

fredag, 29 august 2008 16:08 Page 1 of 14

IST-FP6- IP-027657 / PACO-PLUS

Last saved by Alejandro Agostini Public

Project no.: 027657
Project full title: Perception, Action & Cognition through

 Learning of Object-Action Complexes
Project Acronym: PACO-PLUS

Deliverable no.: D6.6
Title of the deliverable: On-line Learning of Macro Planning

Operators using Probabilistic
Estimations of Cause-Effects

Contractual Date of Delivery to the CEC: 31 July 2008
Actual Date of Delivery to the CEC: 30 Aug. 2008

Organisation name of lead contractor for this deliverable: CSIC

Author(s): Agostini, A., Wörgötter, F.,
 Celaya E., Torras C.

Participants(s): CSIC, BCCN

Work package contributing to the deliverable: WP6

Nature: R/D

Version: 1.0

Total number of pages: 14

Start date of project: 1st Feb. 2006 Duration: 48 month

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Abstract:
This deliverable contains a technical report about an on-line learning method for learning action
rules for planning. A journal publication based on this report is being prepared. The learning
system proposed uses a probabilistic approach of a constructive induction method that combines a
beam search with an example-based search over candidate rules to find those that more concisely
describe the world dynamics. The approach permits a rapid integration of the knowledge acquired
from experience. Exploration of the world dynamics is guided by the planner, and – if the planner
fails because of incomplete knowledge – by a teacher through action instructions.

Keyword list: decision making, probabilistic learning, constructive induction, planning operators.

Page 2 of 14

IST-FP6-IP-027657 / PACO-PLUS

 2

On-line Learning of Macro Planning Operators using

Probabilistic Estimations of Cause-Effects

Agostini A., Wörgötter F., Celaya E., Torras C.

INTRODUCTION ... 2

SYSTEM STRUCTURE ... 4

NOTATION ... 5

GENERATING CECS FROM PCECS ... 6

About Exploration ... 7

LEARNING MODULE .. 8

LEARNING PCECS ... 8
Initialization .. 8
Memorizing Examples ... 8
Promoting Candidate Subspaces .. 9
Generating Candidate Subspaces ... 9

LEARNING RULES .. 10
CECS AND RULES CORRECTION .. 10

OUTLINE OF THE ALGORITHM .. 10

PSEUDO-CODE ... 11
Execute PLAN ... 11

CONCLUSIONS ... 12

REFERENCES .. 13

Introduction

In the last years service robot applications are widening with the improvements in
computer science techniques and the development of new technologies. These
applications range from simple chores, like vacuum cleaners, to complex tasks requiring
complex cognitive capabilities, similar to those forming the human capacity of
performing complex tasks in real environments.
In this work we face the problem of decision making for a multitask service robot
embedded in a human environment that should rapidly learn to perform tasks in an on-
line way, and without any previous knowledge of the world dynamics or the tasks to be
performed.
The selection of which paradigm to apply relies on the characteristic of the problem
faced. In general, there are two alternative approaches used to build an intelligent agent:
the deliberative and the reactive approaches. The deliberative approach is based on the
principle of rationality [1], and involves planning techniques in which actions are
executed in accordance to plans built after reasoning about possible sequences to reach

Page 3 of 14

IST-FP6-IP-027657 / PACO-PLUS

 3

the goal. In reactive approaches [2] actions are not longer driven by the rationality
principle, but just executed from already coded behaviours that lead to the goal without
deliberation.
Both paradigms have drawbacks and advantages. In planning approaches the amount of
deliberation could be very large even for the simplest kind of problem, mainly when the
environment has complex dynamics. Additionally, deliberative techniques require a
model of the dynamics of world, which in many cases is extremely difficult to code.
This is not usually the case for reactive techniques which learn dynamics of the world
automatically. Nevertheless, in reactive approaches drawbacks are caused by the
limitation of their applicability to single goal tasks and by the requirement of large
experience to reach an acceptable convergence. We propose a decision making
technique that combines both approaches with the aim of diminishing the drawbacks of
either one of them using the advantages of the other.
In general, reactive approaches have proved to be valid for many low-level repetitive
tasks, while deliberative approaches are more suitable for high-level tasks where
specified goals are rarely repeated. Usually, it is observed that high-level tasks can be
performed by a succession of simpler low-level tasks.
We develop a method to learn on-line action rules that permit to reactively perform low-
level tasks when they are executed as planning operators of high-level plans. These
rules could significantly relieve the amount of deliberation as they might merge
repetitive sequences of actions, or plans found with large computational cost. One
remarkable aspect of the method is that there is no need for codification of the world
dynamics as they are learned automatically while acting.
The learning method generates action rules using a constructive induction approach that
combines a beam search with an example-based search [3] over candidate action rules
to find those that more concisely describe the world dynamics. The approach permits a
rapid integration of the knowledge acquired from experience. Exploration of the world
dynamics is guided by the planner, and – if the planner fails because of incomplete
knowledge – by the teacher through action instructions.
It is very simple for humans to know which action to perform in a situation given a
plain task. But it could be much more complicated to explain a priori all the sequences
of actions that should take place in all the possible situations. We take benefit of the
human capabilities of knowing which action to perform in currently observed situations
to efficiently generate knowledge for decision making in a multitask robot.
The idea of learning cause-effects is based on Piaget's theory of cognitive development
[4] which claims that children gradually acquire knowledge of cause-effect relations by
repeatedly executing processes and sequencing actions to reach goals. As we will see,
action rules are created using learned cause-effect relations observed from experienced
situations after actions executions. Cause-effects are not only expressed as a unique set
of conditions that afford changes, but also as multiple set of conditions that have
different chances to afford a change.
As suggested in previous works [5], [6] the explicit coding of the world conditions and
actions through rules and cause-effects presented above is one possible instantiation of
the concept of object-action complexes (OACs) [7], which is considered as the main
block for building cognitive systems for a complex service robot [8]. In a few words,
the OAC concept claims that the world contains undistinguished “things” meaningless
for the agent that only become meaningful “objects” through actions and tasks, where
the objects are described by the properties relevant for the fulfilment of the final desired

Page 4 of 14

IST-FP6-IP-027657 / PACO-PLUS

 4

outcome through the action. We believe that the contribution of this work is another
step toward a formalization of the OAC concept as the probabilistic approach of cause-
effect could be seen as how likely a thing is an object, where an object description now
is not restricted to a unique set of conditions but multiple set of conditions that have
different chances of affording the object functionality.
The learning module is embedded in a more general decision making system containing
a planning module that uses the learned action rules as planning operators. The global
system is based on a previous study [5] where the teacher guides the exploration of
actions and also explains the world dynamics at the level of currently experienced
cause-effects. The current contribution is an extension of [5] where dynamics of the
world are automatically learned while performing the required tasks.
Other approaches propose a decision-making system that permits fast agent responses to
new situations using reactive layers while the deliberative layers generate behaviors
used later by the reactive modules [9]. Some let the low-level action control to be driven
by reactive behaviors, which are selected or modulated by a higher deliberative layer
[10], [11]. Finally, others focus mainly on the generation of behaviors such as macro-
actions [12], primitive behaviors [13], or activation rules [14], which store sequences of
actions frequently used or difficult to calculate, to use them later as macro planning
operators in a deliberative system.
In any of the previous cases a large amount of computation is usually required due to
the need of exploring different acting behaviors to select the one suitable for the task.
The problem turns to be more complicated if the robot has no previous knowledge of
the world dynamics and should perform learning while predicting what would occur
with different behaviors. Incomplete knowledge has been tackled using techniques like
incomplete planning [15], learning planning operators [16], [17], [18] or policy learning
[19], but the drawback of computational complexity derived of the application of AI
techniques is still not surmounted.

System structure

As mentioned before, the decision making system has two main modules: a learning
module that provides action rules in the form of planning operators, and a planning
module that uses the learned operators. The action rules learned have a STRIPS like
structure [20] suitable to be used by any planner that can deal with them.
A general overview of the method is the following. Given a goal, the agent tries to
generate a plan using the existing rules. If the planner fails to return a behavior, as a
consequence of an incomplete knowledge, the agent asks the teacher about which action
or actions to perform. The agent executes every instructed action and generates what we
denote as a probabilistic cause-effect used to estimate the probability of the occurrence
of changes under different sets of conditions. A probabilistic cause-effect is the main
structure for learning and generation of STRIPS like cause-effects for planning
purposes.
When the agent is able to find a plan then it executes and evaluates it at the level of each
cause-effect. During cause-effects execution relevant experiences are stored as example
situations which are used to learn the conditions that afford desired changes. For
instance, if any of the outcomes obtained after a cause-effect execution is different from
the one expected, a fact referred to as surprise, the experienced situation is memorized
as a negative example for obtaining the expected change.

Page 5 of 14

IST-FP6-IP-027657 / PACO-PLUS

 5

Whenever a sequence of cause-effects is successfully executed it could be memorized
into a rule to relieve the reasoning load of the planner. Rules are essentially similar to
cause-effects but instead of an action they contain sequences of actions, each one in turn
expressed as cause-effect.
Figure 1 illustrates a general schema of the system.

Figure 1. General architecture of the decision making system.

Notation
We assume that the agent has a set of N detectors di, i=1...N, that could take different
discrete values dij, j=1..|di|, called conditions. A state s is constituted by a set of
conditions dij, s={d1j, d2k,…,dNl}. Any set of state conditions is denoted as a subspace ss.
At every moment the agent is able to perform any of the k actions from the set A={a1,
a2,…, ak}.
We formally represent a cause-effect ceci using a tuple that consists in a subspace Pi
called the preconditions, an action ai, and a subspace Oi denoted as the expected
outcome of the ceci. The preconditions indicate under which conditions the cause-effect
can be applied, and the expected outcome reflects the effects that will be obtained after
its execution.

ceci = <Pi={dgj,…,dml}, ai , Oi={dkl,…,dpq}>

Thus, a cec can be seen as a formal instantiation of the more abstract OAC as discussed
in the Introduction.
In the same way, a rule Rj is described using a tuple that consists in a subspace Pj called
the preconditions of the rule Rj, a sequence of cec’s CECS=(ceck, ceci,…, cecm), and a
subspace Oj denoted as the expected outcome of the rule,

Page 6 of 14

IST-FP6-IP-027657 / PACO-PLUS

 6

Rj = <Pj={dih,…,dml}, CECS , Oj={dkl,…,dpq}>

Rules can therefore be considered as chains of OACs. In our approach, the expected
outcome serves two purposes: it will be used by a goal-achieving deliberative system
for planning and to evaluate the outcomes.
We now define another structure called a probabilistic cec (pcec). A pcec is formed by a
tuple containing two set of subspaces, the set of working subspaces SSw and the set of
candidates subspaces SSc. Additionally, it contains, an action apcec, and a subspace
called the expected outcome Opcec of the pcec.

pcec=< {SSw, SSc}, apcec, Opcec>

Each subspace ss in SSw and SSc has associated three numbers,

- n+
 ss , counter for positives examples covered by ss.

- n-
 ss , counter for negatives examples covered by ss.

- n ss , total number of possible states in the region covered by ss.

Where positive and negative examples are those states experienced, and stored under
which the expected change Opcec occurs after the execution of apcec or fails to be
obtained, respectively. In a similar way, we refer to the probability of a positive
example as the probability of obtaining the expected change, and the probability of a
negative one for the converse.

Generating cecs from pcecs

It is not possible to use the probabilities estimations directly for planning because the
system is not designed for a probabilistic planner but for a deterministic one. Thus, for
plan generation only cecs and rules can be used. In this section it is explained how cecs
are obtained from pcecs.
To generate cecs from pcecs we only use subspaces of the set of working subspaces
SSw. First, an estimation of the probabilities for a positive and a negative example for
each subspace in SSw need to be obtained. There are many ways of estimating these
probabilities. Due to the problem that small numbers for the example can bias statistical
estimators much we propose using the following estimator, which is robust against this
effect.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+= −+

+ ss

ss

ss

ss
ss

n
n

n
nP 1

2
1

ss
ss

ss

ss

ss
ss P

n
n

n
nP +

+−
− −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+= 11

2
1 ,

Page 7 of 14

IST-FP6-IP-027657 / PACO-PLUS

 7

where 2 accounts for the number of classes.
In the general case the probability of a class i is,

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+= ∑

≠∀ ijj
ss

ss
j

ss

ss
iss

i n
n

n
nK

K
P

,
)1(11 ,

where K is the total number of classes and j accounts for all the classes except i.
This model consists in a function which outcome ranges in [0, 1], hence with
probabilistic interpretation, that not only takes into account the class examples to
determine the probability of that class (positive or negative in our case), but also other
classes examples. Additionally, it also takes into account the densities of examples for
different classes.
Calculating the probability in this way is similar to assuming that, in lack of any
evidence, each state in the subspace has the same “proportion” of a positive and a
negative example (uniform distribution). This proportion will change as new evidence is
gathered as a function of the density of classes. For instance, the probability for a
positive example could range from 0, when there are no positive examples covered by
ss, to 1 when the whole subspace is occupied with positive instances.
It is evident that every subspace considered for the estimations should at least contain
the conditions of the detectors that have changed with the action apcec to have some
chance of obtaining Opcec.
After these definition we can continue with the cec generation procedure: After
calculating the probabilities for a working subspace, if the probability of a positive
example is nonzero, a cec is created and added to the list of cecs that will be used for
planning. Every new cec is composed of,

cecnew=<Pnew=ssw, apcec, Onew={ssw
’∪Opcec}>,

where ssw is the working subspace, and ssw’ is similar to ssw but only containing the
conditions of detectors not involved in Opcec (changed detectors).
The process of cec generation is performed whenever a pcec is created and for every
recently promoted working subspace that have nonzero probability for a positive
example.

About Exploration
In the decision making system exploration of actions is dictated by the teacher and the
planner. Nevertheless, as the planner generates plans using cecs, which not yet
completely evaluated we use forced exploration that permits learning a more complete
model of the world dynamics.

Page 8 of 14

IST-FP6-IP-027657 / PACO-PLUS

 8

Learning Module

The learning module of the decision making system learns rules and pcecs evaluating
under which conditions a change would occur after an action execution. Incomplete
knowledge of the conditions necessary to afford changes lead to uncertainties about the
occurrence of the change under a situation. Nevertheless, it is possible to estimate the
probability for that change to occur given a subspace. In the next section we present
how these estimations are improved, and how the minimal set of conditions is found
that affords the expected changes.
Learning pcecs
The core of the method for learning pcecs is the estimation of probabilities for a positive
and a negative example for different subspaces. The estimations and subspaces
generation procedures are guided by experienced states stored in memory. The aim is to
find the smallest sets of conditions for which the expected change has a high probability
to occur.
The learning process consists in selectively storing positive and negatives examples
related to each pcecs, and refining the SSw representation by promoting candidate
subspaces from SSc to SSw.
Initialization
The generation of a pcec occurs after executing an instructed action. The initial structure
of a pcec consists in the expected outcome Opcec, which involves the changed conditions
after the action execution, the action itself apcec=instructed action, and the initial set of
working and candidate subspaces.
The initial set of working subspaces SSw is composed by one subspace formed with the
conditions changed following the action apcec. In the case of SSc, the initial set of
subspaces is composed by subspaces formed with the conditions changed with apcec, and
one additional condition of a detector not involved in the changes. It is considered one
candidate subspace for each condition of those detectors.
Memorizing Examples
Whenever there is a surprise the experienced state after the cec execution is stored as a
subspace, with all the state conditions, in the SSw of the pcec used to create the cec.
Clearly, the counters are set to 1 for negative examples and 0 for positive ones.
Conversely, if there is no surprise after a cec execution but the probability of error Pe
(probability of misclassification) corresponding to the working subspace ssw that
generated the cec is above a threshold Pc

+, the state is stored as a positive example in
the set of working subspaces SSw. The probability of the error is calculated as [21],

[]www ssssss
e PPP +−= ,min

The threshold Pc

+ is determined using a linear function of the density of the subspace,

2
max δδ ==+

ec PP ,

Page 9 of 14

IST-FP6-IP-027657 / PACO-PLUS

 9

where δ is the density calculated as,

w

ww

ss

ssss

n
nn +− +

=δ

and Pe
max is the maximum possible probability of error.

In this way, for low density subspaces the probability error is less significant and
examples are then stored to reduce the uncertainty in the estimations, while, as the
density becomes larger, the probability of the error becomes more meaningful.
Note that both storing criteria imply that every cec should have a pointer to the pcec,
from which it originated and to the working subspace of that pcec, which was used to
set all its conditions.
Finally, after an example is stored, all the counters of the subspaces in SSw and SSc, the
conditions of which are included in the stored example, are updated.
Promoting Candidate Subspaces
The necessity of improving the estimation by promoting candidate subspaces is also
measured using the probability of the error and the density of the subspaces. The
promotion of candidate subspaces occurs when enough examples were stored but the
estimation capability of the system is still bad. To consider this requirement we propose
using a threshold for the probability of the error that is a linear decreasing function of
the density. In this manner, when the evaluated working subspace has a few examples
the uncertainty is high and more evidence should be accumulated before promoting any
candidate subspace. On the other hand, when the working subspace is densly occupied
with examples, higher probabilities of the error are more trustable as indicators of the
necessity for refining the representation. Then, the threshold for the probability of the
error is calculated as,

() maxmaxmin
eee

prom
c PPPP +−= δ

where Pe

min is the highest error allowed, which plays the role of an upper bound for the
precision in the estimation, preventing over-fitting, and allowing a better treatment of
noisy data.
After the calculation, if the probability of error of the evaluated working subspace is
above the threshold, then, from all the candidate subspaces from SSc involving the
evaluated working subspace, the one with lowest probability of error is promoted. To
save computational resources, only working subspaces related to cecs that produce
surprises are evaluated.
Generating Candidate Subspaces
Every time a candidate subspace is promoted new candidate subspaces are generated.
The generation takes place for each consistent combination of the recently promoted
subspace with the conditions of another working subspace of the pcec. All the possible
combinations will produce new candidate subspaces.

Page 10 of 14

IST-FP6-IP-027657 / PACO-PLUS

 10

Finally, once the candidate subspaces are generated, the counters of examples are
initialized in accordance to the positive and negative examples covered by them.

Learning Rules
So far, we have explained how pcecs are learned from experience and how cecs are
generated from pcecs. Now, we will explain how to relieve the job of the planner by
memorizing sequences of successfully executed cecs into a macro planning operator
called rule.
To guarantee successful execution of a sequence, the precondition of the to-be-executed
rule should ensure the occurrence of the cec-preconditions in the proper order. This is
achieved firstly by accumulating (in the precondition part of the rule) the preconditions
of the cecs needed to afford the changes. In case a detector takes more than one
condition value during the sequence, the condition closer to the start of the sequence is
considered as it should occur first.
On the other hand, the outcome of the rule should enumerate the results obtained after
the execution of the whole sequence. This is done by accumulating the outcomes of
each cec into the outcome-part of the rule. As latest outcomes in the sequence cancel
early ones when the same detectors are involved, the rule outcome should consider for
each detector the condition of the those cec later in the sequence whenever the same
detector is involved.
It is important to remark that, in this first approach, we let the teacher control the rule
generation by the instruction given. The teacher will instruct a single action when no
sequence is convenient to be merged into a rule, and he/she will instruct a sequence of
actions whenever he/she knows that this sequence will be need many times during the
task or could be difficult to find for the planner.
Cecs and Rules Correction
When a surprise arises, the pcec from which the cec was obtained is evaluated. For this
we require that there is a working subspace in the pcec that has higher probability for
being a positive example than the subspace from which the cec originated. Furthermore
this subspace has to be consistent with the whole sequence of cecs stored in the rule.
Only then an update is performed. This is done by replacing the conditions of the cecs
with the conditions of the working subspace with the highest probability.
Consistency in the sequence requires that the changes produced by previous cecs in the
sequence as well as all the preconditions of posteriors cecs are contemplated in the
situations where a cec should be applied. Additionally, changed affordance may require
conditions that do not change by themselves but are nonetheless necessary for the
execution of the cec. Those conditions should also be guaranteed. Thus, to update a cec
in a rule, all the previous restrictions need to be verified.
If the cec results are modified, the rule correction is simply performed by updating the
rule preconditions and outcomes with the new added conditions. This is done following
the procedure of rule generation but applied only to the modified parts.

Outline of the Algorithm

In this section we present the algorithm of the decision making system using a pseudo-
code.

Page 11 of 14

IST-FP6-IP-027657 / PACO-PLUS

 11

Pseudo-code
INIT system

Define GOAL

WHILE goal is not reached

 {

 IF PLAN found

 {

 Execute PLAN

 }

 ELSE (plan not found)

 {

 Teacher instructs actions

 FOR each action instructed,

 {

 Execute action

 GENERATE new pcec

 GENERATE new cec from new pcec

 APPEND new cec to LCECS

 }

 GENERATE RULES using LCECS

 } (else if plan found)

}(end while GOAL is not reached)

Execute PLAN
FOR each cec in PLAN

 {

 Execute action

 IF surprise

 {

 STORE negative example

 If necessity of promoting candidate subspace

 {

 PROMOTE best candidate subspace

 GENERATE new candidate subspaces

 CORRECT cec with promoted subspace

 CORRECT rules containing cec

 }

 EXIT FOR (stop plan execution and replan)

 }

 ELSE (no surprise)

 {

 IF high uncertainty in the estimations

 {

STORE positive example

}

 }

 } (end for)

The learning module procedures are detailed in figure 2. To contextualize see that these
procedures are those that take place inside the learning box in the schema of figure 1.

Page 12 of 14

IST-FP6-IP-027657 / PACO-PLUS

 12

A)

B)

C)

Figure 2. A) Learning when there is a surprise; B) Learning after action instructions; C) Learning after a successful
execution of a cec.

Conclusions

The contribution of this work is an extension of the previous system presented in [5].
The general architecture of the previous system is maintained but there is a significant
improvement in the process of learning cause-effects. In [5] the cause-effects were
learned with the help of human explanations about relevant conditions that afford
changes. Now this process is completely automatic permitting not only to learn of
cause-effects without the help of the teacher but also to estimate the chances of
producing the desired outcome for any set of conditions. Hence, the learning method
could be now applied to stochastic and non-stationary environments. On the other hand,
this probabilistic approach may constitute another step toward a possible formalization
of the OAC: an object description is not restricted to a unique set of conditions but
multiple set of conditions with different chances of affording the object functionality.
Nevertheless, there are still many other pending issues to treat like the evaluation of the
method in real scenarios and the automatic explorations of actions whenever the planner
fails to find a plan. Other topics are the definition of a criterion for plan memorization
into rules and the integration of the learning method with an advanced planner module.

Page 13 of 14

IST-FP6-IP-027657 / PACO-PLUS

 13

References

[1] Newell, A. The knowledge level. Artificial Intelligence, 18(1), 87-127, 1982.
[2] Brooks, R. “Intelligence without representation”. Artificial Intelligence, 47, pp.

139-159, 1991.
[3] Mitchell, T. Machine Learning. McGraw Hill. 1997
[4] Piaget, J. The origins of intelligence in children. New York: International

Universities Press. 1952.
[5] Agostini A., Celaya E., Torras C., Wörgötter F. Action Rule Induction from

Cause-Effect Pairs Learned Through Robot-Teacher Interaction. In Proc. of the
International Conference on Cognitive Systems, CogSys 2008. (Karlsruhe,
Germany). April 2008, pp. 213-218.

[6] Wörgötter F., Agostini A., Krüger N., Shylo N., Porr B. Cognitive Agents - A
Procedural Perspective relying on the Predictability of Object-Action-Complexes
(OACs), Robotics and Autonomous Systems, 2008 (In press.
doi:10.1016/j.robot.2008.06.011).

[7] Geib, C., Mourao, K., Petrick, R., Pugeault, N., Steedman, M., Krüger, N. and
Wörgötter, F.. Object Action Complexes as an Interface for Planning and Robot
Control, presented at IEEE RAS Int Conf. Humanoid Robot, Genova, Italy, 2006.

[8] http://www.paco-plus.org.
[9] Lemaître, M., Verfaillie, G.. Interaction between reactive and deliberative tasks

for on-line decision-making. Presented at the 2007 International Conference on
Automated Planning and Scheduling, Providence, Rhode Island, USA, 2007.

[10] Gat, E. On three-layer architectures. In D. Kortenkamp, R. P. Bonnasso, and R.
Murphy, editors. Artificial Intelligence and Mobile Robots. MIT/AAAI Press, pp.
195-210, 1998.

[11] Schoppers, M. J.. Universal Plans for Reactive Robots in Unpredictable
Environments. In Proceedings of the Tenth International Joint Conference on
Artificial Intelligence (IJCAI 87), Milan, Italy, 1987, pp. 1039-1046.

[12] Newton, M., Levine, J.. Evolving Macro-Actions for Planning. Presented at the
2007 International Conference on Automated Planning and Scheduling,
Providence, Rhode Island, USA, 2007.

[13] Nicolescu, N., Mataric, M.. A Hierarchical Architecture for Behavior-Based
Robots. In Proc. of the 1st Int. Joint Conf. on Autonomous Agents and Multi-
Agent Systems, Bolgna, Italy, 2002, pp. 227-233.

[14] Rao, D., Jiang, Z., Jiang, Y.. Learning Activation Rules for Derived Predicates
from Plan Examples. Presented at the 2007 International Conference on
Automated Planning and Scheduling, Providence, Rhode Island, USA, 2007.

[15] Yoon, S., Kambhampati, S. Towards Model-lite Planning: A Proposal For
Learning & Planning with Incomplete Domain Models. Presented at the 2007
International Conference on Automated Planning and Scheduling, Providence,
Rhode Island, USA, 2007.

[16] Wang, X. Learning planning operators by observation and practice. In
Proceedings of the Second International Conference on AI Planning Systems,
Chicago, IL, USA, 1994.

Page 14 of 14

IST-FP6-IP-027657 / PACO-PLUS

 14

[17] Oates, T. and Cohen, P. Learning planning operators with conditional and
probabilistic effects. In Proceedings of the AAAI Spring Symposium on Planning
with Incomplete Information for Robot Problems, 1996, pp. 86-94.

[18] Benson, S. Inductive learning of reactive action models. In Proceedings of the
12th International Conference of Machine Learning, 1995, pp. 47–54.

[19] Sutton, R. and Barto, A. Reinforcement Learning. An Introduction. MIT Press,
1998.

[20] La Valle, S. Planning Algorithms. Cambridge University Press. 2006.
[21] Duda, R., Hart. P and Stork, D. Pattern Recognition. John Wiley & Sons, Inc., 2nd

Edition, 2001.

