

26 / 6 - 2007 Page 1� of 4�

IST-FP6 -027657 / PACO-PLUS

Last saved by: Juan Andrade-Cetto Confidential

Project no.: 027657
Project full title: Perception, Action & Cognition through Learning of

Object-Action Complexes
Project Acronym: PACO-PLUS

Deliverable no.: D7.1.3
Title of the deliverable: Action Selection for Robotic

Manipulation of Deformable Objects

Contractual Date of Delivery to the CEC: 31 January 2009

Actual Date of Delivery to the CEC: 24 February 2009

Organisation name of lead contractor for this deliverable: CSIC

Author(s): Juan Andrade-Cetto, Saúl Cuén and Carme Torras

Participants(s): CSIC

Work package contributing to the deliverable: WP7

Nature: R/D

Version: 1.0

Total number of pages: 18

Start date of project: 1st Feb. 2006 Duration: 48 month

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Abstract:
This deliverable contains one scientific publication describing a technique to manipulate fabric
objects for kitchen oriented applications. In particular, a piece of cloth is straightened by selecting
robot actions that both get the job done and minimize state uncertainty at the same time. This
method for choosing actions is designed to act over iOACs at the middle layer of the PACO-PLUS
cognitive architecture.

Keyword list: manipulation planning, model-based planning.

Page 2 of 4

IST-FP6-IP-027657 / PACO-PLUS Confidential

Table of Contents
INTRODUCTION .. 3
ACTION SELECTION FOR ROBOTIC MANIPULATION OF CLOTH ... 3
ATTACHED PAPER ... 4

Page 3 of 4

IST-FP6-IP-027657 / PACO-PLUS Confidential

INTRODUCTION

This deliverable deals with the manipulation of planar deformable objects such as fabric, for typical
service robot applications. The action selection mechanisms described in this deliverable have been
designed to reduce the uncertainty in the estimation of the attributes in an instantiated OAC; in this
case, the iOAC is the state space representation of the piece of cloth. This is achieved by selecting
from a set of primitive actions at the middle level of the PACO-PLUS cognitive architecture; the
ones that maximize the predicted mutual information gain between posterior states and
measurements. Maximizing the mutual information helps to avoid ill-conditioned measurements.

The essential idea is to use mutual information as a measure of the statistical dependence between
actions and attributes in the iOAC. The mutual information is the relative entropy between the
marginal density of the attributes and the same density conditioned on the observed attribute values.
When the attributes are modeled as multivariate Gaussian distributions, the parameters of the
marginal density are trivially a Kalman filter prior mean and covariance. Moreover, the parameters
of the conditional density come precisely from the Kalman update equations.

As suggested in the Y2 Review Report, this entropy-based action selection mechanism is now
integrated at the middle level of the PACO-PLUS cognitive architecture, as detailed in Deliverable
4.2.3 and publications therein. The issue of computational complexity, raised also in the Review
Report, although not reported here has been dealt with by using an information form representation
of Gaussian distributions. The main idea is to recover efficiently joint marginals of the state pdf
distributions. These marginals can then be used to evaluate the mutual information metric that
quantifies the expected outcome of actions in terms of reduction of uncertainty. This can be
achieved by encoding covariances and cross correlations in a tree-like structure, each node of the
tree containing upper and lower bounds on these matrices computed using interval arithmetics. The
method has been submitted for a related problem, but in a different context, and the reference is
only included here for completeness [C]. Computational resources are in general, no longer an issue
when evaluating the entropy-based action selection mechanism.

The review raised concerns also on the relevance of using deformable objects instead of the more
classic rigid objects for which the outcome of actions are being characterized in PACO+. Typically,
during object manipulation of rigid objects, expected outcomes can be characterized within a
discrete set, related to object affordances, i.e., empty - filled, upside - uspide down, graspable, etc.
The level of uncertainty that can be encoded here is too simplistic for real robot applications.
Dealing with uncertainty in manipulation calls inevitably for richer object state representations, one
that is only possible with continuous state representations. Flexible objects offer this richness of
representation. Instead of dealing with the continuous variables of rigid object pose, we can now
talk about continuous state representations for the object form, with folds and wrinkles providing a
rich set of uncertainties for the action selection mechanism to deal with.

ACTION SELECTION FOR ROBOTIC MANIPULATION OF CLOTH

Service robots, and in particular those aimed at helping humans in daily tasks, are required to
operate in a wide range of tasks and environments. The variability of tasks and environments in
which they are to operate pose new research problems not tackled within industrial robotics. The
non-repetitive manipulation of deformable objects is one such problem, since these objects are
plentiful in homes and assistive environments.

Page 4 of 4

IST-FP6-IP-027657 / PACO-PLUS Confidential

While a lot of work has been devoted to grasping, motion planning and manipulation of rigid
objects, similar research for deformable objects is just starting. PACO-PLUS is addressing the
grasping and manipulation of both types of objects within a kitchen environment. The long-term
goal is to plan and execute manipulation tasks with the fingered hands of the ARMAR robot, but as
a first step this paper deals with action selection for cloth straightening with a Staubli arm.

Global action plans on what to do with an object, the piece of cloth in this case, are computed in the
upper layer of the PACO-PLUS cognitive architecture. Once a plan has been decided, to straighten
the piece of cloth in this case, it is passed to the middle layer for actuation over the instantiated
OAC, together with a set of primitive actions, which had been learnt useful to achieve the goal
through learning. At this point, local decisions must be made to minimize contingencies and to
maximize reward. One such method for local plan execution is to take the actions that are most
informative, in the sense that they help reduce the uncertainty in the estimation of attributes in the
iOAC. The work reported here is in that sense related to WP5 for global planning, to WP6 for the
learning of motion primitives, and to WP7 for local decision making.

Specifically, we present a system that straightens pieces of cloth from any arbitrary initial wrinkle
condition using a robotic manipulator. The cloth is modeled with a finite element method, and its
state is estimated with a physical-based implicit integration scheme that computes particle velocities
as a function of internal and external forces acting on the object. The state of the object instantiation
is tracked with a stochastic observer, in which measurements come from a stereovision system.
Manipulation actions are chosen maximizing an a-optimal information measure.

In the work reported in this deliverable we have adopted an implicit integration scheme to estimate
the state of a planar deformable object, given its better accuracy in estimating deformations over
extended periods of time. In this approach, a large sparse linear system is solved through a
preconditioned conjugate gradient (CG) iterative method. The preconditions of the CG method
permit imposing external constraints on the velocities of some particles, which comes handy when
we need to restrain the motion of the particles fixed by the finger.

To our knowledge, this is the first time that a stochastic state estimator has been derived for an
implicit integration model of a deformable planar object, bridging the gap between computer
simulation and vision-based tracking of the state of deformable planar objects for manipulation. A
video showing the simulation and actual implementation of the approach is available at http://www-
iri.upc.es/people/cetto/pacoplus/Manipulation_Deformable_Bodies.wmv

ATTACHED PAPER

[A] S. Cuén, J. Andrade-Cetto, and C. Torras. “Action selection for robotic manipulation of cloth”.
To be published. A smaller version of this paper was presented as
[B] S. Cuén, J. Andrade-Cetto, and C. Torras. “Action selection for robotic manipulation of
deformable objects”. In ESF-JSPS Conference on Experimental Cognitive Robotics, Kanagawa,
March 2008.

OTHER REFERENCES

[C] V. Ila, Josep M. Porta, and J. Andrade-Cetto, “A Tree-based Nearest Neighbor Search for Data
Association in Pose SLAM”, submitted to Robotics Science and Systems Conference, 2009.

Action Selection for

Robotic Manipulation of Cloth

Saúl Cuén-Roch́ın, Juan Andrade-Cetto and Carme Torras

Institut de Robòtica i Informàtica Industrial, CSIC-UPC

Llorens Artigas 4-6, Barcelona 08028, Spain

scuen,cetto,torras@iri.upc.edu.

Abstract

This paper deals with the manipulation of planar deformable objects such as fab-

ric, for typical service robot applications. Specifically, we present a system that

straightens pieces of cloth from any arbitrary initial wrinkle condition using a robotic

manipulator. The cloth is modeled with a finite element method, and its state is

estimated with a physical-based implicit integration scheme that computes particle

velocities as a function of internal and external forces acting on the object. The

state of the object is tracked with a stochastic observer, in which measurements

come from a stereo vision system. Manipulation actions are chosen maximizing an

a-optimal information measure.

To our knowledge, this is the first time that a stochastic state estimator has been

derived for an implicit integration model of a deformable planar object, bridging

the gap between computer simulation and vision-based tracking of the state of

deformable planar objects for manipulation.

1 Introduction

Service robots, and in particular those aimed at helping humans in daily tasks,
are required to operate in a wide range of tasks and environments. The variabil-
ity of tasks and environments in which they are to operate pose new research
problems not tackled within industrial robotics. The non-repetitive manipula-
tion of deformable objects is one such problem, since these objects are plentiful
in homes and assistive environments.

While a lot of work has been devoted to grasping, motion planning and ma-
nipulation of rigid objects [16, 18], similar research for deformable objects is
just starting [1, 31]. The European Project PACO-PLUS [3] is addressing the

Preprint submitted to - 31 January 2009

grasping and manipulation of both types of objects within a kitchen environ-
ment. The long-term goal is to plan and execute manipulation tasks with the
fingered hands of the ARMAR robot, but as a first step this paper deals with
action selection for cloth straightening with just one finger.

The existing work on manipulation of deformable objects deals mainly with
linear objects [9, 25, 17], such as ropes threads and wires. These works usually
rely on a Finite Element Method (FEM) to model the objects, and make use
of knot topology to plan motions. Modeling deformable planar objects –those
of interest to us– in the same way may be computationally costly, and the
alternative of using a Boundary Element Method (BEM) has been proposed
[12], where BEM differs from FEM in that only the contour of the object needs
to be meshed. However, BEM-based simulation does not provide enough detail
on cloth state for our purposes, so we do not adopt this method in the present
work. Other works focus on grasping skills for cloth manipulation [26], and
on iterative learning of the force required to lift a deformable object [14]. A
compilation of systems for the industrial manipulation of deformable objects
is discussed in [13], going from sewing systems to fish manipulation processes.

For action planning, a physical-based simulation that accurately predicts the
outcome of actions is crucially needed. In the Computer Graphics field, there
are two approaches to cloth simulation that use FEM to describe the particles
positions and velocities as a mesh of primitives such as triangles and rectangles.
One is the implicit integration scheme [5], which at the expense of a high
computational cost, remains stable despite taking long time steps. The other
is the explicit integration scheme [23], with lower computational burden, but
restrained to take short time steps to assure stable solutions. The reader is
referred to [19] for a detailed discussion of cloth simulation approaches, and
to [11] for a wider compilation of physical models of deformable objects.

In the current work we have adopted the implicit integration scheme, given
its better accuracy in estimating the state of the object over extended periods
of time. In this approach, a large sparse linear system is solved through a
preconditioned conjugate gradient (CG) iterative method. The preconditions
of the CG method permit imposing external constraints on the velocities of
some particles, which comes handy when we need to restrain the motion of
the particles fixed by the finger.

State estimation techniques are used to track the state of the cloth. In partic-
ular, an Extended Kalman filter on the implicit integration scheme has been
implemented. The selection of the best next action to straighten the cloth
is then tackled using tools from information theory. This approach to action
selection has previously been pursued in the context of active vision for Simul-
taneous Localization and Mapping [29], and wire-based robot pose tracking
[2]. Here, we have adapted it to cope with the uncertainty inherent to the

2

manipulation of deformable objects.

The paper is structured as follows. Section II details the model used to pre-
dict the deformation of cloth under the presence of three types of forces: i)
internal forces such as stretch, shear and bend, ii) the forces exerted by our
manipulation strategy, and iii) external forces such as gravity and the collision
with other objects. In Section III the action selection strategy is described.
The strategy has the dual objective of straightening the cloth while at the
same time maintaining good estimation of its state. Section IV presents both
simulated and experimental results, and Section V contains some concluding
remarks.

2 Physical Model

To model its deformation, a piece of cloth may be modeled as a triangular
mesh of particles. We use a uniform particle distribution on a square plane
shape with disk topology for our cloth representation, compatible to the one
typically used in the computer graphics community [5].

Each vertex of the triangular mesh has coordinates pi, and moves with velocity
vi, The state of the cloth be defined as a 6n-dimensional array containing the
vertical concatenation of all vertex locations p, and velocities v, respectively.

To model the deformation of the entire mesh after a time step h, we adopt a
variable-velocity motion model given by the difference equation

pt+h

vt+h

=

pt + hvt+h

vt + ∆v

(1)

The change in velocity for the interconnected particles, ∆v, follows the back-
ward Euler method for implicit time integration given in [5]. Baraff’s paper
explains in depth how to form and solve the equation. The method, in con-
trast to a more simple forward Euler integration technique, finds an output
state whose time derivative is consistent with the initial state. The method is
used to simulate the effect of internal and external forces applied to the cloth.
These forces acting on each particle are defined in terms of precondition func-
tions that permit to impose constraints on the velocities, effectively allowing
us to model the effect of motion commands on those particles fixed by the
manipulator gripper:

∆v = A−1b (2)

3

A = I − hW
∂f

∂vt

− h2W
∂f

∂pt

b = hW

(

ft + h
∂f

∂pt

vt

)

+ u + δu

The solution for ∆v depends on the initial particle velocities vt, the 3n × 3n
particle constrainer matrix W, whose block diagonal elements are defined as
Wii = 1

mi

Si, for which mi is the mass of the i-th particle, and Si is a 3 × 3
matrix used to constraint the desired degree of freedom affecting the parti-
cle mass at any given location. When particles are constrained, u is used to
set their desired velocity, and δu are external induced error velocities which
will come handy in robotic manipulation. Forces acting on the system include
the initial particle vector forces ft, that may include external forces such as
gravity, wind, etc., and the internal forces f , which according to the material
characteristics can be expressed as functions of the particle positions pt. Par-
ticle internal forces are modeled as the sum of resistance and damping effects
on specific stretch (Cu, Cv) , shear (Cs) and bend (Cb) conditions

f =
4
∑

i=1

[

−ki

∂Ci(pt)

∂pt

Ci(pt) − di

∂Ci(pt)

∂pt

Ċi(pt)

]

where

Ċi(pt) =
∂Ci(pt)

∂pt

vt

C(pt) = (Cu, Cv, Cs, Cb)
⊤

and k = (ku, kv, ks, kb)
⊤ and d = (du, dv, ds, db)

⊤ are appropriate resistance
and damping factors, respectively.

2.1 Internal Forces

In Baraff’s formulation [5], C(p) is a condition vector which we want to be
zero. Its associated energy E = k

2
C(p)⊤C(p) is used to derive simple stretch,

shear and bend conditions. So, for example if wu(p) and wv(p) are the vectors
indicating the stretch or compression of the triangles in the mesh, with unit
length when the material is straightened, and a is the area of the triangle in
uv fixed planar coordinates, the condition

Cu

Cv

= a

‖wu(p)‖ − 1

‖wv(p)‖ − 1

4

can be used to model stretch energy. Similarly, by the small angle approxima-
tion, shear can be measured as the inner product between wu(p) and wv(p)

Cs = awu(p)⊤wv(p) .

Finally, if we let ni and nj denote the unit normals of two adjacent triangles,
and let e be a common vector parallel to the common edge, the angle between
the two faces defined by the relations sin θ = (ni × nj)

⊤e and cos θ = n⊤
i nj ,

the condition that counters bending along that edge is

Cb = θ .

2.2 Influence of the Parameters

In [6] and [20] studies are performed to determine the stretch and damping
parameters k and d for the physical model presented in this paper. We use
the same parameters as in [20] to adequate physical animation of a soft fabric.
Nonetheless, a change in parameters may be done to adequate animation to
different materials such a flexible thin sheet of metal.

2.3 Motion commands

Our cloth dynamics model, the time varying partial differential Equation (2),
differs from the original equation in [5] in that we have included a set of
external induced error velocities δu. We use u to represent the actions exerted
by our manipulator, and for the effects of linearization and unmodeled artifacts
on each external action on the cloth we use the stochastic term δu with zero
mean white Gaussian distribution with covariance Q.

Input commands belong to a limited set of actions depending on the task to
be performed. Table 1 shows, for example, a set of possible actions for the
straightening of a cloth on the table. Each such action is intended to drag
a corner in the cloth at a constant speed and for a short period of time,
ui = (vx, vy, 0)⊤.

2.4 Managing Collisions

The two mainstreams for cloth or deformable planar object collision response
are the preventive [7] [8] and corrective [4] [30] [24] methods. The cloth colli-
sion response community agrees that the use of preventive methods comple-
mented with corrective ones when the former fails is recommendable. We use

5

Table 1

Set of Possible Actions to straighten a piece of cloth.

Action

drag-upright vx, vy > 0

drag-upleft vx < 0, vy > 0

drag-downright vx > 0, vy < 0

drag-downleft vx, vy < 0

a preventive technique [7] in our implementation, which takes a good friction
aproximation. The method simulates solid external objets with large mass,
making the solid mass collision points much bigger than the cloth triangles,
modifying only the cloth particle positions and velocities when collisions are
detected. To avoid O(n2) comparisons, we use a bounding box approach. The
reader is referred to [28] for a thorough discussion on collision detection.

Collision detection and collision response is modeled as an extra term, inde-
pendent of the integration method of choice. It is expressed as a function

∆vc(pt,vt,pt+h,vt+h)

which delivers the change in velocity needed to avoid internal or external
collisions with respect to collision free positions pt, collision free velocities vt,
step foward position pt+h, and velocities vt+h, that had not been taken into
account during collision response. This gives us an enriched model to estimate
the deformation of cloth over time that includes cloth/cloth and solid/cloth
collision response:

pc,t+h

vc,t+h

 =

pt + hvc,t+h

vt + ∆v + ∆vc

 (3)

where pc,t+h and vc,t+h are the collision free positions and velocities in the
next time step, respectively.

3 Action Selection

3.1 Predicting the Outcome of Actions

To estimate the state of the deformable planar object after an action is exe-
cuted, particle positions and velocities are considered as a random vector with
Gaussian distribution and initial covariance P0|0. A Kalman filter is then used

6

to track its state. For every possible action, the state mean can be obtained
from Eqs. (1), (2) and (3) with δu = 0, and an estimated change in covariance
can be computed with the linearized expression

Pt+h|t = FPt|tF
⊤ + GQG⊤ .

To this end, the plant Jacobians with respect to the state

F =

∂pt+h

∂pt

∂pt+h

∂vt

∂vt+h

∂pt

∂vt+h

∂vt

and the plant/noise Jacobian

G =

∂pt+h

∂δu

∂vt+h

∂δu

 =

hI

I

need be evaluated.

During state prediction for action selection, collision response is not computed.
The computational burden of the evaluation of ∆vc for every possible action
is unfeasible. Instead “incomplete” Jacobians are evaluated, and small model
discrepancies are dealt with as noise. Predictions are revised with sensor read-
ing to compensate such gap.

The state of the object can then be revised from the observation of some
points as measured by our stereo vision system. Assuming that the error from
our sensor δzi is also zero mean Gaussian with covariance R, each particle ob-
served, whereas it is a corner or not, contributes in revising the state estimate
with

pt+h|t+h

vt+h|t+h

 =

pt+h|t

vt+h|t

+ K(zt − pt) .

If using sequential innovation for each particle, the measurement Jacobian is
a row block of zeros, only with a selective 3 × 3 identity matrix at the i-th
block cell, and the Kalman gain becomes the 6n × 3 matrix

K = Pt+h|t,i(Pt+h|t,ii + R)−1

where Pt+h|t,ii is the position covariance for the i-th particle, and Pt+h|t,i rep-
resents the i-th column block of the full state covariance matrix. The state
covariance update becomes

Pt+h|t+h = (I − [06n×3i−1 K 06n×3(2n−i)−2])Pt+h|t .

7

Table 2

Computational Cost For Position Tracking.

Grid Size Vertices Computation Time

6 x 6 36 1.71s

7 x 7 49 3.40s

8 x 8 64 6.64s

9 x 9 81 11.85s

10 x 10 100 25.09s

11 x 11 121 41.66s

3.2 Action Selection

A strategy is developed to straighten the cloth by choosing from a limited
set of possible actions, the one that maximizes the information gain for our
state estimate. The set of actions under inspection are one possible motion
command from Table I for each corner of the object. The commands evaluated
are those that drive the cloth corners away from the center. In essence, the
strategy is aimed at choosing, from four possible choices, which corner is to be
dragged next, based on the current estimate that we have about its location.

A classic approach would be to chose the action that maximizes the relative
entropy between prior and posterior covariance estimates [2, 15, 29], that for
our multivariate Gaussian case reduces to computing the expression

I =
1

2
(log |Pt+h|t| − log |Pt+h|t+h|) .

This D-optimality measure of information gain however may become unreli-
able when one or more of the state space directions is constrained, since it
is computed from the product of the eigenvalues of P. The conditions that
constraint the motion of particles include contact with an obstacle, or the
mere dragging action. In such cases, there is absolute information about some
components of the location (and/or velocity) of such particle, with the con-
sequence of semi-definteness on the estimation covariance. For this reason,
we use an A-optimality measure of information instead [27] to minimize the
squared error of the model, which computes the sum of the eigenvalues instead
of their product

I = tr (Pt+h|t) − tr (Pt+h|t+h) (4)

8

Fig. 1. Computer simulation of action selection of planar deformable objects. Time

goes from left to right, then from top to bottom. The hyper-ellipsoids on the corners

indicate surfaces of equal probability for the corner location estimates.

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Time(s)

I

Entropy for Position Tracking: Active Selection vs Random Strategy

Random Strategy

Active Selection

Fig. 2. Active Selection vs Random Selection

Table 3

Parameter values for implementation.

Parameter Symbol Value

Stretch resistance ku, kv 5000

Shear resistance ksr 500

Bend resistance kb 0.00001

Stretch damping du, dv 1000

Shear damping dsr 100

Bend damping db 2 × 10−6

Gravity 9.81

9

0 2 4 6 8 10 12 14 16

drag_downleft

drag_downright

twist_center

drag_upleft

drag_upright

−20

−15

−10

−5

0

5

Time (s)

Entropy & Actions, in Particle Positions Covariance

log2 (tr (downleft particle))
log2 (tr (downright particle))
log2 (tr (upleft particle))
log2 (tr (upright particle))
Actions
log2 (tr (all particles))

Fig. 3. Evolution of the trace of the covariance at each particle for the same simu-

lation, as well as a history of the chosen motion commands

4 Implementation and Results

In our experiment setup, our workcell is composed of a robotic manipulator
Stäubli RX-60 with a FTC-Schunk force sensor attached to the end-effector,
and a Bumblebee stereo camera. The force sensor is used to ensure that a
sufficiently large perpendicular force is maintained while dragging a piece of
cloth against a table.

To measure the state of the cloth at any given instance, a set of feature points
must be observed. One possibility is to select scale invariant salient features
on the object and match them against a previously trained data-set [22]. The
experiments reported here are less complex in terms of the computer vision
tools used. For the purpose of our straightening task, we are content with
tracking the four corners of the cloth piece binarizing the image of the object,
and detecting the corners by selecting the discontinuities of the 1-D signal
along the object contour using multiresolution and non-maximum suppression
[10]. Once the corner points are located, their location with respect to the
camera is computed with stereo triangulation. Given that the camera location
is calibrated with respect to the robot workcell, the measurement of the corner
points can be given in world coordinates.

To constraint the velocity of the particles during manipulation, a velocity
profile must be generated for each possible action command. The set of possible
actions is restricted to the actions in Table I. For the simulations however, an
extra motion twist has been implemented, which drags two center particles
to emulate a wrinkling effect to restart the simulation.

The cloth parameters used are given in Table 3. Fig. 1 shows a simulated ma-
nipulation sequence. Each frame in the sequence represents the current state
of the deformable object. The ellipsoids drawn at the corners represent sur-
faces of equal probability at one-standard deviation, and are used to indicate
the value of the estimation covariance at that point. To easy their visibility,

10

Fig. 4. A view of the workcell setup. Time goes from left to right, then from top to

bottom

these ellipsoids have been magnified by a factor of ten. The sequence shows
two instances of the evolution of the cloth straightening task. The cone point-
ing to each of the corners emulates the manipulator end-effector. Figure 3
contains the evolution of the trace of the covariance at each particle for the
same simulation, as well as a history of the chosen motion commands.

Figure 2 shows the comparison beet-wen the active selection strategy and a
random action selection strategy. The experiment shows how the uncertainty
reduction strategy keeps the entropy I stable for the duration of the experi-
ment.

Figure 4 presents a sequence with a real straightening task on our robotic
workcell. These images, as well as the video accompanying this paper illus-
trate the feasibility of the presented approach for the information-oriented
action selection for the manipulation of planar deformable objects for simple
household applications.

The tracker was implemented in C++ and the physical model implementation
based on the free software [21]. The system runs on a Mobile Intel Pentium
4, 1.8GHz, 512MB DDR SDRAM. The physical model runs smooth at 30fps
with a 11 x 11 Grids (121 vertices), and the computational time to track the
position and take the manipulation active action selection is shown in Fig. 2
not including the time spent on collision detection.

11

5 Conclusions and Future Work

If the adaptive robot manipulation of rigid objects is already a challenging
research topic, the manipulation of deformable objects poses additional diffi-
culties. An important one is the representation of the state of such objects.
For rigid objects, once a CAD model of the object is available, its state at a
given time is uniquely determined by the six parameters of its pose. Contrarily,
flexible objects require models that accommodate their possible deformations
as a result of their manipulation or other external causes. In this work we
have coupled a stochastic state estimator with a physical-based implicit inte-
gration model of a deformable planar object (a cloth). This model has then
been used to predict the effect of manipulation actions on the cloth, a critical
feature for planning sequences of such actions. Here, as a first step to test state
estimation, only the best next action to achieve a given goal is determined.
The particular goal pursued has been a weighted combination of two objec-
tives, namely, straightening the cloth while at the same time maintaining a
good estimation of its state. Action selection relies on a maximization infor-
mation criterion. The obtained results, both in simulation and in a real robotic
work-cell, have been satisfactory. In sum, we are proposing a framework for
goal-driven manipulation of deformable planar objects.

Envisaged future work will be along five lines. First, we aim to come up with
a characterization of qualitative-different states of deformable planar objects
(e.g., foldings), in a similar way as knots describe states of deformable linear
objects. Second, we like to go beyond single action selection to develop plan-
ning strategies for manipulating pieces of cloth, more specifically, for unfolding
and then folding them in prescribed ways. Third, multirobot action selection
manipulation. Forth, learning the object material parameters with neural net-
work approaches such as in [14] with the help of vision system approaches
such as in [22].

6 Acknowledgements

This work is supported by the EU PACO-PLUS project FP6-2004-IST-4-27657
and by the Spanish Ministry of Science and Innovation project DPI2008/06022.

References

[1] K. Hamajima abd M. Kakikura. Planning strategy for task of unfolding
clothes. Robot. Auton. Syst., 32(2-3):145–152, Aug. 2000.

12

[2] J. Andrade-Cetto and F. Thomas. A wire-based active tracker. IEEE
Trans. Robot., 24(3):642–651, Jun. 2008.

[3] J. Andrade-Cetto and C. Torras. PACO-PLUS: Perception, action and
cognition through learning of object-action complexes. In Proc. 2nd.
Jornada de Recerca en Automática, Visió i Robòtica, pages 265–272,
Barcelona, Jul. 2006.

[4] D. Baraff, A. Witkin, and M. Kass. Untangling cloth. ACM Trans.
Graphics, 22:862–870, 2003.

[5] D. Baraff and A.P. Witkin. Large steps in cloth simulation. In Com-
puter Graphics. Proc. ACM SIGGRAPH Conf., pages 43–54, Orlando,
Jul. 1998. ACM Press.

[6] K. Bhat, C. Twigg, J. Hodgins, P. Khosla, Z. Popovic, and S. Seitz.
Estimating cloth simulation parameters from video. In Proc. ACM
SIGGRAPH/EUROGRAPHICS Sym. Comput. Anim., pages 37–51, San
Diego, 2003.

[7] R. Bridson, R. Fedkiw, and J. Anderson. Robust treatment of colli-
sions, contact and friction for cloth animation. ACM Trans. Graphics,
21(3):594–603.

[8] R. Bridson, S. Marino, and R. Fedkiw. Simulation of clothing with folds
and wrinkles. In Proc. ACM SIGGRAPH/EUROGRAPHICS Sym. Com-
put. Anim., pages 28–36, San Diego, 2003.

[9] J. Brown, J. C. Latombe, and K. Montgomery. Real-time knot-tying
simulation. Visual Comput., 20(2-3), 2004.

[10] R. Deriche. Fast algorithms for low-level vision. IEEE Trans. Pattern
Anal. Machine Intell., 12(1):78–88, Jan. 1990.

[11] S. Gibson and B. Mirtich. A survey of deformable modeling in computer
graphics. Technical Report TR-97-19, MERL, Cambridge, Nov. 1997.

[12] M.A. Greminger, Y. Sun, and B.J. Nelson. Boundary element deformable
object tracking with equilibrium constraints. In Proc. IEEE Int. Conf.
Robot. Automat., pages 3896–3901, New Orleans, Apr. 2004.

[13] D. Henrich and H. Wörn, editors. Robot Manipulation of Deformable
Objects. Advanced Manufacturing. Springer, 2000.

[14] A. M. Howard and G. A. Bekey. Intelligent learning for deformable object
manipulation. Auton. Robot., 9(1):51–58, 2000.

[15] D. J. C. MacKay. Information based objective functions for active data
selection. Neural Comput., 4(4):589–603, 1992.

[16] M. T. Mason. Mechanics of Robotic Manipulation. MIT Press, 2001.
[17] M. Moll and L. E. Kavraki. Path planning for deformable linear objects.

IEEE Trans. Robot., 22(4):625–636, 2006.
[18] R. M. Murray, Z. Li, and S. Shankar Sastry. A Mathematical Introduction

to Robotic Manipulation. CRC Press, 1994.
[19] H. Ng and R. Grimsdale. Computer graphics techniques for modeling

cloth. IEEE Comput. Graphics Applicat., 16(5):28–41, Sep. 1996.
[20] D. Pritchard. Cloth parameters and motion capture. Master’s thesis,

University of British Columbia, Vancouver, Canada, 2003.

13

[21] D. Pritchard. Freecloth 0.7.1. a free, open-source cloth simulation tool,
2003.

[22] D. Pritchard and W. Heidrich. Cloth motion capture. In Proc. Eurograph-
ics, volume 22, pages 263–271, Granada, Sep. 2003. Blackwell Publishing.

[23] X. Provot. Deformation constraints in a mass-spring model to describe
rigid cloth behavior. In Proc. Graphics Interface, pages 147–154, Quebec,
1995. Canadian Human-Computer Communications Society.

[24] X. Provot. Collision and self-collision handling in cloth model dedicated
to design garments. In Proc. Eurographics Workshop Comput. Anim.
Simul., pages 177–190, Budapest, Sep. 1997.

[25] M. Saha and P. Isto. Motion planning for robotic manipulation of de-
formable linear objects. In Proc. IEEE Int. Conf. Robot. Automat., pages
2478–2484, Orlando, May 2006.

[26] K. Salleh, H. Seki, Y. Kamiya, and M. Hikizu. Tracing manipulation of
deformable objects using robot grippers with roller fingertips. In Proc.
SICE-ICASE Joint Conf., pages 5882–5887, Busan, Oct. 2006.

[27] R. Sim and N. Roy. Global A-optimal robot exploration in SLAM. In
Proc. IEEE Int. Conf. Robot. Automat., pages 673–678, Barcelona, Apr.
2005.

[28] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghu-
pathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann,
W. Strasser, and P. Volino. Collision detection for deformable objects.
Computer Graphics Forum, 24(1):61–81, Mar. 2005.

[29] T. Vidal-Calleja, A.J. Davison, J. Andrade-Cetto, and D.W. Murray. Ac-
tive control for single camera SLAM. In Proc. IEEE Int. Conf. Robot.
Automat., pages 1930–1936, Orlando, May 2006.

[30] M. Wicke, H. Lanker, and M. Gross. Untangling cloth with boundaries.
In Proc. 11th Int. Fall Workshop Vision, Modell., Visualization, pages
349–356, Aachen, Nov. 2006.

[31] G. T. Zoumponos and N.A. Aspragathos. Fuzzy logic path planning for
the robotic placement of fabrics on a work table. Robot. Comput.-Integr.
Manuf., 24(2):174–186, Apr. 2008.

14

A Tree-Based Nearest Neighbor Search for

Data Association in Pose SLAM

Viorela Ila, Josep M. Porta and Juan Andrade-Cetto. Paper-ID 82

Abstract— The most expensive operation in the information
form of Pose SLAM, the variant of SLAM where only the
robot trajectory is estimated, is state recovery after loop closure.
However, by rigorously controlling the number of loop closures
we obtain a system where the robot operates most of the time
in open loop, amortizing the cost of loop closure over long
trajectories. In this case, the bottleneck for information-based
Pose SLAM shifts to data association and, in particular, to
the search for previously visited poses close to the current one
that are good candidates for sensor registration. During the
estimation of the distance between candidate matching poses
cross correlations need to be computed. As the robot moves,
these cross correlations change and state-of-the-art approaches
to recover them without approximations scale at least linearly
with the number of states. Such bound on complexity limited
until now the need for a neighboring pose search strategy that
performs better than a basic linear scan over all previous poses.
In this paper, we show that the cross covariances between poses
can be factorized in terms of the previous and current poses,
and that such factorization can be updated in constant time
as the robot moves. Exploiting this property, it makes sense to
speed up the nearest neighbor search. We achieve such speed up
by organizing state means and variances in a balanced tree and
defining internal levels of such tree using interval arithmetic. The
result is a strategy to search for neighboring poses that scales
logarithmically with the number of states. We present results
both on simulated and real data that validate the approach.

I. INTRODUCTION

Solutions to the Simultaneous Localization and Mapping

(SLAM) problem have evolved over the years, both with

respect to the type of state entries that are maintained, as

well as with respect to the estimation form used. Seminal

SLAM solutions relied on Kalman filtering to estimate the

absolute position of landmarks and the robot pose, at the

expense of quadratic computational cost [1], limiting its use

only to map small areas. If instead, a canonical representation

of Gaussians is used, the resulting information matrix turns

out to be approximately sparse, i.e., the matrix entries for

distant landmarks are very small and the matrix can be

sparsified with a minimal information loss, trading optimality

for efficiency [2].

Efficiency without information loss is possible with exact

sparse representations. Using the information form, this can

be achieved estimating the entire robot path along with the

map, an approach typically referred to as full SLAM [3,

4, 5]. Exact sparsification is also possible if only one set

of variables is maintained; either by keeping a small set of

active landmarks kidnapping and relocating the robot [6],

by decoupling the estimation problem maintaining the map

only [7], or as it is done in Pose SLAM, by maintaining only

the pose history using landmarks solely to produce relative

measurements between robot poses [8, 9].

Pose SLAM can be approached as a graph optimization

problem for which solutions are found using batch processes

that iteratively search for the maximum log likelihood of

the entire graph represented as quadratic constraints [10,

11, 12], or by factorizing the sparse information matrix [4].

Incremental approaches to Pose SLAM are based either on

variants of the previous batch methods [5] or on filtering [8,

13]. In this case, only constant time is needed for predictions

and updates for linear (or linearized) systems.

It is known, however, that the linearizations introduced at

each iteration in both the extended Kalman and information

filters forms of SLAM produce overconfident estimates, which

in the long run lead to filter inconsistency [14, 15]. One

way to defer filter inconsistency in Pose SLAM is to control

the number and type of loops to be closed [13], closing

only few highly informative loops. Similar approaches have

been used in landmark-based SLAM where inconsistency is

delayed incorporating only highly informative observations to

the filter [16, 17]. Moreover, if only a small number of loop

closures is maintained, the space and time complexity of Pose

SLAM scales better. Applying this strategy, the robot closes

only few loops and, between loop closures, it operates in open

loop for long periods, which is feasible using recent odometric

techniques [18, 19].

When closing a loop, the state can be recovered with time

complexity close to n log(n), with n the number of poses [8,

20]. This computational cost is amortized over the period

where the robot operates in open loop, for which the filter

is updated in constant time. In this context, the bottleneck for

real time execution is not state recovery but data association,

that is, detecting neighboring poses for which feature matching

is likely. Data association is typically implemented as a linear

search, either by directly searching for feature matches in a

sensor database, independent of the filter estimates [21], or by

first using filter information to constrain the search for sensory

matches [8, 13]. For consistent filter estimates, the second

option is more efficient and less prone to perceptual aliasing.

However, the estimation of the distance between two poses

requires the computation of their joint marginal, something

that is not directly available in information-based filtering

schemes.

Efficient approximations of cross covariances can be com-

puted in logarithmic time by subsampling poses and per-

forming relaxation over multiple spatial resolutions [11], or

in constant time by considering only first order relations

via Markov blankets [2] or by implementing partial state

updates [22]. Optimistic approximations of joint marginals

increase the number of data association candidates, something

that is especially sensitive after long periods of open loop

traverse. Thus, exact cross covariance computation is preferred

for the accurate identification of nearest neighbors. These can

be recovered by augmenting the sparse system of equations

needed for state recovery [8] or by exploiting the sparseness

of factorized forms of the information matrix with QR [5] or

Cholesky factorizations [23]. These algorithms have in average

linear computational complexity for band diagonal matrices,

but can be more expensive for matrices encoding many loops.

With these time complexity bounds, it did not make sense to

implement a search for neighboring poses better than the basic

linear scan over all previous poses.

In this paper we show that, when operating in open loop, ex-

act joint marginals can be computed in constant time. It makes

sense then to have more efficient methods to search for data

association. In the work reported here this is achieved using a

tree structure that finds nearest neighbors in O(log n). While

tree-like structures have been used to represent the solution

space for data association in landmark-based SLAM [24], to

our knowledge, no existing approach uses a tree to represent

the search space for data association in Pose SLAM. This

opens the possibility to use Pose SLAM for large scale

problems that involve long trajectories.

The paper is structured as follows. In Section II we suc-

cinctly formalize Pose SLAM including the data association

problem. Then, in Section III, a strategy to compute marginal

joint covariances in constant time during open loop is de-

scribed. Building on this result, Section IV describes a method

to determine data association hypotheses in logarithmic time.

Section V shows the computational advantage of the technique

when compared to a linear scheme for data association by

means of simulating very large trajectories as well as on real

data sets. Concluding remarks are given in Section VI.

II. IDENTIFICATION OF NEIGHBORING POSES

We consider the recursive form of Pose SLAM, where the

objective is to estimate the trajectory of the robot at time t,

xt = {x0, . . . , xt}, with xi the robot pose at time i. Using

a typical Bayesian recursion, xt is updated with a set, zt, of

observations of the relative displacement between the current

robot pose and previous poses along the trajectory

p(xt|zt,xt−1) ∝ p(xt|xt−1) p(zt|xt). (1)

The observations at time t can be split in two disjoint groups,

a set of observations between the current robot pose and the

immediate previous one, ut, and a set of observations linking

the current pose with any other pose but the previous one, yt.

With this we have

p(xt|zt,xt−1) ∝ p(xt|xt−1) p(ut,yt|xt) (2)

∝ p(xt|xt−1) p(ut|xt) p(yt|xt) (3)

∝ p(xt|xt−1,ut) p(yt|xt). (4)

The set ut is the subset of observations used for state

augmentation, i.e., for open loop operation. This set can be

easily integrated into an information filter in constant time

using the prediction phase of the filter.

Integrating the observations in yt is more problematic since

they usually require a data association step first that detects

possible links between the current robot pose and any other

previous pose along the trajectory. Data association relies

on testing for the matching of sensor readings obtained at

the poses to be linked. However, this is computationally

demanding and the information in the filter can be exploited

to restrict this test to a small number of hypotheses that can

be characterized as follows.

The relative displacement, d, from the current robot pose

xt ∼ N (µt,Σtt) to any other pose xi ∼ N (µi,Σii) can be

estimated as a Gaussian with parameters

µd = h(µt, µi), (5)

Σd = [Ht Hi]

[

Σtt Σ
⊤

it

Σit Σii

]

[Ht Hi]
⊤, (6)

where h is the measurement function giving the relative motion

between the two robot poses, Ht and Hi are the Jacobians of h

with respect to the two poses, and Σit is the cross correlation

between poses i and t.

Marginalizing the distribution of the displacement, d, for

each one of its dimensions, r, a one-dimensional Gaussian

distribution N (µr, σ
2
r
) is obtained that allows to compute the

cumulative probability of pose i being closer than vr to pose t

along this dimension

pr =

∫ +vr

−vr

N (µr, σ
2
r
)

=
1

2

(

erf

(

vr − µr

σr

√
2

)

− erf

(

−vr − µr

σr

√
2

))

. (7)

If for all dimensions, pr is above a given threshold, s, then

pose xi is considered to be close enough to the current robot

pose, xt, and it becomes a good candidate to test for pose

association using the sensor readings. Before matching sensor

readings, the returned poses can be ranked with respect to

their statistical relevance in updating the system. That is,

possible loop closures can be ranked with respect to their

contribution in updating the filter, for instance, with respect

to an information gain criteria [13].

III. COMPUTATION OF THE EXACT JOINT MARGINALS

If the similarity relation in Eq. (7) is to be evaluated for any

arbitrary pair of poses we would need to have access to their

joint marginals. In other words, we would need access to the

whole covariance matrix which, as mentioned, is only feasible

for small problems. In practice, Eq. (7) is only evaluated

for the current robot pose and any previous pose from the

trajectory. For this, it is enough to store the block-diagonal and

the last block column of the covariance matrix [25]. However,

this last block column has to be extended and updated at

each prediction step, with a computational cost that is, at

least, linear with the size of the history of states. Next, we

present a way to obtain these marginal covariances and cross

covariances in constant time when operating in open loop.

That is, when data association is necessary.

Suppose a loop closure occurs at time l. At that point, and

thanks to the sparsity of the information matrix, exact marginal

covariances Σii and cross covariances Σil with 1 ≤ i ≤ l, can

be recovered practically in near linear time either by QR or

Cholesky factorization [5, 23]. In our implementation we make

use of supernodal sparse Cholesky factorization [20, 26].

After the loop closure event, when the robot moves to a

new pose, xi, i > l, the marginal covariance for this new pose

is simply a linear propagation from the previous robot pose,

and can be computed as

Σii = Fi Σi−1 i−1 F
⊤

i
+ Wi Σu W

⊤

i
, (8)

with xi = f(xi−1, ui), ui ∼ N (µu,Σu) the relative displace-

ment which brings the robot to the new pose, and Fi and Wi

the Jacobians of f with respect to xi−1 and ui, respectively.

These covariances can be computed once and stored since they

do not change until the next loop closure occurs [22].

For the cross covariances, we introduce a factorization

between the last robot pose and the previously stored ones

that can be updated in constant time. Algebraic manipulation

renders that

Σit = Φi F
⊤, (9)

with

Φi =

{

Σil, i ≤ l

Σii (F⊤

l+1
. . .F⊤

i
)−1, i > l

(10)

where F is the accumulated Jacobian from the last loop closure

to the current time slice

F
⊤ = F

⊤

l+1 . . . F
⊤

t
. (11)

Observe that F can be updated in constant time as the robot

moves. Moreover, all the information needed to define Φi is

available at time slice i and can be computed in constant time

since the term (F⊤

l+1
. . .F⊤

i
)−1 is the inverse of the aggregated

Jacobian, F
⊤, at time i.

IV. TREE-BASED SEARCH FOR NEIGHBORING POSES

Using the above, the similarity between robot poses in

Eq. (7) can be seen as a relation between a point in the space

defined at time i by µi, Σii, and Φii, and a point in another

space defined at time t by µt, Σtt, and F. Since these mean,

covariance, and factor term computed at time i will not change

during open loop traverse, we can store them in a clever way

so that subsequent nearest neighbor search with different F

factors can be sped up. The standard solution is to create a tree

where nearest neighbor search can be executed in logarithmic

time [27, 28, 29]. Unfortunately, there are several reasons that

make standard algorithms not valid for our case. First, the

similarity between two arbitrary poses is not computable since

their cross covariances are not readily available and, thus, it

can not be used to drive the tree construction. Second, the

spaces on which the similarity function is defined are non

Euclidean, invalidating the use of kd-tree based [30] or grid

based [31] solutions. Finally, this similarity is not a metric

relation which makes more general methods like [32] also not

applicable to our problem.

The solution we propose is to organize the pose related

terms in a binary tree exploiting the particular properties of

the Pose SLAM problem. A leaf in the tree will store the mean,

covariance and factor term associated with a particular pose

(µi, Σii, Φi). The internal nodes of the tree have to somehow

summarize the information of all leaves below them. In this

way, a single test at the internal node level allows to discard

large sets of poses, speeding up the search for neighbors. The

usual solution in the literature is to use average prototypes [29,

33], but we can not use them since the similarity between

arbitrary poses gives no information about the similarity with

respect to the current pose. The option we explore to produce

the internal node information is based on intervals bounding

the pose information for all leaves under each node. For

this option to be efficient, internal node information need to

be as compact as possible and, thus, similar poses need to

be grouped under the same internal tree node. Since nearby

poses along the trajectory are likely to have similar marginal

covariance and cross correlation with respect to the current

robot pose, we organize the tree such that poses obtained in

similar time slices end up in the same branch of the tree.

Finally, since the tree grows on-line, it needs to be re-balanced

to ensure queries are always executed in logarithmic time.

A. Bounding Pose Similarity using Interval Arithmetic

Interval arithmetic [34] is an extension of real arithmetic

where operations are defined on intervals. For instance, for

a couple of intervals a = [a, a] and b = [b, b] we have that

a+b = [a+b, a+b]. If a ∈ a and b ∈ b, then interval operation

guarantee that a + b ∈ a + b.

We store in the internal tree nodes the hull (µ
i
, Σ

ii
, and

Φ
i
), of the means µi, marginal covariances Σii, and factors

Φi. Using those hulls, we can compute an upper bound of

the probability of the displacement to be inside the given

thresholds for each dimension.

Formally, the relative displacement, d, used for data asso-

ciation (see Section II) can be estimated as an interval-based

Gaussian with

µ
d

= h(µt, µ
i
), (12)

Σ
d

= [Ht H
i
]

[

Σtt F Φ
⊤

i

Φ
i
F

⊤
Σ

ii

]

[Ht H
i
]⊤ . (13)

Then, an interval for the probability of the displacement in

dimension r being below vr can be readily computed as

p
r

=

∫ +vr

−vr

N (µ
r
, σ2

r
),

=
1

2

(

erf(u)− erf(l)
)

, (14)

INSERT(T , i, µi,Σii,Φi)

INPUTS:

T : The tree of poses.

i: The label identifying the new pose.

µi: The mean of the pose to add.

Σi: The marginal covariance of the pose to add.

Φi: The cross covariance factor term for the

pose to add.

OUTPUTS:

T : The modified tree.

1: n← LASTNODE(T)

2: T ← ADDPOSE(T , n, i, µi,Σii,Φi)

3: while not ISROOT(n) do

4: n← PARENT(n)

5: if BALANCEFACTOR(T , n) > 1 then

6: T ← LEFTROTATETREE(T , n)

7: end if

8: T ← UPDATENODE(T , n)

9: end while

10: return T

Algorithm 1: The insertion of a pose in the tree of poses.

with

u =
vr − µ

r

σ
r

√
2

, (15)

l =
−vr − µ

r

σ
r

√
2

. (16)

Since we are interested in a conservative test (i.e., a test that

never discards branches of the tree that are worth exploring),

we only need to compute the upper bound of p
r

pr =
1

2
(erf(u)− erf(l)) . (17)

A problem of interval arithmetic is that, in many cases,

operations produce an overestimation of the final result. This

happens when we evaluate an expression that includes corre-

lated subexpressions. For instance, the evaluation of 10x−8x

for x = [1, 5] should result in the interval [2, 10] but, using

simple interval arithmetic, the result is [−30, 42], since the two

x in the expression are assumed as independent variables when

they are not. An excessive overestimation of the upper bounds

pr would vanish the advantage of using a tree. To minimize

this risk, the expressions appearing in the data association

have to be carefully re-ordered so that each interval variable

appears the least possible in the final formulas. This is done

in an adhoc basis, exploiting the structure of the H and F

matrices and taking into account that only the diagonal of Σ
d

is necessary to compute pr.

B. Building a Balanced Tree of Poses

The binary tree of poses is built initializing an empty tree,

progressively adding new poses to it as the robot moves,

and re-balancing the tree when necessary in a way similar to

what is done with height-balanced binary search trees [35]. As

Fig. 1. Adding a new pose to the tree. White boxes represent internal tree
nodes and green ones leaves. Left: The tree before the insertion. Right: The
tree after adding the new pose (depicted in blue). The only pose initially in
the tree affected by the insertion is the right-most one, shown in bright green
in the figure.

l

p

r

rl

p

r’

l

rr

rrrl

Fig. 2. Rotation of a tree to the left at node P . White boxes represent
internal tree nodes and green ones leaves. Top: A tree unbalanced at node P .
Bottom: The tree after applying the tree rotation.

with AVL-trees, the balance factor of a node is the difference

between the height of its right and left sub-trees. A tree is

considered balanced if the balance factor for all its nodes is

-1. 0, or 1, where the height of a node is the maximum number

of nodes from itself to the leaves.

To understand how the tree is constructed, Algorithm 1

shows the pseudo-code for the insertion operation. In this

Algorithm we use the following operations

• LASTNODE(T): Returns the right-most node of the tree.

• ISROOT(T , n): Returns TRUE if n is the root node of the

tree.

• ADDPOSE(T , n, i, µi,Σii,Φi) Adds a new pose to the

tree as depicted in Fig. 1. A new leaf with label i is

created with the provided information (µi,Σii, and Φi) as

a brother of node n generating a parent node that contains

the interval hull of the information in node n and in the

new node.

• PARENT(n) Returns the parent node of n.

• BALANCEFACTOR(T , n) Returns the difference in height

between the right and the left sub-trees. Observe that

SEARCH(T , µt,Σtt,F, v, s)

INPUTS:

T : The tree where to search.

µt: The mean of the current robot pose.

Σtt:The marginal covariance for the current

robot pose.

F: Accumulation of Jacobians of the state

augmentation model.

v: Maximum relative displacement from the

current robot pose to accept a pose as a

neighbor.

s: Minimum probability to accept a pose

as a neighbor.

OUTPUTS:

N : The set of labels of the neighboring poses.

1: i←ROOT(T)

2: (ki, µi,Σii,Φi)← GETNODEINFO(T , i)

3: if NEIGHBOR(µt,Σtt,F, µi,Σii,Φi, v, s) then

4: if HEIGHT(T) = 1 then

5: N ← ki

6: else

7: Nl ← SEARCH(LEFT(T , i), µt,Σtt,F, v, s)

8: Nr ← SEARCH(RIGHT(T , i), µt,Σtt,F, v, s)

9: N ← Nl ∪Nr

10: end if

11: else

12: N ← ∅
13: end if

14: return N

Algorithm 2: A query using the tree of poses.

since insertions are done one at a time and always in the

right-most part of the tree, the balance factor can only

positive (or 0).

• LEFTROTATETREE(T , n) Increases the height of right

child and decreases that of the left one as shown in Fig. 2,

preserving the leaves under the node as well as their order.

• UPDATENODE(T , n) Redefines the information in an

internal tree node as the interval hull of the information

stored in the root node of its right and left sub-trees.

All operations during insertion have constant time complex-

ity. However, UPDATENODE needs to be applied to the nodes

from the insertion point all the way to the root. Since the tree

is balanced, the total cost of inserting a new pose is O(log n)

with n the number of poses already in the tree. Moreover, the

memory used by the tree scales with O(n). Finally, note that

when a loop is closed the estimates can considerably change

and, therefore, the tree must be rebuilt from scratch. This takes

O(n log n), compatible with the cost of state recovery at loop

closure.

C. Quering a Tree of Poses

Algorithm 2 provides a description of the implementation

of a query for poses close to the current one using the tree

−200 −100 0 100 200

−100

−50

0

50

100
−10 −5 0

90

92

94

96

Fig. 3. Example of a simulated trajectory used to compare time execution
between linear and tree-based NN search. The zoom box shows with green
spots the set of poses close to the final robot pose, marked with a blue spot.

of poses. The search proceeds in a recursive way exploring

only those branches that are likely to include poses close

to the current one. This is evaluated using the NEIGHBOR

function that implements the procedure described in Section II

using the information stored in the tree nodes obtained via

the GETNODEINFO function. For internal tree nodes this

information is interval-based and NEIGHBOR uses interval

arithmetic as described in Section IV-A. To complete the

description of the algorithm, function ROOT returns the root

node of a tree, HEIGHT returns the height of a tree, and

functions LEFT and RIGHT return the left and right sub-

trees of a particular node, respectively. All the aforementioned

functions take constant time.

At the end, the search returns the labels associated with the

poses that are determined to be close to the current one. Since

the tree is balanced, the search process scales with O(log n).

V. EXPERIMENTS AND RESULTS

To compare the tree-based search for neighboring poses with

a linear search, we used a Matlab simulation running on a

Pentium at 2.4 Gz of a robot performing several loops on

an elliptical trajectory with a major axis of 400 meters and

a minor axis of 200 meters starting the motion at position

(0, 100). The length of one loop is approximately 1000 meters

and store poses at one meter intervals (see Fig. 3). The robot

motion is corrupted with 5cm and 0.5 degrees of translational

and rotational standard deviation, respectively. At the end of

the simulation we search for the poses that are within v =

(3, 3, 0.25)⊤ from the last robot pose (i.e., ±3 meters in x

and y and ±0.25 radians in orientation) with probability higher

than s = 0.5 in a first run and s = 0.1 in a second one.

Fig. 4 shows the execution time in seconds when searching

for neighboring poses using linear search in comparison to the

tree-based search over trajectories with increasing number of

poses. The longer trajectories are simulated by looping more

times around the ellipse. Since trajectories are randomly gener-

ated, the results are averaged over 10 runs. The time for linear

0 2000 4000 6000 8000 10000 12000
0

2

4

6

8

10

12

14

16

Fig. 4. Averaged execution time in seconds for 10 randomly generated
experiments using a linear search (red line) and a tree-based search with
s = 0.5 (blue line) and s = 0.1 (green line) for trajectories with 1000 to
10000 poses. Error bars correspond to the standard deviation.

search (red line in the plot) is the same for each execution.

On the other hand the execution time for the tree-based search

(blue and green lines) adapts to the structure of the trajectory

and is different for each query: it is more expensive for queries

where the current pose has many neighbors and faster for

queries where the current pose has few neighbors. The error

bars in the plot corresponds to the standard deviation of the

running times. When the probability threshold s is lowered

more poses pass the neighbouring test and the advantage of

using a tree-based search is reduced. However, Fig. 4 shows

that even when using a very low value for threshold s the

tree-based search is still faster than the linear one by, at least,

a factor of two. Thus, we can conclude that, as expected, the

tree-based search scales more gracefully than the linear search,

validating the approach introduced in this paper.

Fig. 5 shows the portion of the tree explored when solving

a query in a tree with 1000 poses. White squares are internal

tree nodes that pass the data association test. Red squares

are tree nodes where this test fails and, consequently, where

the recursive search is stopped. Yellow squares are leaves

where the data association fails. Finally, green squares are

the leaves returned as solution for the query. The algorithm

returns a set of five poses immediately preceding the current

pose in the trajectory and two poses at the beginning of the

trajectory. These would be the perfect candidates for loop

closure. Since those poses are stored at different parts of the

tree two different branches have to be explored to determine

the set of results. As shown in the figure, an nice particularity

of the interval evaluation is that all branches explored lead to

a valid match candidate. From those candidates, loop closure

could be asserted for instance, with those poses whose distance

contribute most in the revision of the network in terms of

information load [13]. Note also how the technique leaves the

tree balanced. For a tree with 1000 poses, the height of the

tree is 11.

To validate our tree-based data association mechanism with

real data, we used a data set collected at the Campus Nord of

UPC in Barcelona with our service robot Tibi in the context

of the URUS project. The robot is based on a Segway-RMP

platform, and for this experiment, images were acquired with

Fig. 5. Portion of the tree explored for a query with 1000 poses. White
squares are internal tree nodes that pass the data association test, red squares
are tree nodes where this test fails and, consequently, where the recursive
search is stopped, yellow squares are leaves where the data association fails,
and green squares are the leaves returned as solution for the query.

−120 −100 −80 −60 −40 −20 0 20

−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

Fig. 6. Filtered trajectory using encoder and visual odometry with data
collected at the Campus Nord of UPC. The trajectory includes 367 poses
over 400 meters. The blue arrow indicate the final pose of the robot and the
black ellipse the associated covariance at a 95% confidence level. The scale
is in meters.

a Point Gray’s bumblebee stereo camera. The data set includes

367 encoder-based odometry readings and stereo pair images

collected over 400 meters moving around a couple of buildings

in about 700 seconds (see Fig. 6). The relative displacement

between pairs of stereo images is recovered from the 3d

position of SIFT features [36]. This relative displacement

is used both to compute visual odometry (i.e., to establish

links between consecutive poses), and to assess loop closure

hypotheses (i.e., to link non-consecutive poses). Sensors are

modelled with constant error models with covariances large

enough to comfortably cover the true error. Sensor readings

are integrated using the approach described in [13] to generate

a map of poses. The approach relies in an information filter

and implements special procedures to form only reliable and

highly informative loops. In this particular example only three

loops are established, despite the trajectory overlap during long

periods. The parameters for the nearest neighbor search are

Search Method

Linear-based Tree-based

Nearest Neighbor 110 83

Tree Construction - 2

Total Filter 112 87

TABLE I

EXECUTION TIMES (IN SECONDS) FOR THE CAMPUS NORD EXPERIMENT.

Fig. 7. Filtered trajectory using encoder and laser odometry of the Intel
dataset.The blue arrow indicate the final pose of the robot and the black
ellipse the associated covariance at a 95% confidence level.

v = (2.5, 2, 0.25) and s = 0.1. The probability threshold s

is purposely set this low to encourage all possible loops to

be considered. Fig. 6 depicts the final trajectory as estimated

by the filter. The overlay with the background image is

approximate and given only as a reference.

Table I gives a comparison of the execution times in seconds

for this experiment using both the linear and tree-based nearest

neighbor searches. These execution times indicate only filter

related processes (prediction, update, and nearest neighbor

search) and do not include sensor related processes (SIFT

extraction and image matching). We can see that in all cases

the time devoted to nearest neighbor search clearly dominates

the cost: about 95% of the time is used in this process which

clearly motivates the need to improve it. With a very low

probability threshold, s, many poses pass the neighboring

test and the advantage of the tree-based search somehow

diminishes. Despite this, the use of the tree-based approach

reduces the cost of this search by a factor of 0.77. The total

time needed to build and rebalance the tree is about 2 seconds

only, a very small penalty to pay taking into account the

computational savings obtained from using it (more than 25

seconds).

To test the performance of the tree-based data association

in larger problems, we used the Intel data set from the Radish

repository [37]. This data set includes about 13000 encoder-

Search Method

Linear Tree Linear Tree Linear Tree

based based based based based based

No. of Poses 1000 1000 2000 2000 3500 3500

Nearest Neig. 1292 880 5039 2667 14353 6755

Tree Cons. - 206 - 436 - 774

Total Filter 1750 1545 6624 4672 18759 11869

TABLE II

EXECUTION TIMES (IN SECONDS) FOR THE INTEL EXPERIMENT

DISCRETIZED WITH DIFFERENT GRANULARITIES.

based odometry readings with their corresponding laser scans

which we have used to generate laser-based odometry and to

assess loop closure using an ICP scan matching algorithm [10].

After pre-processing the data set we end up with about 1000

laser scans, a database size compatible with other reported

solutions for the same problem [5]. Again, for simplicity we

assume error models with constant covariance matrices that

underestimate the true covariances. Table II shows execution

times for the filter related operations using the approach de-

scribed in [13], resulting in 88 loop closures. Fig. 7 shows the

estimated trajectory at the end of the process together with the

raw laser scans associated with each pose. In this experiment,

the cost of the search also dominant taking about a 75% of

the total execution time. With parameters v = (1, 1, 0.35) and

s = 0.1 (which is a worst-case for the tree-based search) we

obtain a reduction in the cost of the search with factor 0.84.

Larger problems can be formed by processing the available

raw sensor readings with finer granularities. If we resample the

original dataset with 2000 poses instead of 1000, the reduction

ratio provided by the tree-based search is 0.61. Finally, with a

resample of 3500 poses the reduction is 0.52. According to the

results in Fig. 4, even more substantial computational savings

should be expected for larger problems.

VI. CONCLUSIONS

Pose SLAM is a variant of SLAM where only the robot

trajectory is estimated. In this context, and in order to delay as

much as possible filter divergence, the number of loops should

be rigorously controlled, adding only the most informative

links to the filter [13]. Then, the robot operates most of the

time in open loop and the computational bottleneck shifts to

data association and, in particular, to the search for nearest

neighboring poses to be tested for sensor registration.

The estimation of the distance used for nearest neighbor

search requires the joint marginals between the current robot

pose and any other robot pose in the path. Previously reported

techniques to compute them in exact form have at least linear

complexity. In this paper we have shown that, when operating

in open loop, exact joint marginals can be factorized in two

independent terms that can be computed in constant time.

Based on this result, we propose a technique to determine

the set of neighboring poses based on a tree structure that has

logarithmic computational cost.

The proposed tree-based structure evaluates the probability

of the current pose being close to a subset of poses in

the robot trajectory with the aid of interval arithmetic. The

presented experiments both with simulated and real data and

with standard datasets show that interval arithmetic offers

enough accuracy to correctly identify nearby poses after long

periods of open loop traverse.

The solution presented in this paper reduces the compu-

tational complexity when the robot operates in open loop

despite the use of very simple error models that produce

underconfident covariance estimations. The use of these error

models is a disadvantageous situation for the presented search

technique. In the future, we plan to derive more accurate

sensors models to fully exploit the potential of the tree-based

search. Finally, an aspect also deserving further attention is

that of controlling the size of the map. In Pose SLAM the

size of the map scales with the length of the trajectory and

not with size of the area to be mapped. A control of the map

size either by controlling state augmentation, or marginalizing

out robot poses would be necessary to achieve a long lasting

Pose SLAM system operating on a large scale environment.

ACKNOWLEDGMENT

This work has been partially supported by the Spanish

Ministry of Science and Innovation under a Juan de la Cierva

Postdoctoral Fellowship to V. Ila and the projects DPI-2007-

60858, DPI-2008-06022, MIPRCV Consolider-Ingenio 2010,

and the EU URUS project IST-FP6-STREP-045062 and the

PACO-PLUS project IST-FP6-IP-027657.

REFERENCES

[1] R. C. Smith and P. Cheeseman, “On the representation and estimation
of spatial uncertainty,” Int. J. Robot. Res., vol. 5, no. 4, pp. 56–68, 1986.

[2] S. Thrun, Y. Liu, D. Koller, A. Y. Ng, Z. Ghahramani, and H. Durrant-
Whyte, “Simultaneous localization and mapping with sparse extended
information filters,” Int. J. Robot. Res., vol. 23, no. 7-8, pp. 693–716,
Jul. 2004.

[3] M. Montemerlo and S. Thrun, FastSLAM: A Scalable Method for

the Simultaneous Localization and Mapping Problem in Robotics, ser.
Springer Tracts in Advanced Robotics. Springer, 2007, vol. 27.

[4] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous localization
and mapping via square root information smoothing,” Int. J. Robot. Res.,
vol. 25, no. 12, pp. 1181–1204, 2006.

[5] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental smooth-
ing and mapping,” IEEE Trans. Robot., vol. 24, no. 6, pp. 1365–1378,
2008.

[6] M. R. Walter, R. M. Eustice, and J. J. Leonard, “Exactly sparse extended
information filters for feature-based SLAM,” Int. J. Robot. Res., vol. 26,
no. 4, pp. 335–359, 2007.

[7] Z. Wang, S. Huang, and G. Dissanayake, “D-SLAM: A decoupled
solution to simultaneous localization and mapping,” Int. J. Robot. Res.,
vol. 26, no. 2, pp. 187–204, 2007.

[8] R. Eustice, H. Singh, and J. Leonard, “Exactly sparse delayed-state filters
for view-based SLAM,” IEEE Trans. Robot., vol. 22, no. 6, pp. 1100–
1114, Dec. 2006.

[9] K. Konolige and M. Agrawal, “FrameSLAM: from bundle adjustment
to realtime visual mapping,” IEEE Trans. Robot., vol. 24, no. 5, pp.
1066–1077, 2008.

[10] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Auton. Robot., vol. 4, no. 4, pp. 333–349, 1997.

[11] U. Frese, P. Larsson, and T. Duckett, “A multigrid algorithm for
simultaneous localization and mapping,” IEEE Trans. Robot., vol. 21,
no. 2, pp. 1–12, 2005.

[12] E. Olson, J. Leonard, and S. Teller, “Fast iterative optimization of pose
graphs with poor initial estimates,” in Proc. IEEE Int. Conf. Robot.

Automat., Rome, Apr. 2007, pp. 2262–2269.

[13] V. Ila, J. Andrade-Cetto, R. Valencia, and A. Sanfeliu, “Vision-based
loop closing for delayed state robot mapping,” in Proc. IEEE/RSJ Int.

Conf. Intell. Robots Syst., San Diego, Nov. 2007, pp. 3892–3897.
[14] S. J. Julier and J. K. Uhlmann, “A counter example to the theory of

simultaneous localization and map building,” in Proc. IEEE Int. Conf.

Robot. Automat., Seoul, May 2001, pp. 4238–4243.
[15] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, “Consistency of

the EKF-SLAM algorithm,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots

Syst., Beijing, Oct. 2006, pp. 3562–3568.
[16] G. Dissanayake, S. B. Williams, H. Durrant-Whyte, and T. Bailey,

“Map management for efficient simultaneous localization and mapping
(SLAM),” Auton. Robot., vol. 12, no. 3, pp. 267–286, May 2002.

[17] W. Zhou, J. Miro, and G. Dissanayake, “Information efficient 3D visual
SLAM in unstructured domains,” in Proc. 3rd Int. Conf. Intell. Sensors,

Sensor Networks and Information Process., Melbourne, Dec. 2007, pp.
323–328.

[18] K. Konolige, M. Agrawal, and J. Solà, “Large scale visual odometry
for rough terrain,” in Proc. 13th Int. Sym. Robot. Res., Hiroshima, Nov.
2007.

[19] V. Ila, J. Andrade-Cetto, and A. Sanfeliu, “Outdoor delayed-state visu-
ally augmented odometry,” in Proc. 6th IFAC/EURON Sym. Intell. Auton.

Vehicles, Toulouse, Sep. 2007.
[20] I. Esteban, O. Booij, Z. Zivckovic, and B. Kröse., “SLAM for extremely

large environments,” in Proc. 14th Annual Conf. Adv. School Comput.

Imag., Heijen, Jun. 2008.
[21] K. L. Ho and P. Newman, “Detecting loop closure with scene se-

quences,” Int. J. Comput. Vision, vol. 74, no. 3, pp. 261–286, Sep. 2007.
[22] R. Eustice, H. Singh, J. Leonard, and M. Walter, “Visually mapping the

RMS Titanic: Conservative covariance estimates for SLAM information
flters,” Int. J. Robot. Res., vol. 25, no. 12, pp. 1223–1242, 2006.

[23] S. Huang, Z. Wang, and G. Dissanayake, “Exact state and covariance
sub-matrix recovery for submap based sparse EIF SLAM algorithm,” in
Proc. IEEE Int. Conf. Robot. Automat., Pasadena, Apr. 2008, pp. 1868–
1873.

[24] J. Neira and J. D. Tardós, “Data association in stochastic mapping using
the joint compatibility test,” IEEE Trans. Robot. Automat., vol. 17, no. 6,
pp. 890–897, Dec. 2001.

[25] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Fast incremental
smoothing and mapping with efficient data association,” in Proc. IEEE

Int. Conf. Robot. Automat., Rome, Apr. 2007, pp. 1670–1677.
[26] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, “Algo-

rithm 887: CHOLMOD, supernodal sparse Cholesky factorization and
update/downdate,” ACM T. Math. Soft., vol. 35, no. 3, pp. 22:1–22:14,
2008.

[27] T. M. Cover and P. E. Hard, “Nearest neighbour pattern classification,”
IEEE Trans. Inform. Theory, vol. 13, pp. 21–27, 1968.

[28] A. Farago, T. Linder, and G. Lugosi, “Fast nearest neighbour search in
disimilarity spaces,” IEEE Trans. Pattern Anal. Machine Intell., vol. 15,
no. 9, pp. 957–963, 1993.

[29] K. Fukunaga and P. M. Narendra, “A branch and bound algorihm for
computing the k-nearest neighbours,” IEEE Trans. Comput., vol. 24, pp.
750–753, 1975.

[30] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Comm. ACM, vol. 18, no. 9, pp. 509–517, 1975.

[31] A. Djouadi and E. Bouktache, “A fast-algorithm for the nearest-
neighbour classifier,” IEEE Trans. Pattern Anal. Machine Intell., vol. 19,
no. 3, pp. 277–282, 1997.

[32] A. Beygelzimer, S. Kakade, and J. Langford, “Cover trees for nearest
neighbor,” in Proc. 23rd Int. Conf. Machine Learning, Pittsburgh, 2006,
pp. 97–104.

[33] B. Zhang and S. N. Srihari, “Fast k-nearest neighbour classification using
cluster-based trees,” IEEE Trans. Pattern Anal. Machine Intell., vol. 26,
no. 4, pp. 525–528, 2004.

[34] R. E. Moore, Interval Analysis. Prentice Hall, 1966.
[35] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to

Algorithms, ser. MIT Electrical Engineering and Computer Science
Series. Cambridge: MIT Press, 1992.

[36] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, 2004.

[37] A. Howard and N. Roy, “The robotics data set repository (Radish),”
2003, available: http://radish.sourceforge.net/.

	PACO-PLUS Deliverable 7.1.3.pdf
	ras09
	rss09

