zmax]. The right image
from Fig. 4 shows the improvement in terms of a better
alignment of the person’s right arm achieved by the adaptive
shoulder position. As can be seen, the right shoulder has
been moved slightly outwards in order to align the contour
of the model with the image edges. Furthermore, the shoulder
has been moved downwards so that the distance error is
within the minimum radius, allowing the edge cue to operate
undisturbedly.
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Fig. 5. Illustration of the effect of adaptive shoulder positions on the overall
edge and distance error by the example of the person’s right arm shown in
Fig. 4. The solid line indicates the result computed using an adaptive shoulder
position, the dashed line using a static shoulder position. Left: Euclidean
distance error in [mm]. Right: edge error.

In Fig. 5, the overall errors are plotted for the person’s right
arm shown in Fig. 4, comparing a static to an adaptive shoulder
position. As can be seen, both errors are significantly lower
when modeling the shoulder position to be adaptive. The
reason for the lower distance error is that the shoulder joint
could move downwards so that the hand of the model can
approach the hand in the image. The lower edge error is more
significant: In the case of a static shoulder position, the edge
error could not be minimized at all, while the adaptive shoulder
position allows practically perfect alignment.

VII. INCORPORATING INVERSE KINEMATICS

The system which has been presented so far performs well
and can acquire smooth and accurate trajectories. The success
of the tracker, however, depends on the speed of the person’s
movements with respect to the frame rate of the camera. This
is typical for all pure tracking approaches, since they rely
on the differences between consecutive frames being small.
This leads to the main problem that once tracking has got
lost, in general, tracking systems only recover by chance. The
inclusion of the measured head and hand positions in the
proposed system already leads to a considerable improvement,
since the distance cue allows comparatively fast and reliable
recovery.

One problem that remains are local minima. A typical situation
is the automatic initialization of the tracking system. Here,
the configuration must be found without the aid of temporal
information. An example of such a local minimum is shown
for the person’s right arm in Fig. 6. Another problematic
situation occurs when the arm is almost fully extended. In this



Fig. 6. Illustration of the effect of incorporating inverse kinematics. Left:
without inverse kinematics. Right: with inverse kinematics.

case, one of the 3 DoF of the shoulder – namely the rotation
around the upper arm – cannot be measured due to the lack of
available information. Problems now occur when the person
starts to bow the elbow, since the system cannot know at this
point, in which direction the hand will move to. If the guess
of the system is wrong, then the distance between the true
configuration and the state of the particle filter can suddenly
become very large and tracking gets lost.

In order to overcome these problems, the redundant inverse
kinematics of the arm are incorporated into the sampling step
of the particle filter. Given a 3D shoulder position s, a 3D
hand position h, the length of the upper arm a, and the length
of the forearm b, the set of all possible arm configurations is
described by a circle on which the elbow can be located. The
position of the elbow on this circle can be described by an
angle α. Algorithm 2 analytically computes for a given angle
α the joint angles θ1, θ2, θ3 for the shoulder and the elbow
angle θ4. The rotation matrix Rb denotes the base rotation
from the frame the shoulder position s was measured in. Since
the computations assume that the base rotation is zero, the
shoulder position s and the hand position h are rotated back
with the inverse rotation Rb at the beginning. The underlying
geometric relationships are illustrated in Fig. 7.
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Fig. 7. Illustration of the geometric relationships for the inverse kinematics
computations.

The general idea of the used inverse kinematics method is as
follows. The starting point is the calculation of the vector m,
which points from the shoulder position to the center of the
circle. Subsequently, for each α a vector n is calculated that
points from the center to the position of the elbow. Then,
one possible rotation matrix Re for the shoulder joint is
calculated that moves the elbow to the computed position. For
this rotation matrix, the rotation matrix Ry(ϕ) for the rotation

around the upper arm is calculated that satisfies the hand
constraint. The final rotation matrix R for the shoulder joint
satisfying both the elbow and the hand constraint is composed
of the rotations Re and Ry(ϕ). The elbow angle θ4 is given
by γ−π, where γ is the angle between −a and b (see Fig. 7),
since θ4 ≤ 0 and for a fully extended arm, it is θ4 = 0.

In order to take into account joint constraints, not all possible
vectors n are considered, but only a subset. For this, the
shoulder rotation that is necessary for bringing the hand to
the target position c is reproduced in a defined way. Since
the computation of this rotation is ambiguous and a defined
elbow position is desired, the rotation is decomposed into two
single rotations. The first rotation moves the hand to the proper
position in the sagital plane (yz), the second rotation finally
moves the hand to the target position. By applying the same
two rotations to the vector (0, 0, −a sinβ)T , which defines
n in a canonical way, the vector n0 is calculated as a refer-
ence. For this n0, according to human-like joint constraints,
plausible values for the bounds of α ∈ [αmin, αmax] are
αmin = −0.2, αmax = π for the left arm, and αmin =
−π, αmax = 0.2 for the right arm, respectively.

Algorithm 2 ComputeInverseKinematics(Rb, s, h, a, b, α) →
θ1, θ2, θ3, θ4

1) c := RT
b (h− s)

2) If |c| > 0.95 (a + b) then set c := 0.95 (a + b)
c

|c|
.

3) If |c| < |a− b| then set c := |a− b| c

|c|
.

4) c := |c|

5) β := arccos
a2 + c2 − b2

2ac

6) γ := arccos
a2 + b2 − c2

2ab
7) u1 := (0, c, 0)T

8) u2 := (0, cy, sign(cz)
√

c2
x + c2

z)
T

9) n0 := Rotate((0, 0, −a sinβ)T , (1, 0, 0)T ,
Angle(u1, u2, (1, 0, 0)T ))

10) n0 := Rotate(n0, (0, 1, 0)T , Angle(u2, c, (0, 1, 0)T ))
11) n := Rotate(n0, c, α)
12) m :=

c

|c|
a cos β

13) a := m + n
14) b := c− a
15) u1 := (0, 1, 0)T

16) u2 :=
a

|a|
17) Re := RotationMatrixAxisAngle(u1 × u2,

Angle(u1, u2, u1 × u2))
18) ϕ := Angle(Re ·Rx(γ − π) · (0, b, 0)T , b, a)
19) R := Re ·Ry(ϕ)
20) (θ1, θ2, θ3) := GetAxisAngle(R)
21) θ4 := γ − π

Finally, the inverse kinematics method must be incorporated
into the sampling step of the particle filter. For this purpose,
the general idea of annealed particle filtering [10] is exploited,



which is running the particle filter several times on the same
frame while adapting the parameters for each run in a suitable
way in order to support faster convergence. In [10], the
adapted parameter was the weighting factor for the evaluation
function, with which the broadness of the resulting probability
distribution can be modified.

A naive approach would be to apply the inverse kinematics
for sampling all particles of the first run. Doing this would
reset the complete state of the particle filter, including the
elimination of all hypotheses, which are stored in the prob-
ability distribution. To keep the characteristics and benefits
of a particle filter, only a certain percentage of the particles is
sampled according to the inverse kinematics; all other particles
are sampled in the conventional way. By doing this, new
particles created by the inverse kinematics sampling get the
chance to establish themselves, while particles with great
likelihoods from the last generation, i.e. frame, can survive
according to the particle filtering principle. For each frame,
we use one such mixed run, followed by three normal runs of
the particle filter. These additional runs allow the particle filter
to sort out weak particles from the inverse kinematics sampling
and to converge to a representative probability distribution. In
the first run, 60% of the particles are sampled according to
the inverse kinematics, while the other 40% are sampled in
the conventional way. In Algorithm 2, the hand position h is
measured by hand tracking, and for the shoulder position s,
the estimated shoulder position offset from the previous frame
is applied to the measured head position.
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Fig. 8. Illustration of the effect of inverse kinematics sampling on the overall
edge and distance error by the example of the person’s right arm shown in
Fig. 6. The solid line indicates the result computed with inverse kinematics
sampling, the dashed line without. Left: Euclidean distance error in [mm].
Right: edge error.

In Fig. 8, the overall errors are plotted for the person’s right
arm shown in Fig. 6, comparing conventional sampling to
sampling taking into account inverse kinematics. As can be
seen, conventional sampling searches for 80 frames within the
minimum distance radius until the true configuration is found
and thus the edge error decreases. The corresponding joint
angle trajectories are shown in Fig. 9. The proposed combined
inverse kinematics sampling leads to almost immediate conver-
gence, in contrast to sampling without inverse kinematics. To
allow comparison of the results, the particle filter was run four
times in one iteration of the conventional sampling method.
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Fig. 9. Illustration of the effect of inverse kinematics sampling on the
trajectory of the person’s right arm shown in Fig. 6. Left: without inverse
kinematics. Right: with inverse kinematics. The standard deviations for the
iterations 3–99 for the angles θ1, θ2, θ3, θ4 are 0.011, 0.0070, 0.0076, 0.015,
when using inverse kinematics sampling. The units are in radians.

VIII. EXPERIMENTAL RESULTS

A. Runtime

In Table I, the runtimes for the different processing stages
are given for the proposed system. The runtimes have been
measured on a 3 GHz single core CPU for a test sequence
consisting of 840 24 bit RGB stereo images with a resolution
of 640×480 each. For arm motion tracking, 150 particles with
four runs were used. The total processing time of 66 ms yields
a processing rate of 15 Hz.

Time [ms]
Skin color segmentation 4
Shirt color segmentation 20
Edge image calculation 6
Particle filters for hand/head tracking 6
Particle filters for arm motion tracking 30
Total 66

TABLE I
PROCESSING TIMES FOR THE PROPOSED SYSTEM.

B. Real-world Experiments

For the results presented in this section, an exemplary se-
quence consisting of 840 frames captured at a frame rate
of 30 Hz was processed and analyzed. The sequence was
processed with the proposed system once on all 840 frames
and once using every second frame only. By doing this, the
degradation of the accuracy with lower frame rates can be
observed. As will be shown, the proposed system operates
robustly on lower frame rates as well, which is crucial for
robust online application. The system proved to be applicable
for online reproduction of movements on the humanoid robot
ARMAR III, as presented in [16].

The estimated trajectories of the left and right arm are plotted
in the Fig. 10 and Fig. 11, respectively. The angles θ1–θ4

are the direct output of the particle filter. The angles θ1–θ3

define a vector whose direction represents the rotation axis
and whose magnitude the rotation angle. As can be seen, the
trajectories acquired at 15 Hz and 30 Hz mostly equal. The
greatest deviations can be observed for the first 100 frames



of the left arm in Fig. 10. However, the magnitude of the
deviation is not representative for the actual error. The elbow
angle for these frames is near zero, and the different values
result from the uncertainty of the estimation of the upper
arm rotation – a problem that is not related to the frame
rate. Due to the small elbow angle, the projections of both
trajectories look similar. The deviation for the angle θ2 of the
right arm for the frames 670–840 in Fig. 11 is due to the
same ambiguity; again, the elbow angle is near zero. Judging
from the visualized model configurations in 2D and 3D, both
alternatives are plausible. For stable recognition or reproduc-
tion of such configurations with a humanoid robot system, the
trajectories must post-processed in order to ensure continuity
and uniqueness. This post-processing can be performed online
at run-time, as applied for reproduction of movements on the
humanoid robot ARMAR III presented in [16].

Finally, in Fig. 12 snapshots of the state of the tracker are
given for the test sequence. Each snapshot corresponds to a
frame 1+k ·60 from the Fig. 10 and Fig. 11, respectively. Note
that not only the projection of the human model configuration
to the left camera image is plausible, but also the estimated 3D
pose illustrated by the 3D visualization of the human model
is correct.

IX. DISCUSSION AND OUTLOOK

We have presented a stereo-based markerless human motion
capture system that is capable of robust real-time tracking of
upper body motion. The processing rate amounts to 15 Hz on a
3 GHz single core CPU operating on stereo color image pairs
with a resolution of 640×480. We introduced a prioritized
fusion method for combining the edge cue and the distance
cue, the latter operating on 3D positions acquired by a 3D
hand/head tracking system. It was shown that this fusion
method together with adaptive noise leads to substantially
smoother and more accurate trajectories. Accurate model
alignment is accomplished by modeling the shoulder position
to be adaptive – in contrast to conventional models using a stiff
ball joint for the shoulder. The introduced incorporation of the
solutions of an inverse kinematics problem with a redundancy
degree of one into particle sampling reduces the problem of
local minima drastically, allowing for immediate recovery and
automatic initialization.

In the current system, 3D hand/head tracking is performed
separately in a pre-processing step for each frame. In the near
future, we plan to resolve ambiguities that can occur through-
out hand/head tracking by utilizing the evaluation function of
the particle filters used for arm tracking. In this way, hand/head
tracking and arm tracking can mutually support each other,
rather than arm tracking benefitting from hand/head tracking
only.
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Fig. 10. Exemplary arm trajectory for the left arm acquired by the proposed human motion capture system. The solid line indicates the tracking result
acquired at the full temporal resolution of 30 Hz; for the dashed line every second frame was skipped, i.e. 15 Hz. The angles θ1–θ4 are plotted from left to
right. The units are in radians.
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Fig. 11. Exemplary arm trajectory for the right arm acquired by the proposed human motion capture system. The solid line indicates the tracking result
acquired at the full temporal resolution of 30 Hz; for the dashed line every second frame was skipped, i.e. 15 Hz. The angles θ1–θ4 are plotted from left to
right. The units are in radians.

Fig. 12. Snapshots of the results computed for a test sequence consisting of 840 frames, which were captured at a frame rate of 30 Hz. Every 60th frame is
shown; the frames are ordered row-wise from top left to bottom right. The red dots mark the measured positions computed by the hand/head tracking system.
The black dots mark the corresponding positions according to the estimated model configuration. The first frame illustrates the initial state of the particle
filter.
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Abstract—In this paper, we present a system for the imitation
of human motion on a humanoid robot, which is capable of incor-
porating both vision-based markerless and marker-based human
motion capture techniques. Based on the so-called Master Motor
Map, an interface for transferring motor knowledge between
embodiments with different kinematics structure, the system is
able to map human movement to a human-like movement on
the humanoid while preserving the goal-directed characteristics
of the movement. To attain an exact and goal-directed imitation
of an observed movement, we introduce a reproduction module
using non-linear optimization to maximize the similarity between
the demonstrated human movement and the imitation by the
robot. Experimental result using markerless and marker-based
human motion capture data are given.

I. I NTRODUCTION

The interaction between robots and humans is one of
the main goals in humanoid robotics research. A successful
interaction depends on various factors like the acceptanceof
a humanoid robot by society, its capabilites to act in uncon-
strained human-centered environments and its communication
skills. As a consequence, to raise its acceptance in society,
a robot needs to adapt human characteristics to its actions
and skills. Especially, human-like motion and gestures of a
robot are main contributions to its appearance, which has a
strong influence on a user. Hence, under these circumstances
controlling the motion of a robot is a very challenging task
and still a major topic in humanoid robotics research. The
most intuitive solution for this problem lies in imitation,where
the user adopts the role of a teacher by demonstrating how
to perform a certain action, while the robot tries to repeat
this action on the basis of the observation. The benefit of
exploiting demonstration is clearly revealed in [1], wherean
anthropomorphic arm is capable of balancing a pole in the
first trial after observing a human. The concept of imitation
can be understood in many ways. In [2], imitation of humans
in the field of robotics is divided into two categories: imitation
learning and motion imitation.

Imitation learning sets the focus on the understanding of
actions. Following this scheme, which underlies imitation
learning methods, first, data is collected from multiple ob-
servations of a demonstrated action. From this data collection
features are extracted allowing the robot to draw conclusions
on the humans behaviour. Based on the learned behaviour, the
robot should be able to reproduce a generalized version of the
demonstrated action.

In [3], a neuroscientific inspired approach is presented,
which solves imitation learning of cyclic motion with a set

of basic motor primitives. These are learned by clustering and
dimensionality reduction of visually acquired human motion
data. For reproduction, a movement is classified into motor
primitives which are played back sequentially.

In [4] and [5] methods are introduced, where Hidden
Markov Models are trained with a collection of observations
of a demonstrated movement. To reproduce a newly observed
movement, the observation is recognized based on a set of
trained models. With the complying model, a generalization
of the recognized movement is generated.

Imitation learning approaches emphasize the learning and
understanding of human behaviour by its interpretation by the
humanoid. These methods require offline processing and due
to the loss of accuracy as a result of generalization, they are
often limited to simple movements.

The imitation of a complex motion requiring high precision
and stability is addressed by approaches dealing with the
pure imitation of motion. In contrast to imitation learning, the
learning of any kind of behaviour is disregarded. Instead, the
focus is on finding a trajectory, which corresponds exactly to
the data, that a humanoid obtains from a human motion capture
system. [6], [7], and [8] present methods for motion imitation,
which make use of artificial markers on the humanoid robot
as well as the demonstrator. For the reproduction of motion,
corresponding marker positions between both subjects are
minimized leading to similar postures. Instead of exploiting
marker positions, [9] and [10] calculate the joint angles ofa
demonstrators posture, which are transferred to the robot for
execution. Due to joint and velocity constraints, a scalingand
transformation process must be performed to obtain a feasible
joint angle configuration for the robot. In contrast to the
mentioned motion imitation approaches mentioned above, a
more natural way of imitation using the humanoid robots own
stereo vision system to record human trajectories by exploiting
color markers on the demonstrators clothing is presented in
[11].

Each of these approaches is focused on a specific hu-
man motion capture technique. Since every technique has its
advantages and drawbacks, in our approach, we propose a
system for the imitation of motion within a framework that
allows integration of various marker-based and markerless
human motion capture systems and the reproduction on a
robot. This compability leads to a high level of flexibility
and versatility, which opens the system to a wide range of
different applications from motion analysis to imitation of
highly complex motions in real-time.



Concerning the reproduction of object manipulation actions,
one desires a module that produces trajectories that keep the
goal-directedness of the observed movement while keeping
the human-like charactericstics of the motion. The term goal-
directedness refers to the pose of the end effector relativeto
the object of interest. Since the pose of the object relativeto
the robot will always differ from the observed situation, one
needs the possibility to incorporate the currently desiredend
effector pose which can be derived from the currently observed
object pose into the transformation procedure.

However, due to severe constraints of mechanical systems
and unknown environments, it becomes very difficult to satisfy
all requirements. Inspired by the previous works, a reproduc-
tion module is developed based on a non-linear optimization
problem, which incorporates the robots hand in the task space
as well as the joint angles. Similar to the previous imitation
solutions, we focus on the optimization of the humanoids
posture in each frame.

The paper is organized as follows. Section II describes the
proposed imitation system and the human robot used in the
experiments. In Section III, an overview of markerless and
marker-based human motion capture is given. The extension
of the Master Motor Map is described in Section V. The
generation of human-like movements from captured human
motion using non-linear optimization techniques is presented
in Section VI. Finally, experimental results are given in VII.

II. SYSTEM OVERVIEW

As depicted in Fig. 1, the proposed system consists of
three major components, which are coupled in consecutive
processing stages: the acquisition of human motion, the Master
Motor Map (MMM) interface [12], and the motion generation
and reproduction.

As mentioned before, the proposed system allows data input
from different human motion capture systems. For applications
requiring highly accurate data, marker-based motion capture
systems are more suitable. In contrast, for online imitation in
a natural way, markers cannot be used. For the experiments
performed in the context of this paper, the Vicon system
[13] was used for marker-based motion capture (see Section
III-B) and the stereo-based markerless motion capture system
presented in [14] (see Section III-A) for natural imitation.

In both cases, the acquired trajectories are first translated to
the unifying MMM format. In order to enhance both, human-
likeness and accuracy, the MMM joint angle configuration runs
through an optimization procedure, which fits the configuration
to the kinematical structure and constraints of the robot.
By interpolation between the consecutive posture frames, a
smooth imitated movement is generated. If communciation
between the single modules becomes necessary, e.g. when
using an external Vicon system, UDP is used to establish the
connection.

A. ARMAR-IIIb

The humanoid robot ARMAR-IIIb, which serves as the
experimental platform in this work, is a copy of the humanoid

Fig. 1. Overview of the proposed system.θx denotes the joint angles, while
px describe the hand position in the Cartesian space.

robot ARMAR-IIIa [15]. From the kinematics point of view,
the robot consists of seven subsystems: head, left arm, right
arm, left hand, right hand, torso, and a mobile platform. The
head has seven DoF and is equipped with two eyes, which
have a common tilt and can pan independently. Each eye is
equipped with two digital color cameras, one with a wide-
angle lens for peripheral vision and one with a narrow-angle
lens for foveal vision. The upper body of the robot provides 33
DoF: 2·7 DoF for the arms and three DoF for the torso. The
arms are designed in an anthropomorphic way: three DoF for
each shoulder, two DoF in each elbow and two DoF in each
wrist. Each arm is equipped with a five-fingered hand with



Fig. 2. The humanoid robot ARMAR-IIIb.

eight DoF. The locomotion of the robot is realized using a
wheel-based holonomic platform.

III. H UMAN MOTION CAPTURE

In this section, a short outline of the integrated markerless
and marker-based human motion capture methods is given. In
addition to the brief descriptions of the techniques, the advan-
tages as well as the drawbacks are discussed. Furthermore,
possible applications are pointed out.

A. Markerless Human Motion Capture

In the following, our real-time stereo-based human motion
capture system presented in [14] will be summarized briefly.
The input to the system is a stereo color image sequence,
captured with the built-in wide-angle stereo pair of the hu-
manoid robot ARMAR-IIIb, which can be seen in Fig. 2. The
input images are pre-processed, generating output for an edge
cue and a so-called distance cue, as introduced in [16]. The
image processing pipeline for this purpose is illustrated in Fig.

Fig. 3. Illustration of the image processing pipeline.

3. Based on the output of the image processing pipeline, a
particle filter is used for tracking the movements in joint angle
space. For tracking the movements, a 3D upper body model
with 14 DoF (6 DoF for the base transformation, 2·3 for the
shoulders, and 2·1 for the elbows) consisting of rigid body
parts is used, which provides a simplified description of the
kinematic structure of a human. The model configuration is
determined by the body properties like the limbs length of
the observed human subject. The core of the particle filter
is the likelihood function that evaluates how well a given
model configuration matches the current observations, i.e.
stereo image pair. For this purpose, an edge cue compares the
projected model contours to the edges in the image. On the
basis of an additional 3D hand/head tracker, the distance cue
evaluates the distance between the measured positions and the
corresponding positions inferred by the forward kinematics of
the model. Various extensions are necessary for robust real-
time application such as a prioritized fusion method, adaptive
shoulder positions, and the incorporation of the solutionsof
the redundant arm kinematics. The system is capable of online
tracking of upper body movements with a frame rate of 15 Hz
on a 3 GHz single core CPU. Details are given in [14].

B. Marker-based Human Motion Capture

Marker-based human motion capture frameworks are
widespread systems in the robotics research community as
well as in the industry. One of the most popular commercially
available systems is provided by Vicon [13]. The technique,
which is used here, relies on infrared cameras and artificial
reflective markers. The markers are placed on predefined
body parts of a human subject. In a defined workspace, the
subject is surrounded by a set of infrared cameras. Each
camera is equipped with a infrared strobe, emitting a light
signal, which is reflected by the markers. The reflected light,
which distinguishes itself from the background, is registered
by the cameras. The data from each camera consisting of 2D
coordinates of each recognized marker position, is merged in a
data station, which computes the 3D position by triangulation
and the label of each visible marker. Besides the hardware,
the system contains a comprehensive software package, which
facilitates the calibration and handling of the system. Dueto
the high-speed and high-resolution properties of the cameras,
the Vicon system provides an accurate method for capturing
human motion at high frame rates. Furthermore, since the use
of numerous markers allows capturing of barely visible motion
of unobvious joints, complex kinematic models are applicable
for the processing and representation of the motion data. The
problem of occlusion of body parts is reduced to a minimum,
since multiple cameras are used, which deliver multiple views
of the same subject. However, the enormous equipment needs
cause high costs. Furthermore, a time and space-consuming
preparation is essential to provide the necessary setup for
proper human motion capture. For our purpose, the joint angles
are reconstructed by optimization of a human model based on
the computed 3D marker positions. Details are given in [17].



IV. EXTENDED MASTER MOTOR MAP

Since each human motion capture system produces data in
terms of its own specific model and format, respectively, one
has to deal with a variation of different data formats. Likewise,
for reproduction of movements, each robot system requires
data in terms of its own kinematics. One possible solution
could be the definition of an interface for each combination of
a sensing system and a robot. However, doing so would restrict
the robot and the utilization of the data. To overcome this
difficulties, in this work, a standardized interface is established
by using the MMM, which features a high level of flexibilty
and combability. The MMM is introduced in [12] and provides
a reference kinematic model by defining the maximum number
of DoF, that can be used by a human motion capture module
and a robot. A trajectory in the original MMM file format
consists of 52-dimensional vectors, each vector describing a
joint angle configuration with a floating point number for every
single DoF. Since we are able to recognize the human finger
movements using the Vicon system, the MMM is extended by
three DoF for coupled finger flexion, thumb flexion and thumb
abduction. The reference kinematic model of the extended
MMM is illustrated in Fig. 4. As a result of the extension, one
obtains a 58-dimensional vector for the description of a joint
angle configuration of the model. Due to differences in the
Euler conventions, active joint sets, which can be controlled,
and the order of the joint angle values between the modules,
a conversion module has to be implemented for each of the
systems in order to provide a proper connection via the MMM.
This conversion module transforms the module specific data
into the MMM file format and vice versa. As depicted in Fig.
1, for the proposed system, one conversion module is imple-
mented for each human motion capture system, converting the
motion capture data to the MMM format. A third conversion
module is implemented for mapping the MMM data to the
kinematics of ARMAR-IIIb. The focus of this paper lies on
this third module and is presented in the following. Further
details on the MMM are given in [12].

V. REPRODUCTION OFTRAJECTORIES

Concerning the imitation of humanoid motion, the simplest
and most desired way to reproduce a movement from given
joint angles consists of a one-to-one mapping between an
observed human subject and the robot. Unfortunately, due
to the differences in the kinematic structures of a human
and the robot e.g. differing joints and limb measurements,
only in rare cases a one-to-one mapping shows acceptable
performance regarding the functionality as well as the human-
like appearance of the reproduced movement. In this work, we
address this problem by applying a postprocessing procedure
in joint angle space. In two stages, the joint angles, given in the
MMM format, are optimized concerning the tool center point
(TCP) position and the kinematic structure of the robot. First, a
feasible solution is estimated, which serves as an intial solution
for an optimization step in the second stage. Following this
scheme, one obtains a human-like motion on the robot, while
preserving its goal-directed characteristics.

Fig. 4. Reference kinematic model of the Extended Master Motor Map.

A. Similarity Measure

One of the most crucial factors in the reproduction of
human motion is the measure for rating the similarity between
the imitated and the demonstrated movement. For the online
reproduction of a human movement, one is more interested
in comparing the current postures at the timet than in
investigating a whole trajectory. In [7], it is proposed to deter-
mine the distance between the postures of the robot and the
human by exploiting point correspondences between specified
points on both bodies. To infer useful statements concerning
the similarity, accurate localization and identification of the
limbs are required, which makes the use of physical markers
inevitable. In [9], a similarity measure is introduced, which
only considers the joint angle relations. However, it disregards
structural differences between human and robot like differing
limb lengths, which one has to take into account in order to
preserve the goal of a movement when mapped on the robot.
Combining both, the joint angle configuration and key point
correspondences, for a joint angle configurationσ ∈ R

n with
n joints, we define the similarity measure as follows:
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with σi, σ̂i
t ∈ [0, π] and pk, p̂k

t ∈ [−larm, larm], whereas
larm describes the robots arm length. The reference joint angle
configuration is denoted bŷσ ∈ R

n, while p̂ ∈ R
3 stands for

the desired TCP position. The current TCP postionp can be
determined by applying the forward kinematics of the robot
to the joint angle configurationσ.

B. Estimation of an Initial Solution

To obtain a posture, which bears a high resemblance to the
one of the demonstrator and at the same time meets all the
mechanical constraints of the robot, the original joint angle
configuration is optimized regarding the similarity measure as
specified in Eq. 1. An optimal solution is found by applying
a numerical optimization algorithm, namely the Levenberg-
Marquardt (LM). However, the efficiency of most of the
numerical optimization algorithms strongly depends on the
initial estimation of the parameters to be optimized. An initial
estimation within the neighbourhood of the optimal solution
leads to a high chance that the algorithm converges fast
directly towards the optimum without being trapped in local
extrema. In this work, an initial estimation is determined from
a preselection of candidate initial joint angle configurations,
which are generated and evaluated by means of the similarity
measure. To generate a candidate initial estimationσj , the
reference joint angle configuration̂σt computed at timet is
mapped into the robot joint angle space and projected on the
bound constraints:

σ̂t
i =
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whereCimin
andCimax

denote the lower and upper joint angle
bounds of jointi. If the value ofσ̂t

i exceeds the given bounds,
the joint i is fixed at the closest of the two boundaries. A
candidate is obtained by altering each non-fixed joint angleof
the mapped configuration by means of a vectorδt ∈ R

n with
δt
i = σ̂t

i − σ̂t−1

i . Thus,δt describes the changes between two
consecutive frames. As a result, a candidate initial estimation
can be described as:

σ
j
i = σ̂t

i + αiβi (3)

with

αi =

{

1 if Cimin
≤ σ̂t

i ≤ Cimax

0 else
(4)

βi ∈ {−δt
i , 0, δt

i} (5)

Givenn joints to control, in the worst caseM = 3n candidates
need to be calculated and evaluated. The best initial estimation
satisfies the following equation:

σinit = argmax
j=1,...,M

S(σj) − ‖σ̂t − σj‖ (6)

Finding the best initial estimation causes some overhead
regarding processing time, but it is necessary to ensure that
the LM algorithm will provide an optimal solution.

C. Optimization Problem

For optimization of a reference joint angle configuration
regarding the similarity measure, one can use the Levenberg-
Marquardt algorithm. The algorithm, which was first intro-
duced in [18], provides a standard technique for solving non-
linear least squares problems by iteratively converging toa
minimum of function expressed as sum of squares. Combi-
nating the Gauss-Newton and the steepest descent method,
the algorithm unites the advantages of both methods. Hence,
using the LM method, a more robust convergence behaviour
is achieved at points far from a local minimum, while a
faster convergence is gained close at a minimum. Due to its
numerical stability, the LM method has also become a popular
tool for solving inverse kinematics problems as demonstrated
in [19]. For our problem, where, given the reference joint
angle configuration̂σt, we seek aσt, which maximizes Eq.
1. To interpret Eq. 1 as a function of sum of squares to be
minimized, we define a functions(σ) : R

n → R
m with

n < m as follows:
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The corresponding optimization problem can be written in the
following form:

min S′(σ) = 2 − S(σ) (8)

subject to Cimin
≤ σ̂i ≤ Cimax

(9)

which is equivalent to the maximization of Eq. 1. Similar
to the Gauss-Newton method, in the LM method a Taylor
expansion ofs is performed aroundσ. For a smallρ, s can
be approximated by the following equation:

s(σ + ρ) ≈ s(σ) + Jsρ (10)

where Js denotes the Jacobian ofs. Based on the initial
guessσinit , a sequence of estimationsσ + ρ is calculated
that converges to a solution of Eq. 9. Therefore, in each
iteration, the optimization problem is reduced to finding aρ,
that minimizes‖s(σ̂t)− s(σ) + Jsρ‖. For an adequateρ the
following condition must hold true:

(

s(σ̂t) − s(σ) + Jsρ
)

JT = 0 (11)

Solving the least squares problem of Eq. 11 yields the sought
ρ. Based on Eq. 11, the LM algorithm solves following slightly
modified equation:

Iµ + JT
s Jsρ = JT

s s(σ + ρ) (12)



which includes a dampening termµ. If reduction of S′

concerningρ can be accomplished, then for the next iteration
σ := σ + ρ holds and a smaller value is assigned toµ to
achieve faster convergence. If reduction fails,µ is set to a
higher value, which slows down the convergence. Furthermore,
µ prevents meeting singularites in the Jacobian. To obtain a
feasible joint angle configuration, after each iteration,σ is
projected onto the bound constraints according to Eq. 2. The
algorithm terminates ifS′(σ) < ǫ1 or ‖ρ‖ < ǫ2 , and one can
set σt = σ. More practical details on the algorithm can be
found in [20].

VI. EXPERIMENTAL RESULTS

In this section, results of experiments of the imitation system
with the two human motion capture systems introduced in
Section III are demonstrated. The approach was evaluated by
comparison to an inverse kinematics method based on the
Jacobian transpose and a one-to-one mapping of the captured
joint angles onto the robot. The results were generated with
the humanoid robot platform ARMAR-IIIb in real-world as
well as in simulation.

A. Marker-based Motion Capture Data

The hardware setup which was used to capture the human
motion consists of ten Vicon cameras. Since using a marker-
based approach allows to capture a large set of degrees of
freedom, the number of active joint angle adds up to 24 DoF,
ten for each arm, three DoF for the head and one DoF for the
hip rotation. Concerning the arm, three DoF are assigned to
the shoulder rotation, two for the elbow, two for the wrist and
three DoF describe the finger movements. The experiments
focused on the reproduction of actions in a kitchen scenario.
The data was generated within the work of [21]. The kitchen
actions included movements like stirring, cutting with a knife,
sweeping, grinding coffee beans, grating, and pouring. Fig. 8
shows screenshots of cutting sequence, which was reproduced
on ARMAR in simulation. The results using the optimization
as proposed in this work on marker-based captured motion
data are illustrated in Fig. 5. The left plot of Fig. 5 shows the
joint angle error of a reproduced joint angle configuration on
the robot and the reference configuration. Due to redundancy,
the inverse kinematics method produces results with higher
error, while a one-to-one mapping naturally leads to a minimal
error. In the center plot of Fig. 5, by the right arm TCP, the
deviation of the TCP positioning is illustrated. Here, given
a TCP destination, the inverse kinematics method leads to
an exact positioning of the TCP, while using the one-to-one
mapping the destinated position is not reached. In both plots,
it is shown, that the application of the optimization procedure
as proposed in Section V, a tradeoff is attained, which results
in a quite accurate TCP positioning with an maximum error
of 25 mm and an acceptable mean joint angle error of 2.0
degrees for each DoF. One of the most crucial joints which
has a huge impact on the style of a trajectory is the shoulder
joint. Therefore, the right plot of Fig. 5 shows the joint angle
error for this joint in particular.

B. Markerless Motion Capture Data

For the online reproduction and imitation of the observed
human motion, the stereo camera system of ARMAR-IIIb was
used to capture the upper body movements with the method
described in Section III-A. Using the onboard cameras allows
to perform a more natural way of imitation, but limits the
number of DoF, which can be measured, since the system is
more sensitive to noise and occlusion. A total number of eight
DoF is used, four for each arm, three DoF for the shoulder joint
and one for elbow flexion. The under arm rotation, the wrist,
and finger movements cannot be recognized with this system.
The online reproduction was tested with simple movements
like reaching, waiving, and approaching certain postures.Some
sample images showing the online imitation of human motion
can be seen Fig. 7. Similar to the results achieved with the
Vicon system, applying the proposed motion imitation system
leads to a tradeoff between the accuracy of the TCP position
and the joint angle error. However, due to the reduced number
of measured joints, one obtains results with a mean joint angle
error of 2.7 degrees for each DoF, as shown in the left plot
of Fig. 6, and a maximum deviation of 65 mm in the TCP
position of the right arm, as shown in the center plot of Fig.
6. The reason for the relatively large deviation is that the
utilized vision-based motion capture system is not yet capable
of measuring the torso rotation. This lack information leads to
a decreased flexibility throughout the reproduction, assuming
the hip joint angles to be fixed. One solution would be to
incorporate the hip rotation into the optimization procedure
in order to allow for the missing flexibility even if the torso
rotation cannot be measured.

VII. C ONCLUSIONS

In this work, we have presented a system for motion
imitation with the goal of attaining a human-like motion, but
without loss of functionality. Based on the Master Motor Map,
a system was developed, which is capable of incorporating
various human motion capture techniques. In particular, itwas
dealt with the marker-based Vicon system and a markerless
vision-based approach. Their output is transformed to the
structure of the robot platform ARMAR-IIIb by using a non-
linear optimization technique in form of the LM algorithm. A
natural way of motion imitation is demonstrated by applying
the system successfully for the online reproduction of observed
motion. Furthermore, with the system, reproduction of com-
plex kitchen actions was achieved based on high-resolution
Vicon data. In the near future, the involvement of objects is
planned to enable imitation of manipulation tasks. The pro-
posed system provides a solid basis for further studies towards
human motion analysis. By incorporating machine learning
methods, the system can be extended imitation learning tasks.
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Fig. 5. Evaluation results for the reproduction of motion captured by the Vicon system. Left: Mean joint angle error overall active joints in radians. Center:
Deviation of right arm TCP of the robot and a predefined destination in mm. Right: Mean joint angle error over the shoulder joint in radians.

Fig. 6. Evaluation results for the reporduction of vision-based captured motion. Left: Mean joint angle error over all active joints in radians. Center: Deviation
of right arm TCP of the robot and a predefined destination in mm. Right: Mean joint angle error over the shoulder joint in radians.
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R. Dillmann, “ARMAR-III: An Integrated Humanoid Platform for
Sensory-Motor Control,” inIEEE/RAS International Conference on
Humanoid Robots, 2006.

[16] P. Azad, A. Ude, T. Asfour, G. Cheng, and R. Dillmann, “Image-
based Markerless 3D Human Motion Capture using Multiple Cues,”
in International Workshop on Vision Based Human-Robot Interaction,
Palermo, Italy, 2006.
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Fig. 7. Image samples of the online imitation of human motionby the humanoid ARMAR-IIIb.

Fig. 8. Image sequence of a cutting trajectory captured by the Vicon system and the reproduction in the ARMAR III simulation.
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