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Abstract:

The core focus of WP5.1 is the generalisation of the basic symbolic representation of OACs and ancillary
planning apparatus to communication and language. WP5.1 builds on WP3 to extend the representation
of OACs to communicative acts and is tightly integrated with WP4, in particular the theoretical and
practical components of WP4.3, to provide the foundational infrastructure needed to support high-level
linguistic concepts. This deliverable focuses on one component of the WP4 architecture, the PKS planner,
and describes a set of extensions required for PKS to support low-level continuous control systems,
such as the SDU robot/vision system in WP4.1. Since the problem of planning dialogue acts can be
viewed as an instance of the general problem of planning with incomplete information and sensing, the
mechanisms needed to support ordinary action planning are also relevant to dialogue planning. The
associated deliverable D5.2.2 describes the computational problem of natural language acquisition in
greater detail.
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1. Executive Summary

The core focus of WP5.1 is the generalisation of the basic symbolic representation of OACs and ancillary
planning apparatus to communication and language. More specifically, this work builds on WP3 to extend
the representation of OACs to communicative acts (Task 5.1.1) and is tightly integrated with WP4, in par-
ticular the theoretical and practical components developed as part of WP4.3, to provide the foundational
infrastructure needed to support high-level linguistic concepts (Task 5.1.2). This deliverable focuses on the
latter task (5.1.2) and one essential component of our architecture, namely the PKS (“Planning with Knowl-
edge and Sensing”) planner [8, 9]. In particular, we describe the extensions required for PKS to support
low-level continuous control systems, such as the SDU robot/vision system in WP4.1.

PKS is a state-of-the-art knowledge-level planner that is able to construct plans in the presence of incom-
plete information. Unlike traditional planners, PKS constructs plans at a more abstract level, by representing
and reasoning about the planner’s incomplete knowledge state. The representation used by PKS is based on
an extended version of STRIPS [4] that explicitly models particular types of knowledge. Actions in PKS
describe how they change the planner’s knowledge state, rather than the world state. PKS can construct con-
ditional plans with sensing actions, and supports numerical reasoning, run-time variables [3], and features
like functions that arise in real-world planning scenarios.

Like most AI planners, PKS operates best in discrete, symbolic state spaces described using logical lan-
guages. On the other hand, low-level robot systems typically use representations based on vectors of contin-
uous values. Thus the task of integrating low-level robot systems with high-level planners requires overcom-
ing the representational differences that exists between these two levels. This deliverable primarily focuses
on the components we have currently developed to bridge this representational divide.

We also propose to use PKS as our planning framework for natural language and communication. Our first
step is dialogue planning in PKS based on speech acts; a description of the theory behind our approach is
outlined in [10]. In particular, we view the problem of planning dialogue acts as an instance of the general
problem of planning with incomplete information and sensing. As a result, the mechanisms supporting
ordinary action planning in PKS will also be relevant to dialogue planning. The associated deliverable
D5.2.2 describes the computational problem of natural language acquisition in greater detail.

We have attached a number of additional documents to this deliverable that highlight the central role that
PKS plays in the three-level architecture we have developed as part of WP4. These documents describe
the additional support mechanisms that enable PKS to generate plans that can be executed in low-level
continuous control spaces. More generally, these same components provide the infrastructure needed to
support the longer term objectives of language and communication in WP5. Here we briefly sketch the
relation of each paper to this workpackage and deliverable, and make links to the specific contributions of
each paper.

[A] (Internal PACO-PLUS Technical Report) This document is an evolving specification of the interfaces
required to integrate the low-level SDU robot/vision system, the mid-level UL memory component,
and the high-level UEDIN planner and plan execution monitor. This document outlines a robot ma-
nipulation scenario that is realised on all three levels of representation. In particular, the high-level
action representation used by PKS is described as an abstraction of the properties and capabilities
available at the lower system levels. A control architecture and communication protocol are defined,
illustrating how high-level plans can be generated by PKS for execution in the low-level continuous
control space, and how high-level plan execution monitoring can be used to control replanning and
resensing activities. We also demonstrate how PKS’s ability to reason about incomplete information
and sensing actions can be interpreted and executed by the lower system levels. This document de-
scribes the integration of components from WP4 and provides the needed technical basis for future
work in WP5.
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[B] (Presented at CogSys-2008 in Karlsruhe, Germany) This paper describes a mechanism for learning
STRIPS and ADL [7] style actions effects from world state snapshots of the form produced by the
control architecture in [A] above. The actual learning mechanism is based on kernel perceptrons [1, 5]
which provide efficient learning and produce high quality models with low error rates. This mecha-
nism was tested using data simulated from the same robot manipulation scenario described in [A] and
shown to be effective at learning action effects in this domain. This work illustrates how a high-level
action representation, usable by a planner like PKS, can be learnt (rather than preprogrammed) from
data generated through a robot’s interaction with the world.

[C] (Presented at CogRob-2008 in Patras, Greece) This paper describes the integration of the SDU
robot/vision system with the UEDIN planner and plan execution monitor in [A], together with the
action effect learning mechanism in [B], from a representational point of view using the instantiated
state transition fragment (ISTF) and object-action complex (OAC) concepts [6] developed as part of
WP4. This document highlights how certain representational notions, like objects, are identified in
low-level control space and are introduced into the high-level planning representation. Moreover, this
paper illustrates how high-level plans constructed by PKS—including conditional plans that reason
about incomplete information and sensing actions—can be executed by the robot/vision system.

Together, these papers report a number of significant developments:

• The three-level control architecture and associated communication protocol provides the necessary
abstraction layer needed to support high-level planning with PKS in continuous low-level robot do-
mains like our robot manipulation scenario.

• The early integration of the SDU robot/vision system with the PKS planner has been completed,
allowing both simple linear plans and conditional plans with sensing actions to be constructed by the
planner and executed on the robot platform.

• A role for the UL mid-level memory component has been identified within the control architecture,
offering the prospect of improved high-level plan specification through sub-symbolic manipulation
and reasoning.

• The kernel perceptron learning component in [B] has been implemented and tested on data simulated
from the shared integration scenario in [A], providing a mechanism for learning a set of high-level
action effects, usable as part of PKS’s action representation.

• The work described in this report provides a complete theoretical path from continuous low-level
representations to high-level models suitable for planning and the support of language. The repre-
sentational structures underlying our integration efforts make use of the ISTF and OAC concepts,
previously defined as part of WP4. These structures, as well as the associated control mechanisms
already implemented, provide the necessary infrastructure needed to support the longer term goals of
WP5, such as dialogue planning.

A number of questions remain open at the time of this report and constitute further work.

• As a collaboration with UniKarl, UEDIN is starting to integrate its control, communication, and plan-
ning mechanisms on the ARMAR robot platform as part of WP1, and is in the process of extending
the robot scenario in [A] to take into consideration ARMAR’s extended action capabilities.

• The plan execution monitor is currently being built by UEDIN and has not yet been tested within the
integrated SDU/UEDIN system.

• The action effect learning mechanism has not yet been tested on data generated by the real robot/vision
system. Furthermore, we have not generated plans for execution on the robot using the learnt action
models.
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• We are continuing to investigate the role of probabilistic models in high-level plan generation and
monitoring processes. Since nondeterminacy will undoubtedly arise as the result of perception and
action at the robot/vision level, we are studying how best to utilise such information at the higher
control levels. One technique we are experimenting with is the use of rapid replanning [11] which has
been successfully applied by planners in the probabilistic track of the International Planning Compe-
tition [2].

• Although the theoretical work required to extend PKS to support dialogue planning of the form de-
scribed in deliverable D5.2.2 and [10] is complete, the implementation of these extensions (Milestone
5.1.1) is only partially complete at the time of reporting.

Besides the connections to WP1, WP4, and WP5 already mentioned, this workpackage also has interactions
with other workpackages including WP2, WP3, and WP7.

2. Publications Associated with D5.1.2

[A] A Scenario for Integrating Low-Level Robot/Vision, Mid-Level Memory, and
High-Level Planning with Sensing
Ronald Petrick, Christopher Geib, and Mark Steedman
Internal PACO-PLUS Technical Report, July 2008.

Abstract: In this document we provide an overview of a proposed scenario for integrat-
ing the University of Southern Denmark (SDU)’s robot/vision system, the University of
Leiden (UL)’s mid-level memory/reasoning component, and the University of Edinburgh
(UEDIN)’s high-level planner and plan execution monitor. We also give an overview of our
proposed extensions for incorporating dialogue planning into the scenario, using UEDIN’s
planning system. This document builds on discussions between project partners from SDU,
UL, the University of Liège (ULg), and UEDIN at a meeting held in Leiden in Septem-
ber 2007, and captures some of our ideas from the point of view of the planning task and
required high-level representation. Since our integration discussions are ongoing, this doc-
ument should be viewed as a snapshot of our current thinking (and subject to change in the
future). This document describes the integration of components developed as part of WP4,
to provide high-level support of low-level continuous control systems, and forms the basic
infrastructure needed to support language and communication in WP5.

[B] Using Kernel Perceptrons to Learn Action Effects for Planning
Kira Mourão, Ronald Petrick, and Mark Steedman
Published at the International Conference on Cognitive Systems (CogSys), 2008.

Abstract: We investigate the problem of learning action effects in STRIPS and ADL plan-
ning domains. Our approach is based on a kernel perceptron learning model, where action
and state information is encoded in a compact vector representation as input to the learn-
ing mechanism, and resulting state changes are produced as output. Empirical results of
our approach indicate efficient training and prediction times, with low average error rates
(< 3%) when tested on STRIPS and ADL versions of an object manipulation scenario.
This work is part of a project to integrate machine learning techniques with a planning
system, as part of a larger cognitive architecture linking a high-level reasoning component
with a low-level robot/vision system.
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[C] Representation and Integration: Combining Robot Control, High-Level Planning, and
Action Learning
Ronald Petrick, Dirk Kraft, Kira Mourão, Christopher Geib, Nicolas Pugeault, Norbert Krüger,
and Mark Steedman
Published at the 6th International Cognitive Robotics Workshop (CogRob), pp. 32–41, 2008.

Abstract: We describe an approach to integrated robot control, high-level planning, and
action effect learning that attempts to overcome the representational difficulties that exist
between these diverse areas. Our approach combines ideas from robot vision, knowledge-
level planning, and connectionist machine learning, and focuses on the representational
needs of these components. We also make use of a simple representational unit called
an instantiated state transition fragment (ISTF) and a related structure called an object-
action complex (OAC). The goal of this work is a general approach for inducing high-level
action specifications, suitable for planning, from a robot’s interactions with the world. We
present a detailed overview of our approach and show how it supports the learning of
certain aspects of a high-level representation from low-level world state information.
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A Scenario for Integrating Low-Level Robot/Vision, Mid-Level
Memory, and High-Level Planning with Sensing

Ronald Petrick, Christopher Geib, Mark Steedman

20 July 2008 / Internal PACO-PLUS technical report

Abstract

In this document we provide an overview of a proposed scenario for integrating the University
of Southern Denmark (SDU)’s robot/vision system, the University of Leiden (UL)’s mid-level mem-
ory/reasoning component, and the University of Edinburgh (UEDIN)’s high-level planner and plan exe-
cution monitor. We also give an overview of our proposed extensions for incorporating dialogue plan-
ning into the scenario, using UEDIN’s planning system. This document builds on discussions between
project partners from SDU, UL, the University of Liège (ULg), and UEDIN at a meeting held in Leiden
in September 2007, and captures some of our ideas from the point of view of the planning task and
required high-level representation. Since our integration discussions are ongoing, this document should
be viewed as a snapshot of our current thinking (and subject to change in the future). This document
describes the integration of components developed as part of workpackage WP4, to provide high-level
support of low-level continuous control systems, and forms the basic infrastructure needed to support
language and communication in WP5.

1 Object stacking with sensing

The domain we have chosen for our integration task is a simple object manipulation scenario.1 We assume
a table with a number of objects that are graspable by the robot. We consider situations with no more than
5 objects and, initially, only 1-2 objects. For simplicity we assume that objects are generally cylindrical in
shape but not necessarily identical. In particular, each object can have a different radius which determines
its size. Objects may or may not be open containers, which determines whether or not we can stack objects
inside other objects, provided the object sizes permit such stacking.

The goal of the scenario is to clear all open objects from the table, by removing them to some designated
location (e.g., a box, a shelf, a hole, a corner of the table, etc.). The location may furthermore be restricted
in such a way as to force object stacking in order to successfully complete the task. For instance, there
might only be room for 2 objects to sit side by side on a shelf, meaning all other objects would have to
be appropriately stacked. The high-level planning system will typically have only incomplete information
concerning the openness of objects and must therefore plan explicit sensing actions to determine whether
a particular object is open or not. Object openness plays two important roles in this scenario: (i) as a goal
condition that determines which objects should be removed from the table, and (ii) as a prerequisite for
stacking operations.

This scenario is meant to provide a basis for integrating the robot/vision, mid-level memory, and high-
level planning components of the system. The planner is responsible for constructing a plan that achieves
the goal of clearing open objects from the table, by working with a high-level representation of the scenario.
The job of the mid-level component in this case is to refine such plans with regard to the sensing actions
contained in these plans. In particular, the robot/vision system will be able to ascertain whether an object is
open or not by one of two means: (i) it can poke an object in order to verify its concavity, or (ii) it can focus
the vision system on the object at a higher level of resolution. The mid-level memory system must make
an informed choice between poking and focusing operations, update the plan as appropriate, and pass the

1For the purposes of distinguishing between the three levels in this document we will use the tags “robot”, “memory”, and
“planner” to denote the SDU, UL, and UEDIN components, respectively.
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(a) Grasp Type A (b) Grasp Type B (c) Grasp Type C (d) Grasp Type D

Figure 1: Robot grasp types available to the planner

augmented plan on to the robot/vision system. Ultimately, the robot/vision system must be able to interpret,
understand, and execute the plans generated and refined by the upper levels.

For the remainder of this document we will mainly focus on the top-down task, in particular, describing
the high-level planning representation that is passed to the mid-level memory system, and the message
passing protocol that supports the exchange of messages between the levels.

2 High-level planning representation

Given the above scenario description, we define a set of high-level actions and properties that allows the
planner to operate in this domain, and provide some insights as to how these actions/properties relate to the
memory and robot/vision levels.

2.1 Physical actions

In discussions with SDU we have agreed to model four types of grasping actions at the planning level, as
illustrated in Figure 1. These actions correspond to a subset of the possible grasping options the robot is
capable of performing. In general, these actions exhibit the following behaviour:

Grasp Type A - This action can only be used to grasp objects at the top of a stack, or an empty object on
the table. Objects must also satisfy a minimum and maximum radius restriction.

Grasp Type B - This action can only be used to grasp objects on the table that are not part of a stack.
Objects must also satisfy a minimum radius restriction.

Grasp Type C - This action can only be used to grasp objects that aren’t contained in other objects, i.e.,
the “outermost” object which must be on the table. Objects must also satisfy a maximum radius
restriction.

Grasp Type D - This action can only be used to grasp objects that aren’t contained in other objects, i.e.,
objects that are on the table. Objects must also satisfy a maximum radius restriction. For simplicity,
we will assume that objects stacked within the object being grasped will not affect the grasp.

For the planner’s domain encoding it is necessary to subdivide Grasp Type A into two separate actions,
to avoid reasoning about conditional effects. The planner therefore has five grasp actions available to it,
corresponding to the four types of grasps available to the robot. (For the purposes of the sample plans in
this document we only require Grasp Types A and D.) Each grasping action takes a single argument, ?x,
denoting the label of an object. We have agreed that each object in the world will be designated by a string
of the form objN, where N is a non-negative integer, e.g., obj42.
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graspA-fromTable(?x) - Grasp object ?x from the table using Grasp Type A.

graspA-fromTopOfStack(?x) - Grasp object ?x from the top of a stack using Grasp Type A.

graspB-fromTable(?x) - Grasp object ?x from the table using Grasp Type B.

graspC-fromTable(?x) - Grasp object ?x from the table using Grasp Type C.

graspD-fromTable(?x) - Grasp object ?x from the table using Grasp Type D.

We have also encoded four actions for moving and manipulating objects when successfully grasped:

putInto-objectOnTable(?x,?y) - Put object ?x into object ?y, which is on the table.

putInto-stack(?x,?y) - Put object ?x into object ?y, which is at the top of a stack on the table.

putOnTable(?x) - Put object ?x onto the table.

putAway(?x) - Put object ?x away.

Each manipulation action is object centric and modelled with a high degree of abstraction. For instance,
we do not provide plan-level actions that specify 3D spatial coordinates, joint angles, or similar real-valued
parameters. The putAway action is particularly generic and should be considered a placeholder for a more
complex (possibly, predefined) operation that clears an object from the table to its final destination location.
For the purpose of this document we will assume that objects are being put away onto a shelf. We also note
that both putInto-objectOnTable and putInto-stack actions denote stacking operations which will
have as a prerequisite the property that objects can only be stacked into open objects.

2.2 Sensing actions

The high-level planning representation also consists of a single sensing action:

sense-open(?x) - Determine whether object ?x is open or not.

At the planning level, this action is modelled an information gathering or knowledge-producing action
that provides the planner with additional information about an object’s state. At the robot/vision level,
sense-open will ultimately be executed as either a poke operation which tests the object’s concavity, or
a focus operation which directs the vision system to study the object at a higher resolution. The mid-level
memory system is responsible for refining high-level sense-open actions into robot/vision operations that
are appropriate, given the context, and that can be understood by the lower level.

2.3 Properties

Our planning-level domain encoding makes use of a set of predicates and functions which we have agreed
could reasonably be provided to the planner as a result of sensor information from the robot/vision level.
These properties are subject to change as the domain model is refined through further discussions.

open(?x) - A predicate indicating that object ?x is open.

gripperempty - A predicate describing whether the robot’s gripper is empty or not.

ingripper(?x) - A predicate indicating that the robot is holding object ?x in its gripper.
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ontable(?x) - A predicate indicating that object ?x is on the table.

onshelf(?x) - A predicate indicating that object ?x is on the shelf.

isin(?x,?y) - A predicate indicating that object ?x is stacked in object ?y.

clear(?x) - A predicate indicating that no object is stacked in ?x.

instack(?x,?y) - A predicate indicating that object ?x is in a stack with object ?y at its base.

radius(?x) = ?y - A function indicating that the radius of object ?x is ?y.

shelfspace = ?x - A function indicating that there are ?x empty shelf spaces.

reachableA(?x)
reachableB(?x)
reachableC(?x)
reachableD(?x) - Predicates indicating that object ?x is reachable by the gripper using a particular grasp.

graspAMinRadius = ?x
graspAMaxRadius = ?x
graspBMinRadius = ?x
graspCMaxRadius = ?x
graspDMaxRadius = ?x - Functions indicating the min./max. radius restrictions for each grasp type.

2.4 Domain encoding

Using the above properties we can write PKS [Petrick and Bacchus, 2002, 2004] operators for the actions we
require. For simplicity, we have made the following restrictions in our domain encodings: (i) all objects are
initially assumed to be on the table, (ii) grasp type C will initially be omitted (grasp type B is not required
for our initial examples), and (iii) the putOnTable action will initially be omitted (since there are no initial
stacks).

Our current domain encoding is given in Table 1. These actions are formalized for use with the PKS
planner, however, we have simplified the syntax here. Although most of the details of the actual action
encodings can be ignored, we mention two important points. First, each action operator is parametrized with
a set of arguments that can denote any object in the world. Thus, all of our actions are object centric. Second,
our encoding takes advantage of PKS’s ability to work with functions and simple numerical expressions,
which we include as part of the action preconditions and effects. For instance, the radius of an object plays
a role in determining whether or not it can be stacked inside another object, and the minimum/maximum
grasp values help determine whether or not a particular grasp action can be applied. Our domain encoding
can be extended as needed to accommodate new actions or properties that may arise from future discussions.

PKS action description notation: the domain encoding in Table 1 is very much like a standard STRIPS
[Fikes and Nilsson, 1971] encoding except that PKS, unlike STRIPS, uses multiple databases as the basis
for its representation. Thus, references to Kf and Kw in the “effects” section of an action denote two of PKS’s
databases. (Kf is very much like a standard STRIPS databases that stores the planner’s knowledge of facts,
and Kw is a specialized database for storing the effects of sensing actions.) As well, ¬Kwopen(?x) in the
description of sense-open is a knowledge precondition that ensures the planner does not include a sensing
action in a plan if it already knows the outcome of the sensing (i.e., if the planner already knows whether an
object is open or not then it shouldn’t sense the object).
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Action Preconditions Effects
sense-open(?x) ¬Kw(open(?x)) add(Kw,open(?x))

ontable(?x)

graspA-fromTable(?x) reachableA(?x) add(Kf,ingripper(?x))

clear(?x) add(Kf,¬gripperempty)

gripperempty add(Kf,¬ontable(?x))

ontable(?x)

radius(?x) ≥ graspAMinRadius

graspAMaxRadius ≥ radius(?x)

graspA-fromTopOfStack(?x) reachableA(?x) add(Kf,ingripper(?x))

clear(?x) add(Kf,¬gripperempty)

gripperempty (∀ ?y). isin(?x,?y) ⇒

radius(?x) ≥ graspAMinRadius del(Kf,isin(?x,?y))

graspAMaxRadius ≥ radius(?x) add(Kf,clear(?y))

(∃ ?z). (∀ ?z). instack(?x,?y) ⇒

instack(?x,?z) del(Kf,instack(?x,?z))

ontable(?z)

graspB-fromTable(?x) reachableB(?x) add(Kf,ingripper(?x))

clear(?x) add(Kf,¬gripperempty)

gripperempty add(Kf,¬ontable(?x))

ontable(?x)

radius(?x) ≥ graspBMinRadius

graspD-fromTable(?x) reachableD(?x) add(Kf,ingripper(?x))

gripperempty add(Kf,¬gripperempty)

ontable(?x) add(Kf,¬ontable(?x))

graspDMaxRadius ≥ radius(?x)

putInto-objectOnTable(?x,?y) ?x , ?y add(Kf,gripperempty)

ingripper(?x) add(Kf,isin(?x,?y))

open(?y) add(Kf,instack(?x,?y))

clear(?y) del(Kf,clear(?y))

ontable(?y) del(Kf,ingripper(?x))

radius(?y) > radius(?x) (∀ ?w). instack(?w,?x) ⇒

del(Kf,instack(?w,?x))

add(Kf,instack(?w,?y))

putInto-stack(?x,?y) ?x , ?y add(Kf,gripperempty)

ingripper(?x) add(Kf,isin(?x,?y))

open(?y) del(Kf,clear(?y))

clear(?y) del(Kf,ingripper(?x))

radius(?y) > radius(?x) (∀ ?z). instack(?y,?z) ⇒

(∃ ?z). add(Kf, instack(?x,?z))

instack(?y,?z) (∀ ?w). instack(?w,?x) ⇒

ontable(?z) del(Kf,instack(?w,?x))

add(Kf,instack(?w,?z))

putAway(?x) ingripper(?x) add(Kf,onshelf(?x))

shelfspace > 0 add(Kf,gripperempty)

del(Kf,ingripper(?x))

shelfspace = shelfspace - 1

Table 1: PKS-style action descriptions
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3 Example plans

In this section we give three examples of planning problems we can solve using PKS and the above action
descriptions. In each example we consider a scenario with 2 objects initially on the table. Each object also
has a size as indicated by its radius. We also assume certain minimum/maximum values for the grasps but
these values don’t play a large role in these examples. (For simplicity we use integer values in our examples
however we also permit real-valued quantities.) In each example we assume the following initial conditions:

• Objects: obj1, obj2

• radius(obj1) = 1, radius(obj2) = 4

• shelfspace = 1

• All objects are on the table (no initial stacks)

The goal in each example is to clear the open objects from the table by placing the objects on a shelf which
has limited space. In Example 1, the planner initially knows that both objects are open and, thus, does not
need to include sensing actions in the plan. In Examples 2 and 3, sensing actions are required: in the second
example, the planner knows that one object is not open but does not know whether the second object is open
or not; in the third example, the planner does not know whether either object is open or not.

When PKS constructs a plan that includes sensing actions, it can build into the plan a set of conditional
branches for reasoning about the possible outcomes of a sensing operation. In particular, one branch is
constructed for each possible value the sensed property might have. The resulting plans in this case are
structured as trees rather than simple linear sequence of actions. In our examples, branch points are denoted
by expressions like “branch(open(objX)),” meaning “branch on the truth value of open(objX).” In this
scenario, we will only consider branches on binary properties, i.e., properties that can be either true or false.
A branch point is followed by two plan sections, labelled as “K+” and “K-,” denoting two disjoint plan
branches. The K+ branch indicates the “knowledge positive” branch where open(objX) is assumed to be
true. The K- branch indicates the “knowledge negative” branch where open(objX) is assumed to be false
(i.e., ¬open(objX) is assumed to be true). Each branch can contain a sequence of actions and possibly other
branch points. A nil tag along a branch indicates that no further operation takes place along that branch.
At execution time, the information returned from a sensing action will let the plan execution monitor decide
which branch of the plan it should follow at a branch point. The planner ensures that when conditional plans
are constructed, the goals are achieved along every branch of the plan.

3.1 Example 1

The planner initially knows that open(obj1) and open(obj2) are true.

Plan:

graspA-fromTable(obj1)

putInto-objectOnTable(obj1,obj2)

graspD-fromTable(obj2)

putAway(obj2)

Since obj1 and obj2 are both initially known to be open the planner does not need to include any sensing
actions in the plan. The two objects can simply be stacked and removed from the table.
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3.2 Example 2

The planner initially knows that ¬open(obj1) is true but does not know the state of open(obj2).

Plan:

sense-open(obj2)

branch(open(obj2))

K+:

graspA-fromTable(obj2)

putAway(obj2)

K-:

nil

Since the planner does not initially know whether obj2 is open or not it includes a sense-open action in
the plan. The plan then branches on the two possible outcomes of open(obj2). If open(obj2) is true (the
K+ branch) then obj2 is grasped and removed from the table; if open(obj2) is false (the K- branch) then
no further action is taken. Since the planner initially knows that obj1 is not open, this object does not need
to be removed from the table.

3.3 Example 3

The planner does not initially know the state of open(obj1) and open(obj2).

Plan:

sense-open(obj1)

sense-open(obj2)

branch(open(obj2))

K+:

branch(open(obj1))

K+:

graspA-fromTable(obj1)

putInto-objectOnTable(obj1,obj2)

graspD-fromTable(obj2)

putAway(obj2)

K-:

graspA-fromTable(obj2)

putAway(obj2)

K-:

branch(open(obj1))

K+:

graspA-fromTable(obj1)

putAway(obj1)

K-:

nil

Since the planner does not initially know whether obj1 or obj2 is open, it includes two sense-open
actions in the plan. It then considers each possible outcome of these actions by constructing a plan with four
branches (an initial branch point, followed by a second branch point along each of the top-level branches):
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(i) Along the K+/K+ branch where open(obj2) and open(obj1) are true, both objects are grasped and
put away as in Example 1.

(ii) Along the K+/K- branch where open(obj2) and ¬open(obj1) are true, object obj2 is grasped and
put away.

(iii) Along the K-/K+ branch where ¬open(obj2) and open(obj1) are true, object obj1 is grasped and
put away.

(iv) Along the K-/K- branch where ¬open(obj2) and ¬open(obj1) are true, no further action is taken.

4 Message passing protocol

In this section we describe a simple message passing protocol for exchanging information between the
robot/vision, memory, and planning levels. We begin by defining the kinds of messages that can be passed
between the system levels. We then describe a simple control architecture that is sufficient for our proposed
integration task, and provide some details of a communication library (supplied by UEDIN) that implements
this protocol.

4.1 Message definitions

We define a set of 10 messages that capture the interactions between the three levels of the system. Each
message is defined by its type and its content. A message’s type is simply its name or label. Depending
on the message type, a message may also contain specific content or data to be sent. The message passing
protocol we have defined is currently based on a point-to-point model, where each message is sent by a
particular system component to another component. Moreover, the message set is designed in such a way
that messages are (generally) defined in send/receive pairs so that only certain messages can be initiated by
a “sending” level, with an appropriate response being sent by the “receiving” level. The complete set of
messages is given in Table 2 and the send/receive message pairs are given in Table 3.2

4.2 Message passing control loop

The message passing protocol is initially driven by the robot/vision level of the system. Because of the
paired send/receive nature of our message set, the upper system levels are forced to coordinate their op-
erations in order to respond appropriately to lower-level messages. Currently, communication only takes
place between two “adjacent” levels of the system, i.e., the robot and memory, or the memory and planner
(see Figure 4). This means that all communication between the robot and planner must flow through the
memory level, which typically acts as a forwarding service, but may also observe or refine the flow of mes-
sages (see below). Because the message passing protocol is mainly driven by the robot level, the memory
and planning levels operate as message servers that respond to message queries. This protocol also permits
certain message exchanges between the planner and memory levels, however, that can interrupt the standard
robot-driven process. It is also worth noting that nothing in the implementation of the communication archi-
tecture prevents us from expanding this protocol in the future to permit direct point-to-point communication
between any two components of the system.

4.2.1 Robot-level control loop

At the robot level, the message-processing control loop follows a relatively simple repeating pattern where
the robot essentially drives the message-passing process and the upper levels of the system respond to

2The message set is still subject to change and may be expanded or streamlined in the future.
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MSG STATE UPDATE – Provide updated state information

Sender/Destination: Robot to Memory, or Memory to Planner

Content: World state specification

ACK STATE UPDATE – Acknowledge state update message

Sender/Destination: Planner to Memory, or Memory to Robot

Content: NONE

MSG ACTION REQUEST – Request a new action

Sender/Destination: Robot to Memory, or Memory to Planner

Content: NONE

ACK ACTION REQUEST – Acknowledge new action request for execution

Sender/Destination: Planner to Memory, or Memory to Robot

Content: NONE

MSG ACTION SUBMIT – Submit a new action for execution

Sender/Destination: Planner to Memory, or Memory to Robot

Content: Action specification

ACK ACTION SUBMIT – Acknowledge receipt of new action and start of action execution

Sender/Destination: Robot to Memory, or Memory to Planner

Content: NONE

MSG ACTION STOPPED – Provide alert that execution of last submitted action has stopped

Sender/Destination: Robot to Memory, or Memory to Planner

Content: Action execution return value (1 = success or 0 = failure).

ACK ACTION STOPPED – Acknowledge termination of last submitted action

Sender/Destination: Planner to Memory, or Memory to Robot

Content: NONE

MSG PLAN REQUEST – Request entire plan from planner

Sender/Destination: Memory to Planner

Content: NONE

MSG PLAN SUBMIT – Submit a complete plan

Sender/Destination: Planner to Memory

Content: Plan specification

Table 2: Available message types in the message passing protocol
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Message type sent Expected response
MSG STATE UPDATE ACK STATE UPDATE

MSG ACTION REQUEST ACK ACTION REQUEST

MSG ACTION SUBMIT ACK ACTION SUBMIT

MSG ACTION STOPPED ACK ACTION STOPPED

MSG PLAN REQUEST MSG PLAN SUBMIT

Table 3: Send/receive message pairs

Memory PlannerVision
Robot/

Table 4: Flow of messages between the three system levels

queries. The robot-level control loop defines a very simple synchronous cycle wherein a message is sent and
its acknowledgement is received before the next message can be sent. As a result, the robot only executes
one action at a time and provides updates on the state of the world before the next action begins.

At an abstract level, we see the interaction between the robot and the higher levels follow the RobotLevel-
ControlLoop pseudo code given in Figure 2(a). After an initial report on the world state, the main commu-
nication cycle consists of an action request by the robot, which is fulfilled by the upper levels (ultimately
the planner), an indication from the robot when the action has finished executing, followed by an update on
the new state of the world. Messages to and from the robot level all pass through the memory level. Thus, a
request made by the robot for a planning-level service (e.g., requesting a new action) will ultimately reach
the planner after being forwarded through the memory.

4.2.2 Memory-level control loop

Unlike the more tightly-regulated control loop of the robot level, communication at the memory level is
more loosely structured using a client-server architecture. In particular, the memory is able to respond to
requests from both the robot and the planner, as well as initiate certain messages of its own.

In most cases, the memory will initially act as a forwarding service that delivers messages from the
robot to the planner, and messages from the planner to the robot. One notable exception is the receipt
of MSG ACTION SUBMIT messages from the planner. Before forwarding such messages, the memory must
inspect the message contents to check for sensing actions, which may need to be refined. In the context
of the simple integration scenario described in this document, the memory must transform all sense-open
actions into poke or focus operations before passing them on to the robot. (In the future, the memory may
also be responsible for refining grasp operations specified by the planner. This protocol also supports a future
bottom-up role for the memory, where the middle level “abstracts” subsymbolic robot-level information into
a symbolic form understandable by the planner.)

The memory is also able to directly request information about the structure of a plan from the planner.
The planner will respond with a complete description of the current plan, which may be a conditional plan
with branches. The memory can then use this information as needed, for instance to help in its decision
making concerning refinement activities.

The pseudo code for the memory-level control algorithm is given in Figure 2(b).
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4.2.3 Planning-level control loop

The planning level control loop also operates in a client-server fashion, responding to messages sent from
the memory level (but typically originating from the robot level). The planning level is responsible for
constructing high-level plans and feeding the actions, one at a time, to the robot level through the memory
level. The planner also receives world state updates from the robot (again, through the memory) as well as
status reports as to the success or failure of performed actions.

The memory level is also able to interact with the planner to request a complete description of the
current plan. This part of the protocol provides the memory level with greater information about a plan’s
structure, which could be analysed in order to help direct future operations of the memory level, or refine
future actions sent to the robot. Future versions of the communication protocol may also allow the planner
to directly “push” such plan information to the memory, for instance as a result of replanning operations.
The general planning-level control algorithm is given in Figure 2(c).

The message passing architecture we have outlined has a number of advantages. First, the protocol
clearly separates the operations of the three system levels and the interactions between the levels, with the
memory level acting as a form of mediator or interpreter. For instance, this protocol allows for the possi-
bility of different content formats for messages flowing between the lower and upper levels of the system
(e.g., messages with subsymbolic information between the robot and memory, and messages with symbolic
information between the memory and planner). Also, future changes to the communication protocol involv-
ing one pair of levels need not force changes to the interaction of another pair of levels. Finally, we have
designed our message set to support much more complex and flexible control architectures, which might
arise in the future. For our initial integration tasks, however, the existing process we have outlined is more
than sufficient.

Direct link between SDU and UEDIN: In terms of the initial integration efforts between SDU and UEDIN,
the above protocol does not specify any major changes to existing work. Instead, the memory level can be
viewed as a message-forwarding module that holds the place of the full mid-level memory component, in
order to bring the existing SDU/UEDIN architecture in line with the protocol described here. Although this
module will simply pass messages to the other system levels, its addition should facilitate the inclusion of
a more fully-featured module into current integration efforts at a later date when a memory system is made
available. The necessary code for the message-forwarding module is provided as part of UEDIN’s supplied
communication library.

4.3 Socket communication library and sample code

For ease of implementation we have defined a set of C++ classes for manipulating message types and
message contents. These classes work in conjunction with a lightweight socket library (also written in C++)
that we have developed for Linux, to facilitate communication between system components.

At the code level, message types are chosen from a list of predefined enum types, and message contents
are simple C++ strings.3 Currently, the content of the MSG STATE UPDATE message must be a list of instan-
tiated properties from Section 2.3 that form the world state. Similarly, the action specification content of the
MSG ACTION SUBMIT message is a single instantiated action from Sections 2.1 or 2.2. The content of the
MSG PLAN SUBMIT message will be a plan similar to those in Section 3, but encoded as a Prolog-style list

3The current version of the communication library also defines messages for introducing new objects, new properties, and new
actions into the planning-level domain description. We are still in the process of extending the message passing protocol to include
these new message types and, thus, we have not included a discussion of these messages here. Such additions will appear in a future
version of this document.
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Proc RobotLevelControlLoop
Send: MSG STATE UPDATE; Receive: ACK STATE UPDATE;
while !termination loop

Send: MSG ACTION REQUEST; Receive: ACK ACTION REQUEST;
Receive: MSG ACTION SUBMIT; Send: ACK ACTION SUBMIT;
Send: MSG ACTION STOPPED; Receive: ACK ACTION STOPPED;
Send: MSG STATE UPDATE; Receive: ACK STATE UPDATE;

endLoop
endProc

(a)

Proc MemoryLevelControlLoop
while !termination loop

choose
Send: MSG PLAN REQUEST;

or
Wait for message receive;
case MSG ACTION SUBMIT:

if action is sense-open then
Replace sense-open with poke or focus operation;

endIf
Forward message;

case MSG PLAN SUBMIT:
Update memory with received plan;

case all other message types:
Forward message;

endChoose
endLoop

endProc
(b)

Proc PlannerLevelControlLoop
while !termination loop

Wait for message receive;
case MSG STATE UPDATE:

Update world model;
Send: ACK STATE UPDATE;

case MSG ACTION UPDATE:
Send: ACK ACTION REQUEST
Construct plan/get next action in plan;
Send: MSG ACTION SUBMIT; Receive: ACK ACTION SUBMIT;

case MSG ACTION STOPPED:
Process action success/failure;
Send: MSG ACTION SUBMIT;

case MSG PLAN REQUEST:
Construct plan/get entire plan;
Send: MSG PLAN SUBMIT;

endLoop
endProc

(c)

Figure 2: Message passing control algorithms
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(see Section 5 for an example). A plan iterator class is provided for inspecting the structure of conditional
plans in this format. (For more details, refer to the sample code provided with the socket library.)

For initial testing purposes we terminate a plan by having the planner send a MSG ACTION SUBMIT
message to the memory level in response to an action request, with the string "EOP" as its content. The
memory level will then pass this message on to the robot. Both the memory and robot levels must then send
a final ACK ACTION SUBMITmessage to the level above, at which point all system levels are free to terminate
communication. In the future, plan termination will force the suspension of the main control loop (i.e., the
planner will not send an action) until a new goal is given to the planner and a new plan is constructed.

The communication library is distributed with a set of sample programs that implement the basic mes-
sage passing protocol described in this document for the robot, memory, and planner components. These
programs focus solely on the communication interface, with little additional functionality. (For instance, the
memory level program simply forwards messages without “refining” sensing actions and always requests a
complete plan after the first robot level request for an action.) It is hoped that these programs can serve as
the basis for the development of more sophisticated modules that can simply be “plugged” into the commu-
nication architecture. A series of pregenerated plans are included with this software, however, to test the
message exchanges between the three levels.

5 Message passing example

To better understand the flow of messages between the three system levels, we consider the scenario in
Example 2, where the robot is tasked with the goal of clearing the open objects from a table. Figure 3 shows
the messages sent by the three levels during the execution of the first action, sense-open(obj2), in the
conditional plan constructed for Example 2 (i.e., one complete cycle of the robot-level control loop).

We note that the first message sent by the robot, MSG STATE UPDATE, provides the planner with its
initial description of the world. We assume that on initialization the robot/vision system will send such an
“unusually complete” world description, as a bootstrapping action. From the perspective of the planning
system such a message is no more than a particularly large state update, and requires no extra machinery.

Given an initial state description, the planner can construct a plan to achieve a given high-level goal.
The planner sends the actions in this plan to the robot/vision system one step at a time, through the memory,
in response to action requests. After the execution of each action the robot/vision system reports an update
of the world state back to the planner, again, through the memory. In Figure 3 these updates are described
in terms of state changes, however, we have agreed that state updates will initially include a complete (or as
near as possible to complete) description of the new world state.

For many of the messages sent in the system, the memory level acts as a forwarding service between
the robot and the planner. (In the future the memory may take on a more active role as a mediator or trans-
lator between the robot and planner.) One notable exception is the occurrence of the MSG ACTION SUBMIT
message. Since the action specified in this message is a sensing action, sense-open(obj2), the memory
refines this action by choosing between a poke and a focus operation. In this case, focus(obj2) is chosen
as the refined action and the modified message is forwarded to the robot.

Figure 3 also illustrates the results of a MSG PLAN REQUEST message from the memory to the planner.
In this case, the planner responds with a plan of the form:

[sense-open(obj2),branch(open(obj2),[graspA-fromTable(obj2),putAway(obj2)],[])].

This plan corresponds to the complete conditional plan given in Example 2, encoded in a Prolog-style list
format for transmission using the communication library.4

4The communication library provides a helper class for processing plans in the compact list format.

Page 21 of 42



We note that according to the message passing protocol, MSG PLAN REQUEST messages could be sent by
the memory at other times during its control loop, or not at all, producing slightly different message orderings
than those shown in Figure 3. (In the sample code the memory sends a MSG PLAN REQUEST after receipt of
the first MSG ACTION SUBMITmessage from the planner.) Similarly, alternate message orderings—including
messages sent in parallel from different levels—could also arise since the robot, memory, and planner all
run as independent processes (e.g., message 13 could be sent at the same time as message 11, or even before
it). The implementation of our message passing protocol ensures that such ordering differences do not lead
to problems like deadlock, however.

6 Plan execution and monitoring

Although we are able to construct plans for the proposed object manipulation scenario, and communicate
those plans to the other system levels using the message passing protocol, we must still be concerned with
how plan failure information should be exchanged between the planner and the other system levels.

In discussions with SDU we have identified the need for a high-level mechanism that would operate
closely with the planner in order to monitor plan execution and control replanning/resensing activities. A
plan execution monitor, currently being built by UEDIN, will be responsible for assessing both action failure
and unexpected state information that result from feedback provided to the planner from the execution of
planned actions at the robot level. The difference between predicted and actual state information will be
used to decide between (i) continuing the execution of an existing plan, (ii) resensing activities that target
a portion of a scene at a higher resolution to produce a more detailed state report, and (iii) replanning from
new/unexpected states.

In support of the resensing activities described in (ii), we have agreed in discussion with SDU that the
plan monitor could initially provide the vision system (possibly through the memory level) with a list of the
objects that were “relevant” to the execution of the action that is reported to have failed, as based on the
high-level action description. Using this information, the vision system could then target particular parts
of the scene with greater resolution in order to reevaluate the sensors that provide information about these
objects. This operation may lead to new information about the world state and, possibly (as future work),
an updated high-level action model.

In terms of the integration scenario described in this document, the plan execution monitor will have
the added task of managing the execution of plans with conditional branches. Plan branches result from the
inclusion of explicit sensing operations (like sense-open) into a plan. When a sensing action is ultimately
executed at the robot level, the result of the sensing will be returned to the planner through the memory level,
as part of the standard state update cycle. When faced with a conditional branch point in a plan, the plan
execution monitor will then make a decision as to the correct plan branch it should execute, based on the
current state information. If such information is unavailable, for instance due to a failure at the robot/vision
level, resensing or replanning activities will be triggered as above. It is important to note that the robot/vision
system will never be aware of the conditional nature of a plan, and will never receive a “branch” operation
like those shown in the example plans above. From the point of view of the robot, it will only receive a
sequential stream of actions. This will also be the case for the memory level, except when a complete plan
is requested. In such situations a fully-specified conditional plan will be transmitted to the memory level.

Initially, we expect that most plans will fail early, and often, and that most monitoring operations will
trigger replanning activities. Our goal is to implement the basic framework for the plan monitor in the short
term, in order to evaluate its effectiveness on plans being executed in the actual robot environment.
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ROBOT MEMORY PLANNER
1. MSG STATE UPDATE:

"ontable(obj1),...,!clear(obj1)"

2. (Forward to planner) MSG STATE UPDATE:
"ontable(obj1),...,!clear(obj1)"

3. ACK STATE UPDATE
4. (Forward to robot) ACK STATE UPDATE
5. MSG ACTION REQUEST
6. (Forward to planner) MSG ACTION REQUEST
7. ACK ACTION REQUEST
8. (Forward to robot) ACK ACTION REQUEST
9. MSG ACTION SUBMIT:

"sense-open(obj2)"

10. Refine sense-open(obj2) to focus(obj2)
(Forward to robot) MSG ACTION SUBMIT:
"focus(obj2)"

11. (Send to planner) MSG PLAN REQUEST
12. MSG PLAN SUBMIT:

"[sense-open(obj2),

branch(open(obj2),

[graspA-fromTable(obj2),

putAway(obj2)], [])]"

13. ACK ACTION SUBMIT
14. (Forward to planner) ACK ACTION SUBMIT
15. MSG ACTION STOPPED:

"1"

16. (Forward to planner) MSG ACTION STOPPED:
"1"

17. ACK ACTION STOPPED
18. (Forward to robot) ACK ACTION STOPPED
19. MSG STATE UPDATE:

"open(obj2)"

20. (Forward to planner) MSG STATE UPDATE:
"open(obj2)"

21. ACK STATE UPDATE
22. (Forward to robot) ACK STATE UPDATE
23. ... ... ...

Figure 3: Example of messages sent during the execution of the sense-open(obj2) action in Example 2
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Lower system levels
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Figure 4: Dialogue planning as an instance of standard action planning

7 Towards language and communication through dialogue planning

In this document we have primarily focused on the robot/memory/planner integration task, with an emphasis
towards standard action planning. As outlined in the objectives of workpackage WP5, the mechanisms
supporting the symbolic representation of action and ancillary planning apparatus will be generalised to
language and communication, enabling planning with communicative acts. Our first step towards this goal—
dialogue planning based on speech acts—is outlined in [Steedman and Petrick, 2007] and describes a set
of extensions needed to adapt the Linear Dynamic Event Calculus (LDEC) [Steedman, 1997, 2002] to
represent and reason about dialogue, using insights from the PKS planner and a representational unit called
a knowledge fluent [Demolombe and Pozos Parra, 2000].

One of the important insights in [Steedman and Petrick, 2007] is that the problem of planning dialogue
moves can be viewed as an instance of the more general AI problem of planning with incomplete information
and sensing. By incorporating ideas from PKS to the representation of dialogue acts in LDEC (our high-
level symbolic representation of OACs), we are able to demonstrate how our existing formalisms and system
components can be applied to the problem of planning mixed-initiative collaborative discourse.

We are currently in the process of implementing a series of extensions to PKS to support dialogue plan-
ning. Our existing planning and plan execution mechanisms will remain fundamentally unchanged, meaning
dialogue planning can be viewed as an instance of the same basic mechanisms used for standard action plan-
ning (see Figure 4). However, our extensions will also enable the planner to reason (in a limited sense) about
the beliefs of multiple agents, model certain linguistic notions like common ground, and represent speech
acts like “asking” and “telling”, all of which are required for successful multi-agent discourse. More details
about the dialogue planning component will be described in a future version of this document.

8 Discussion

• All high-level grasp operators abstract the task of grasping into single action steps. We may extend the
planner’s representation to provide “finer-grained” actions that split the act of grasping into a sequence
of steps like positionForGraspA(obj1), graspA-fromTable(obj1), lift(obj1). Such actions
would provide more detailed execution instructions to the robot system and, on failure, the robot
system could more accurately indicate to the planner the specific components of the grasp that failed.

• In this document we only consider the refinement of sense-open actions at the memory level. In the
future, we could also accommodate the refinement of grasp actions. For instance, the planner could
generate plans with abstract actions like grasp(obj1). It would then be the task of the memory level
to make a decision as to the choice of grasping option and transform such actions into more specific
robot-level actions like graspA(obj1) or graspD(obj1).
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• As future work, we believe that a more complex interaction between the robot, memory, and planning
levels might be desirable. For instance, we may want the planning level to have the ability to terminate
an action during its execution if it is having an undesirable outcome, or alert the memory about a
replanning operation. This would require a more asynchronous (“push”) architecture, including state
update messages from the robot during action execution, as well as the ability to issue halt commands
from the planning level. Moreover, we also see the possibility of a more comprehensive “bottom-up”
role for the memory level, as an abstraction component that mediates between the robot/vision level
and the high-level planner. We believe that such extensions will not require a significant reworking of
the message passing protocol, but only slight extensions to the message set and control algorithm.

• We also envision a more significant extension to the message passing protocol to support the addition
of new objects, new properties, and new actions (i.e., “the birth of an object/property/action”) into
the high-level planning representation as a result of memory-level reasoning. Partial support for such
messages already exists at the code level of the socket library, however, future versions of the message
passing protocol will more fully specify the operation of these message types.

• There are a number of places where incompleteness of information in the world state update can come
into the system. Some of these are endemic to the interaction of a resource bounded agent working
in a real world setting. As a result, we believe that we must seriously examine the limitations of
the system’s capability for providing complete state updates, as well as the traditional AI assumption
that we have a complete model of the state changes that result from executed actions. This is a very
interesting area for future work and something we are committed to looking at in detail. Initially,
however, we will simply ensure that our action models and state updates are complete and correct.

• We have begun working with the University of Karlsruhe (UniKarl) in an effort to incorporate the
UEDIN communication architecture and planning components onto the ARMAR robot platform. Ini-
tial integration work has started and we are in the process of defining a new scenario that takes into
consideration ARMAR’s capabilities (e.g., multiple grippers, different grasping options, etc.). While
this new scenario will extend the SDU/UL/UEDIN scenario described in this document, the core sce-
nario (and action representation) will be essentially unchanged. Moreover, we believe that the com-
munication and planning architecture will transfer to the ARMAR platform without change, since
these components provide an abstraction layer above the robot level.
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Abstract— We investigate the problem of learning action
effects in STRIPS and ADL planning domains. Our approach is
based on a kernel perceptron learning model, where action and
state information is encoded in a compact vector representation
as input to the learning mechanism, and resulting state changes
are produced as output. Empirical results of our approach
indicate efficient training and prediction times, with low average
error rates (< 3%) when tested on STRIPS and ADL versions of
an object manipulation scenario. This work is part of a project
to integrate machine learning techniques with a planning
system, as part of a larger cognitive architecture linking a high-
level reasoning component with a low-level robot/vision system.

I. INTRODUCTION

Artificial intelligence planning systems provide a powerful
tool for controlling a cognitive agent’s actions in both real-
world and artificial domains. A drawback of such approaches
is that they require a model of the dynamics of the domain
in which the agent will operate. In real-world domains, such
models may not be readily available, or may not properly
account for unexpected subtleties that arise in the world when
a model is constructed a priori by hand. An alternative, more
desirable approach is to endow the agent with the ability to
learn from its environment in order to induce a world model,
and the effects of its actions, from its experiences.

Using machine learning techniques to learn action models
is not a new idea. Prior approaches have applied inductive
learning [1] and directed experimentation [2] techniques to
data represented in first-order logic, without noise or non-
determinism. Other approaches have used schema learning to
learn probabilistic action rules operating on discrete-valued
sensor data [3]. Also, k-means clustering of equivalence
classes, followed by extraction of sensor data features, has
been used to train support vector machines (SVMs) to predict
deterministic action effects in a given context [4]. Recently,
attention has shifted to methods which exploit relational
structure in order to improve speed and generalisation per-
formance. For instance, [5] generates and refines rules using
heuristic search guided by maximum likelihood, and shows
that relational deictic rules are learnt more effectively than
propositional or purely relational rules. Similarly, [6] uses
a logical inference algorithm to efficiently learn rules in
relational environments.

Our approach is based on a connectionist learning model,
namely kernel perceptron learning [7], [8]. Such methods

are particularly useful since they can be shown to provide
good performance, in terms of both the training time and
the quality of the learnt models. We focus on one aspect
of the learning problem in this paper, namely learning the
effects of an agent’s actions, given a set of actions and
their preconditions. Currently, our learning method assumes
a fully observable world for training purposes (i.e., complete
world state descriptions), however, it can be made much more
general. For instance, our approach can be extended to handle
noisy data [9], and we believe it can also be used to learn
action preconditions and more complex representations.

Since we would like to apply our techniques to real
planning systems, we will focus on two different types
of action representations commonly used in the planning
community: STRIPS actions [10] and ADL actions with
conditional effects [11]. We consider deterministic domains
with actions that affect a subset of the properties (predicates)
that make up the world state. In our approach, we use a
representation that makes efficient use of predicates, and
follow the approach of [5] where deictic referencing is
used to reduce the complexity of the representation. We
demonstrate that kernel perceptrons can be used successfully
to learn the dynamics of an object manipulation domain, in
a manner that is independent of the number of objects in the
world, making it suitable for large planning scenarios.

This paper is organized as follows. In Section II we discuss
the planning representations we are interested in learning. In
Section III we describe kernel perceptrons and how we use
them to learn action effects. In Section IV we present the
results of our learning experiments. In Sections V and VI
we discuss our results and our plans to incorporate these
techniques into a cognitive architecture linking a high-level
planning system to a low-level robot/vision system.

II. ACTION REPRESENTATIONS FOR PLANNING

The action representations we will use are based on the
logical representations typically found in planning systems.
A domain D is defined as a tuple D = 〈O,P,A〉, where O
is a finite set of world objects, P is a finite set of predicate
(relation) symbols, and A is a finite set of actions. Each
predicate and action also has an associated arity. Predicates
of arity 0 are referred to as object independent properties,
while those of arity at least 1 are object dependent properties.
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TABLE I
STRIPS ACTIONS FROM AN OBJECT MANIPULATION DOMAIN

Action Preconditions Effects
graspA-table(x) clear(x) add(ingripper(x))

gripperempty del(gripperempty)
ontable(x) del(ontable(x))

graspA-stack(x, y, z) clear(x) add(ingripper(x))
gripperempty add(clear(y))
isin(x, y) del(gripperempty)
instack(x, z) del(isin(x, y))

del(instack(x, z))

A fluent is an expression p(c1, c2, . . . , cn), where p ∈ P ,
n is the arity of p, and each ci ∈ O. A state is any set of
fluents, and S is the set of all possible states. For any state
s ∈ S, a fluent p is true at s iff p ∈ s. The negation of a
fluent, ¬p, is true at s (also, p is false at s) iff p 6∈ s.

Each action a ∈ A is defined by a set of preconditions,
Prea, and a set of effects, Effa. Prea can be any set of fluents
and negated fluents. We consider two different kinds of
action effects, both of which are commonly found in planning
domains. In STRIPS actions [10], each effect e ∈ Effa has
the form add(p) or del(p), where p is any fluent. In ADL
actions [11], each effect e ∈ Effa is either a standard STRIPS
effect, or a conditional effect of the form Ce ⇒ add(p) or
Ce ⇒ del(p). Here, Ce is any set of fluents and negated
fluents, and is referred to as the secondary preconditions
of effect e. Action preconditions and effects can also be
parametrized. An action with all of its parameters replaced
with objects from O is said to be an action instance.

Action instances are state transforming. Given a state s
and an action instance A, A is applicable (or executable) at
s iff each precondition p ∈ PreA is true at s. An applicable
action produces a new state s′ that is identical to s, but
updated with the effects of A as follows: for each e ∈ EffA,
(i) if e is an effect add(p) then p is added to s′, (ii) if e is an
effect del(p) then p is removed from s′, (iii) if e is an effect
Ci ⇒ add(p) then p is added to s′ provided all fluents of Ci

are true at s, and (iv) if e is an effect Ci ⇒ del(p) then p is
removed from s provided the fluents of Ci are true at s.

In this paper we will focus on a specific object manip-
ulation scenario, represented as a simple planning domain,
where a robot has the ability to grasp, stack, and remove
objects from a table environment.1 For instance, the domain
includes actions like graspA-table(x) (“grasp object x from
the table using grasp type A”), graspA-stack(x, y, z) (“grasp
object x from object y in a stack with z at its base using grasp
type A”), and putAway(x) (“put object x away on a shelf”).
The domain also includes properties like gripperempty (“the
robot’s gripper is empty”), clear(x) (“object x has no objects
on top of it”), ontable(x) (“object x is on the table”),
and isin(x, y) (“object x is in object y”). As we’ll see in
Section V, this domain is motivated by work that aims to link
a robot/vision system with a planner, within an architecture
where the robot can learn and act [12], [13].

1This domain is similar to Blocksworld, but has been extended to include
more complex grasping actions and management of limited resources.

Input vector Corresponding action/predicate

0 graspA-table(obj1)
1 graspA-stack(obj1, obj2, obj3)
0 graspB-table(obj1)
0 graspD-table(obj1)
0 putInto-objectOnTable(obj1, obj2)
0 putInto-stack(obj1, obj2)
0 putAway(obj1)

9>>>>>>>=>>>>>>>;
Actions

1 gripperempty
. . .

ff
Object independent
properties

0 ontable
1 clear
0 isin-obj1
1 isin-obj2

. . .

9>>>=>>>;
Properties related
to grasped object (1)

1 ontable
0 clear
0 isin-obj1
0 isin-obj2

. . .

9>>>=>>>;
Properties related
to grasped object (2)

0 ontable
0 clear
0 isin-obj1
0 isin-obj2

. . .

9>>>=>>>;
Properties related
to grasped object (3)

Fig. 1. Representation of an action and state as a binary input vector

Table I shows the encoding of two STRIPS actions in
our object manipulation domain, graspA-table and graspA-
stack. Actions such as these provide a straightforward
representation of the manipulation tasks that can be per-
formed. For instance, if we have a state s defined by the
set {clear(obj1), clear(obj2), gripperempty, ontable(obj1),
ontable(obj2)}, then the action instance graspA-table(obj1)
is applicable at s. Applying the effects of this action instance
to s produces the new state s′ = {clear(obj1), clear(obj2),
ingripper(obj1), ontable(obj2)}. We will also consider an
ADL version of this domain in our testing.

III. KERNEL PERCEPTRON ACTION LEARNING

The planning actions in the previous section give rise to
a simple state transition system, where the application of
an action at a state produces a new state. In this model,
an action’s effects determine the changes made to a state
during execution. Since a state is simply a set of fluents, the
transition between states is simply the difference between
two sets of fluents. Our goal in this section is to develop an
approach that learns these differences between states.

Learning the complete dynamics of a planning domain
requires the ability to learn both the preconditions needed to
perform an action, and the effects of the action at a particular
state. In this paper, we will only focus on the effects
problem, and will simply assume that the action set and
action preconditions are supplied to our learning mechanism
as part of the input. (We also believe our approach extends to
the problem of learning action preconditions; see Section V).

The specific learning method we will use is a connectionist
machine learning model based on kernel perceptrons [7], [8].
Kernel perceptrons obtain reasonable accuracy at acceptable
training and prediction speeds, allowing us to use this
approach in practical planning applications. Alternative non-
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linear classifiers, such as SVMs, can be substantially slower
[14] while performance is not guaranteed to be better [15].

In order to effectively use kernel perceptrons, we must
consider how best to encode our learning problem in terms
of the inputs and outputs of the learning mechanism. We
consider each of these problems in turn, as well as the overall
operation of our learning approach.

A. Input representation

The input to our learning mechanism uses a vector rep-
resentation that encodes a description of the action being
performed and the state at which the action is applied. For
each action in the domain, the vector includes an element
that is set to 1 if the action is to be performed, or 0
otherwise. For states, we consider object-independent and
object-dependent properties separately. In the case of object-
independent properties (e.g., gripperempty), the vector in-
cludes a single element for each property of the domain,
representing the truth value of that property (fluent) at the
state being considered: the element is set to 1 if the fluent
is true at the state, or 0 if the fluent is false at the state.

For object-dependent properties, we avoid representing all
possible fluents, which could lead to very large input vectors.
Instead, we consider each property on a per object basis,
by representing only those properties of the objects directly
involved in the action being applied, and the objects related
in some way to those objects. Additionally, a form of deictic
representation is used (similar to [5]), where objects are
specified in terms of their roles in the action, or their roles in
a predicate with another object. For example, in Table I the
only object involved in graspA-table is the “grasped object”
x. In graspA-stack the objects include the “grasped object”
x, and the related objects “object containing the grasped
object” y and “object at base of grasped object’s stack” z.

Rather than maintaining a “slot” in the input vector for
each possible role, roles are allowed to overlap. The only
constraint is that two objects with the same role in the
same action in two different instances of the action must
always be represented at the same slot in the input vector.
Thus, each object is represented by a set of inputs, one
for each object-specific predicate (such as ingripper), and
each relation with another object (such as isin). To bind
relations to the correct objects, extra predicates are used
which relate the current object to one or more other objects,
identified by their slot (e.g., isin-obj1, isin-obj2, etc.). This
representation significantly reduces the number of inputs to
the learning mechanism, and is dependent on the complexity
of the actions and relations between objects, rather than the
number of objects in the domain.

The final input vector has the form: 〈actions, object-
independent properties, object slot 1 predicates, object slot 2
predicates, . . . , object slot n predicates〉. Fig. 1 shows an ex-
ample of an input vector for an action-state pair. In this case,
the action performed is graspA-stack. The “grasped object”
properties are represented in the object obj1 slot, while the
“object below the grasped object” properties are represented
in the object obj2 slot. Here, clear(obj1), isin(obj1, obj2)

and ontable(obj2) are shown to be true. No further object
properties are included in the state in this example, and so
all the remaining bits are set to 0.

B. Output representation

The output of the learning mechanism is a prediction of
the set of domain properties that will change if the given
action is performed at the given state. As with the input, this
is encoded as a binary vector, with each output representing
a state property: the output value is 1 if the property changes
and 0 if it does not. As with the input vector, object-
independent properties are represented by single elements,
while object-specific properties are again represented on a
per-object basis in slots. Thus, the output vector has the form:
〈object-independent properties, object slot 1 predicates, ob-
ject slot 2 predicates, . . . , object slot n predicates〉.

C. Learning

The task of the learning mechanism is to learn the associa-
tions between action-precondition pairs and their effects, that
is, rules of the form 〈A, PreA〉 → EffA. As a result of the
form of the planning actions we allow, effects are assumed
to be deterministic and disjunctive effects (i.e., effects of the
form “either p1 or p2 changes”) are not allowed. Instead,
all effects involve either conjunctions of predicates (in the
case of STRIPS) or conjunctions of predicates conditioned
on other conjunctions of predicates (in the case of ADL).
This means that it is sufficient to learn the rule for each
effect predicate separately. Thus, we can treat the learning
problem as a set of binary classification problems, one for
each (conditional) effect predicate.

A simple, fast, binary classifier that can be used to address
our particular learning problem is the perceptron [16]. The
perceptron maintains a weight vector w which is adjusted
at each training step. The i-th input vector xi ∈ {0, 1}n in
a class y ∈ {−1, 1} is classified by the perceptron using
the decision function f(xi) = sgn(〈w · xi〉). If f(xi) is
not the correct class then w is set to w + yx; if f(xi) is
correct then w is left unchanged. Provided the data is linearly
separable, the perceptron algorithm is guaranteed to converge
on a solution in a finite number of steps [17], [18]. If the
data is not linearly separable then the algorithm oscillates,
changing w at each misclassified input vector.

One solution for non-linearly separable data is to map the
input feature space into a higher-dimensional space where the
data is linearly separable. However, an explicit mapping leads
to a massive expansion in the number of features which may
make the classification problem computationally infeasible.
Instead, an implicit mapping can be achieved by applying
the kernel trick to the perceptron algorithm [8]. The kernel
trick is applied by noting that the decision function can be
written in terms of the dot product of the input vectors:

f(xi) = sgn(〈w · xi〉) = sgn(
n∑

j=1

αjyj〈xj · xi〉),

where αj is the number of times the j-th example has been
misclassified by the perceptron. By replacing the dot product
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with a kernel function k(xi,xj) which calculates 〈φ(xi) ·
φ(xj)〉 for some mapping φ, the perceptron algorithm can
be run in higher dimensional space without ever requiring
the mapping to be explicitly calculated.

Since in general the problem of learning action effects is
not linearly separable, the kernel perceptron is an appropriate
choice for this problem. An ideal kernel is one which allows
the perceptron algorithm to run over the feature space of all
conjunctions of features in the original input space, as this
would allow an accurate representation of the exact conjunc-
tion of features (action and preconditions) corresponding to
a particular effect. Such a kernel is k(x, y) = 2same(x,y),
where same(x, y) is the number of bits with the same value
in both x and y [19], [20]. As we’ll see in Section V, we
also believe our approach can be made much more general,
letting us relax some of our earlier restrictions.

IV. EMPIRICAL RESULTS

In this section we describe the results of testing our
learning procedure on the object manipulation domain de-
scribed in Section II. Data was simulated from the domain
description, for both a purely STRIPS version of the actions
and an ADL version with context-dependent action effects.
(For example, the two STRIPS actions in Table I were
merged into a single ADL action, along with other changes.)
Each case was generated by randomly selecting an action,
and setting the inputs for the preconditions required for the
action to 1. The action input was set to 1, and all other
action inputs to 0. The remaining irrelevant inputs were
used to create separate training and testing input data sets.
For the training data, half of the inputs in each instance
were randomly set to 0 or 1, with the other half all set
to 0 (vice versa for the testing data). Outputs were set to
1 if the feature changed as a result of the action and 0 if
not. Overall, 3000 training and 500 testing examples were
generated with the (strong) assumptions that (i) no noise was
present in the training/testing set, and (ii) no irrelevant output
data was included in the training examples (i.e., only relevant
changes were provided). To determine an error bound on our
results, 10 runs with different randomly generated training
and testing sets were used. Our testing environment was a
2.4 GHz quad-core system with 6 Gb of RAM. All times
were measured for Matlab 7.2.0.294.

The results of our testing are shown in Fig. 2. Overall,
the kernel perceptron learnt the training data and performed
well on the testing data with a low error rate. Fig. 2(a) shows
the error rate for the learnt STRIPS actions, while Fig. 2(b)
shows the error rate for the ADL actions. In both cases,
the average error dropped to less than 3% after 700 training
examples. The standard perceptron error rate, included for
comparison, shows significantly worse performance: over
5% error after 3000 training examples. Fig. 2(c) shows the
training time for both STRIPS and ADL actions (for 1 bit of
the effect vector), while Fig. 2(d) shows the prediction time
(for 1 bit of 1 prediction). In both cases, the kernel perceptron
method is quite efficient. Perhaps the most surprising result
is that there is little difference between the training and

prediction times of STRIPS actions, compared with those
for ADL actions, at least for our particular testing domain.
In general, performance on ADL domains will always take
longer than STRIPS domains, particularly when the condi-
tional effect training examples are very dissimilar to the other
training examples available. (The ADL problem is slightly
more difficult, even in our domain.) Additional testing is
needed on more complex domains, to determine to what
extent the STRIPS and ADL results remain similar.

In our implementation, performing training or prediction
consists of two steps: calculating the kernel matrix, followed
by either the perceptron algorithm loop or the decision func-
tion calculation, respectively. The kernel matrix calculation
does not vary with the difficulty of the problem. Calculating
the kernel matrix for training is O(n2), where n is the
number of training examples. However, only around 700
examples are required to achieve sufficient generalisation
for planning in the test domain, corresponding to under
0.25 seconds to calculate the kernel matrix. Similarly for
prediction, calculating the kernel matrix is O(mn), where n
is the number of training examples and m the number of
testing examples. For 700 training examples and 500 testing
examples the computation time is also below 0.25 seconds.

For the second step, estimates of O(n2) for training and
O(n) for prediction are valid for the worst case, where the
kernel matrix entries for every pair of training examples
have to be used in the perceptron algorithm loop (so every
training example contributes to the weight vector), and where
kernel matrix entries for every training example paired with
every test example have to be used for the decision function
calculation (again, when every training example contributes
to the weight vector). The overall time is also affected by
such factors as the number of bits in the input vector (which
affects every calculations of the kernel matrix entries), the
number of iterations the perceptron algorithm has to make
(which affects training), and the number of training vectors
which contribute to the weight vector (which affects both
training and prediction). For the testing domain, however,
we have almost linear training time and constant prediction
time in the number of training examples.

V. DISCUSSION

The results of our experiments show that kernel percep-
trons are able to learn the dynamics of a planning domain.
In order to test the feasibility of our approach under real
planning conditions, we are currently integrating our learning
mechanism with the PKS (Planning with Knowledge and
Sensing) planner [21], [22]. In this case, the planner uses
the network as part of its action model, by querying the
network during plan construction to determine action effects
at particular states. Since planning systems traditionally use
efficient rule-based action models, we must still evaluate the
extra overhead resulting from our network-based approach.

We also envision a more incremental approach to train and
use our learning mechanism, as a component of a cognitive
architecture of the kind reported in [12], where a low-level
robot/vision system is linked to a high-level planning system.
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Fig. 2. Results from experiments in the object manipulation domain

Rather than employing a completely offline training phase
for our network, we foresee a more interactive approach,
where online training data is generated from the robot’s
initial experiences in its environment, and the planner is able
to use early action models to generate plans (albeit, lower
quality plans). As more training data becomes available, plan
quality should also increase, allowing the robot to learn how
better to act. An existing integration project that uses the
object manipulation scenario described in this paper, may
provide a useful testbed for our learning techniques [13].

Testing in a robot/planning environment will also allow
us to investigate the effectiveness of our learning method
in practice. For instance, although the error rates for our
learnt actions are low (< 3%), it is unclear what effect
this will have on the quality of plans constructed for this
domain. Since replanning often has to take place in real-
world robot domains, having a perfect plan is not always
necessary. On the other hand, our method also assumes
deterministic outcomes of actions, whereas some actions
might better be modelled with probabilistic outcomes in this

environment. In this case, we may again be able to use
replanning techniques to some extent, but may also have to
consider more substantial changes to our approach.

Currently, our approach makes certain assumptions that
are not always realistic, especially when data is provided by
real-world systems. For instance, we assume that there is no
noise in the input or output data, and no irrelevant data in the
training outcomes. We can relax the first assumption about
noisy data, by using a noise-tolerant variant of the perceptron
algorithm, such as adding a margin term [9]. We also believe
such techniques can be used to handle irrelevant output
data, since by definition such changes behave like noise. (In
particular, irrelevant outputs correspond to irrelevant state
changes in the action effects.) Otherwise, we run the risk of
having perceptrons that fail to converge, or produce error-
prone output when trying to predict such cases.

Representationally, there is also an issue with predicting
changes to domain properties that are dependent on more
primitive properties, as such changes can be wider-reaching
than changes to the purely primitive properties themselves.
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For example, our object manipulation scenario allows for
situations where the robot can combine two existing stacks
of objects into one large tower, by gripping the base object
of one stack and releasing it at the top of another stack. In
our initial planning representation, a predicate instack(x, y)
is used to indicate that a block x is in a stack with y at
its base. Thus, after combining two stacks, instack must
be updated for all objects in the “gripped” stack, to reflect
the new base object of the single tower. In order to update
instack correctly using our approach, the output would have
to represent all of the objects in both stacks. Currently, only
objects directly acted on, or related to directly acted on
objects, are represented. Rather than attempt to represent all
the objects required, it is easier to treat instack as a derived
predicate defined in terms of more primitive properties (e.g.,
isin and ontable). This is also the approach taken in [5],
where derived “concepts” are used in the rule antecedents
but only primitive properties are used in the outcomes.

Additional testing is needed to determine the scalability of
our approach on more difficult planning domains, although
we expect that it should scale well with the number of
predicates and actions. We also plan to compare our re-
sults to those of other classifiers, such as SVMs. We are
currently investigating extensions to our approach to learn
more comprehensive, and more complex, action models. For
instance, we believe that our kernel perceptron approach
could also be used to learn action preconditions, provided
it is possible to only represent a small number of objects in
the state at a time. Such an extension would require a means
of choosing which objects to consider, and may ultimately
need to be learnt. An attentional mechanism of some sort
may be of help in this task [23], [5]. We also believe that
our approach can be adapted to learn more sophisticated
action representations, such as those used by PKS to describe
knowledge and sensing. Since PKS’s representation is based
on an extended version of STRIPS/ADL, many of its features
are similar to those that can already be learnt by our methods.

VI. CONCLUSIONS

In this paper we presented a mechanism based on kernel
perceptrons, to address the problem of learning STRIPS
and ADL action effects for planning domains. Overall, our
approach demonstrated efficient performance on our testing
sets, with low average error rates (< 3%) for the learnt
action effects. This work is also part of a larger cognitive
architecture linking a high-level reasoning component with a
low-level robot/vision system. We are currently in the process
of integrating our learning method with the PKS planning
system, and testing our approach on more complex planning
domains including a real-world robot environment [13].
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Representation and Integration: Combining Robot
Control, High-Level Planning, and Action Learning
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Norbert Krüger2, and Mark Steedman1

Abstract. We describe an approach to integrated robot control,
high-level planning, and action effect learning that attempts to over-
come the representational difficulties that exist between these diverse
areas. Our approach combines ideas from robot vision, knowledge-
level planning, and connectionist machine learning, and focuses on
the representational needs of these components. We also make use of
a simple representational unit called an instantiated state transition
fragment (ISTF) and a related structure called an object-action com-
plex (OAC). The goal of this work is a general approach for inducing
high-level action specifications, suitable for planning, from a robot’s
interactions with the world. We present a detailed overview of our
approach and show how it supports the learning of certain aspects of
a high-level representation from low-level world state information.

1 INTRODUCTION AND MOTIVATION
The problem of integrating low-level robot systems with high-level
symbolic planners introduces significant representational difficulties
that must first be overcome. Since the requirements for robot-level
control and vision tend to be different from that of traditional plan-
ning, neither representation is usually sufficient to accommodate the
needs of an integrated system. Overcoming these representational
differences is a necessary challenge, however, since both levels seem
to be required to produce human-like behaviour.

In general, robot systems tend to use representations based on vec-
tors of continuous values, which denote 3D spatial coordinates, joint
angles, force vectors, or other world-level features that require real-
valued parameters [20]. Such representations allow system builders
to succinctly specify robot behaviour since most of the computa-
tions required for low-level robot control are effectively captured
as continuous transforms of continuous vectors over time. On the
other hand, high-level planning systems typically use representations
based on discrete, symbolic models of objects, properties, and ac-
tions, described in logical languages (e.g., [5, 23, 16, 27, 31]). In-
stead of modelling low-level continuous processes, these representa-
tions capture the dynamics of the world or the agent’s knowledge at
a more abstract level, for instance by characterizing the state changes
that result from deliberate, planned action.

In this paper we describe an approach for integrating a robot/vision
system with a high-level planner, that attempts to overcome the rep-
resentational challenges described above. In particular, our approach
gives rise to a system that is capable of automatically inducing certain

1 School of Informatics, University of Edinburgh,Edinburgh EH8 9LW, Scot-
land, United Kingdom, contact e-mail: rpetrick@inf.ed.ac.uk.

2 The Maersk Mc-Kinney Moller Institute, University of Southern Denmark,
DK-5230 Odense M, Denmark.

aspects of a high-level representation suitable for planning, from the
robot’s interactions with the real world using basic “reflex” actions.
This paper describes work currently in progress. As such, we do not
address the entire problem of learning action representations, but in-
stead focus on two important parts: object learning and action effect
learning. Our approach uses a simple representational unit called an
instantiated state transition fragment (ISTF) and a related structure
called an object-action complex (OAC) [7], both of which arise nat-
urally from the robot’s interaction with the world—and world ob-
jects in particular. These notions also help us address certain control
problems, for instance the relationship between high-level sensing
actions and their execution by the robot, and representational issues
that arise at different levels of our system. Although we only con-
sider a portion of a larger learning problem, we are also interested
in implementing these ideas within a framework that includes the
lowest-level control mechanisms right up to the high-level reason-
ing components. Finally, we believe our approach is general and that
these ideas can be successfully transferred to other robot platforms
and planners, with capabilities other than those we describe here.

To illustrate our approach, we will consider a simple robot ma-
nipulation scenario throughout this paper. This domain consists of
a robot with a gripper, a table with a number of objects on it, and
a “shelf” (a special region of the table). The robot has a camera to
view the objects in the world but does not initially have knowledge
of those objects. Instead, world knowledge must be provided by the
vision system, the robot’s sensors, and the basic action reflexes built
into the robot controller. The robot is given the task of clearing the
objects from the table by placing them on the shelf. The shelf has
limited space so the objects must be stacked in order for the robot
to successfully complete the task. For simplicity, each object is as-
sumed to be roughly cylindrical in shape and has a “radius” which
provides an estimate of its size. An object A can be stacked into an
object B provided the radius of A is less than that of B, and B is
an “open” object. Unlike a standard blocks-world scenario, the robot
will not have complete information about the state of the world. In
particular, we will often consider scenarios where the robot does not
know whether an object is open or not and must perform a test to de-
termine an object’s “openness”. The robot will also have a choice of
four different grasping types for manipulating objects in the world.
Not all grasp types can be used on every object, and certain grasp
types are further restricted by the position of an object relative to
other objects in the world. The set of available grasp types is shown
in Figure 1. Finally, actions in this domain can fail during execution
and the robot’s sensors may return noisy data.

The rest of the paper presents an overview of our approach from
a representational point of view, and discusses the main components
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(a) Grasp A (b) Grasp B (c) Grasp C (d) Grasp D

Figure 1. Available grasping types in the robot manipulation scenario

of our system. In Section 2 we describe the basic representations
used in the paper. In Section 3 we discuss how object information is
discovered from the robot/vision system’s initial experiences in the
world. In Section 4 we describe the high-level planner and plan exe-
cution monitor. In Section 5 we introduce a mechanism for learning
the effects of actions from state descriptions. In Section 6 we discuss
the current state of implementation in our system and some early
empirical results. Finally, in Section 7 we discuss the advantages of
our approach from a representation point of view, and describe some
areas of future work.

2 BASIC REPRESENTATIONS
At the robot/vision level, the system has a set Σ of sensors, Σ =
{σ1, σ2, . . . , σn}, where each sensor σi returns an observation obs(σi)
about some aspect of the world. The execution of a robot-level mo-
tor program or robot action may cause changes to the world which
can be observed through subsequent sensing. Each motor program
is typically executed with respect to particular objects in the world.
We assume that the robot/vision system does not initially know about
any objects and, thus, can’t execute many motor programs. Instead,
the robot has a set of basic reflex actions that aren’t dependent on
particular objects and can be used for exploring the world initially.

The planning level representation is based on a set of fluents,
f1, f2, . . . , fm: first-order predicates and functions that denote par-
ticular qualities of the world, robot, and objects. Fluents represent
high-level (possibly abstract) counterparts of some of the proper-
ties the robot is capable of sensing. In particular, the value of a flu-
ent is a function of the observations returned by the sensor set, i.e.,
fi = Γi(Σ). Typically, each fluent depends on a subset of the sensor
observations and not every sensor need map to a fluent (some sensors
are only used at the lower control level). Fluents can also be parame-
terized by high-level versions of the objects known at the robot level.

A state is a snapshot of the values of all instantiated fluents at some
point during the execution of the system. States represent a point
of intersection between the low-level and high-level representations,
since states are induced from a set of sensor observations and the
corresponding sensor/fluent mappings (i.e., the functions Γi). High-
level actions represent abstract versions of some of the robot’s motor
programs. Since all actions must ultimately be executed by the robot,
each action is decomposable to a fixed set of motor programs.3 Thus,
the robot’s interaction with the world can be viewed as a simple state
transition system: the robot’s sensor observations give rise to a state
description; executing an action brings about changes in the world
that can be observed through subsequent sensing. More importantly,
every interaction of this form provides the robot with an opportunity

3 We do not focus here on the problem of learning high-level action schema
(i.e., the set of action names and their parameters) or the action/motor pro-
gram mappings. Instead, we assume that the action schema are provided
with the corresponding mappings to robot-level motor programs.

to observe a small portion of the world’s state space, which we refer
to as an instantiated state transition fragment (ISTF) [7].

Formally, an ISTF is a tuple 〈si,mpj, objmp j
, si+1〉, where si is the

state that is sensed before applying the motor program instance mpj,
objmp j

is the object that the motor program is defined relative to, and
si+1 is the state sensed after executing the motor program. Thus, an
ISTF is a situated pairing of an object and an action that captures
a small fragment of the world’s state transition function. The states
si and si+1 contain snapshots of the robot’s information about these
states, some of which may be irrelevant to the action being applied.

We will also consider a second representational structure that re-
sults from generalising over instances of ISTFs. Such structures are
referred to as object-action complexes (OACs) [7], and are similar
to ISTFs, but contain only the relevant instantiated state information
needed to predict the applicability of an action and its effects, with
all irrelevant information pruned away. An OAC is defined by a tu-
ple of the form 〈Si,MPj,Objk, Si+1〉, where Si and Si+1 are two states,
MPj is a set of motor programs, and Objk is a class of objects. In this
case, Si only describes those properties of the world state that are re-
quired to execute any of the motor programs in MPj, when acting on
an object of class Objk. S i+1 describes a world state which captures
the properties changed by the motor program.

Typically, we consider ISTFs and OACs formed from partial state
descriptions. Such descriptions arise since the robot is not always
able to sense the status of all objects and properties of the world (e.g.,
occluded or undiscovered objects). We also note that the robot’s sen-
sors may be noisy and, thus, there is no guarantee that state reports
only contain correct information. Furthermore, certain sensor oper-
ations have associated resource costs (e.g., time, energy, etc.). For
instance, the robot can perform a test to determine whether an object
is open by “poking” the object to check its concavity. Such opera-
tions are only initiated on demand at the discretion of the high-level
planning system.

3 VISION-BASED OBJECT DISCOVERY

The robot system includes a vision component based on an early
cognitive vision framework [15] which provides a scene representa-
tion composed of local 3D edge descriptors that outline the visible
contours [26]. Because the system initially lacks knowledge of the
objects that make up the scene, the visual representation is unseg-
mented: descriptors that belong to one object are not explicitly dis-
tinct from the ones that belong to other objects, or the background.

To aid in the discovery of new objects, the robot is equipped with
a basic reflex action [1] that is elicited by specific visual feature com-
binations in the unsegmented world representation. The outcome of
these reflexes allows the system to gather knowledge about the scene,
which is used to segment the visual world into objects and identify
basic affordances. We consider a reflex where the robot tries to grasp
a planar surface in the scene. Each time the robot executes such a
reflex, haptic information allows the system to evaluate the outcome:
either the grasp was successful and the gripper is holding something,
or it failed and the gripper simply closed. A failed attempt forces the
system to reconsider its original assumptions, whereas a successful
attempt confirms the feasibility of the reflex. Once a successful grasp
is performed, the robot gains physical control over this part of the
scene. If we assume that the full kinematics of the robot’s arm are
known (which is true for industrial robots), then it is possible to seg-
ment the grasped object from the rest of the visual world as it is the
only part that moves synchronously with the robot’s arm.

With physical control, the system visually inspects an object from
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a variety of viewpoints and builds a 3D representation [13]. Features
on the object are tracked over multiple frames, between which the ob-
ject moves with a known motion. If features are constant over a series
of frames they become included in the object’s representation, other-
wise they are assumed not to belong to the object. (A more detailed
description of the accumulation process can be found in [13].) The
final description is labelled and recorded as an identifier for a new
object class, along with the successful reflex (now a motor program).
Using this new knowledge, the system then reconsiders its interpre-
tation of the scene: using a representation-specific pose estimation
algorithm [3] all other instances of the same object class are identi-
fied and labelled. By repeating this process, the system constructs a
representation of the world objects, as instances of symbolic classes
that carry basic affordances, i.e., particular reflex actions that have
been successfully applied to grasp objects of this class.

The technical implementation of the pose estimation algorithm has
only recently become available. Prior to this, a circle detection algo-
rithm was developed to recognise cylindrical objects, to which the
domain was restricted for this work. Four grasp templates were used
to define the primitive reflex actions in an object-centric way (where
concrete grasps were generated based on the object pose). Although
this approach negates the need for the general pose estimation algo-
rithm, the conclusions drawn from experiments in this limited sce-
nario are still easily transferable to the general case.

Figure 2 illustrates the “birth of an object.” In (a), the dots on the
image show the predicted structures. Both spurious primitives, parts
of the background that are not confirmed by the image, and the con-
firmed predictions are shown. In (b), the shape model learned from
the object in (a) is shown. In (c) and (d), two additional objects are
shown along with their learned shape models. The “gap” in the shape
models corresponds to where the robot’s gripper held the objects.

The object-centric nature of the robot’s world exploration process
has immediate consequences for the high-level representation. First,
newly discovered objects are reported to the planning level and added
to its representation. At the planning level, objects are simply la-
bels while the real-world object information is stored at the robot
level. Such a representation means that we can avoid certain types
of real-valued information at the high level (e.g., 3D location coordi-
nates, object orientation vectors, etc.) and instead refer to objects by
their labels (e.g., obj1 may denote a particular red cup on the table).
With the addition of new objects, the planning system can immedi-
ately start using such objects in its reasoning and plan construction.
Since we assume that object names do not change over time, high-
level object labels act as indices into the low-level object representa-
tion. Thus, plans with object references will be understandable to the
robot/vision system. Finally, the successful identification of new ob-
jects will cause the robot/vision system to start sending regular state
updates to the planning level about these objects and their proper-
ties. In particular, the ISTFs that result from subsequent interactions
with the world will contain state information about these objects, pro-
vided they can be sensed by the robot. The planning level can then
use this information for plan construction and plan execution moni-
toring. Additional details about the link between the robot/vision and
planning systems are given in Section 6.

4 PLAN GENERATION AND MONITORING

The high-level planner is responsible for constructing plans that di-
rect the behaviour of the robot in order to achieve a set of goals.
For instance, in our example domain a plan might be constructed to
clear all “open” objects from the table. Plans are built using PKS

(“Planning with Knowledge and Sensing”) [24, 25], a knowledge-
level conditional planner that can operate with incomplete informa-
tion and high-level sensing actions. Like other symbolic planners,
PKS requires a goal, a description of the initial state, and a list
of the available actions before it can construct plans. Unlike tradi-
tional approaches, PKS operates at the knowledge level by modelling
the agent’s knowledge state, rather than the world state. By doing
so, PKS can reason efficiently about certain types of knowledge,
and make effective use of non-propositional features, like functions,
which often arise in real-world scenarios.

PKS is based on a generalization of STRIPS [5]. In STRIPS, a sin-
gle database represents the world state. Actions update the database
in a way that corresponds to their effects on the world. In PKS, the
planner’s knowledge state is represented by five databases, each of
which stores a particular type of knowledge. Actions are described
by the changes they make to the database set and, thus, to the plan-
ner’s knowledge state. PKS also supports ADL-style conditional ac-
tion effects [23].

Using PKS’s representation language, we can formally model the
example robot scenario by describing the objects, properties, and ac-
tions that make up the planning level domain. As we described above,
objects at the planning level are simply labels that denote actual ob-
jects in the world identified by the robot/vision system.

High-level domain properties are defined by sets of logical fluents,
i.e., predicates and functions that denote particular qualities of the
world, robot, and objects. For instance, to model the example object
manipulation scenario we include fluents such as:

• open(x): object x is open,
• gripperempty: the robot’s gripper is empty,
• ingripper(x): object x is in the gripper,
• ontable(x): object x is on the table,
• isin(x, y): object x is stacked in object y,
• reachableX(x): object x is reachable using grasp type X, and
• radius(x) = y: the radius of object x is y,

among others. While most high-level properties tend to abstract the
information returned by a set of sensors at the robot level, some
properties correspond more closely to individual sensors (e.g., grip-
perempty closely models a low-level sensor that detects whether the
robot’s gripper can be closed without contact, while ontable requires
data from a set of visual sensors concerning object positions).

High-level actions represent counterparts to some of the motor
programs available at the robot level. For instance, in the example
scenario the planner has access to actions like:

• graspA-stack(x): grasp object x from a stack using grasp type “A”,
• graspA-table(x): grasp x from the table using grasp A,
• putInto-object(x, y): put object x into an object y on the table,
• putAway(x): put x away on the shelf, and
• findout-open(x): determine whether x is open or not,

among others. Some actions like “grasp A” are divided into two ac-
tions to account for different object configurations, however, the mo-
tor programs that implement these actions do not necessarily make
such distinctions. Furthermore, the object-centric nature of the plan-
ning actions means that they do not require 3D coordinates, joint
angles, or similar real values but, instead, include parameters that
can be instantiated with specific objects. Actions also exist for other
grasping options (B, C, and D) available at the robot level. Actions
like findout-open are high-level sensing actions that direct the robot
to gather information about the world state that is not normally pro-
vided to the planner as part of its regular state updates.
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Figure 2. Birth of the object

Table 1. Examples of PKS actions in the object manipulation domain

Action Preconditions Effects
graspA-table(x) K(clear(x)) add(Kf , ingripper(x))

K(gripperempty) add(Kf ,¬gripperempty)
K(ontable(x)) add(Kf ,¬ontable(x))
K(reachableA(x))
K(radius(x) ≥ minA)
K(radius(x) ≤ maxA)

findout-open(x) ¬Kw(open(x)) add(Kw, open(x))
K(ontable(x))

Actions in PKS are described by their preconditions and effects.
An action’s preconditions specify the domain properties that must
hold for an action to be applied, while an action’s effects encode the
changes made to the domain properties as a result of executing the
action. Table 1 shows two PKS actions from the example domain.
Here, Kf refers to a database that models the planner’s knowledge of
simple facts, while Kw is a specialized database that stores the results
of sensing actions that return binary information. An expression like
K(φ) denotes a knowledge-level query that intuitively asks “does the
planner know φ to be true?”

Given a goal, initial state description, and action list, the plan-
ner can build plans that are executable on the robot platform. We
currently provide an interface that allows a human user to specify
a high-level goal directly to the planning system. Initially, the plan-
ner does not know anything about the state of the world. After the
robot/vision system performs its early exploration process and be-
gins to produce ISTFs, an initial state description is generated and
supplied to the planner automatically with information about newly
discovered objects and their sensed properties, described in terms
of the high-level fluents. Since PKS can model an agent’s incom-
plete knowledge, the predicate and function instances in the initial
state are treated as known state information, with all other state in-
formation considered to be unknown. We currently assume that the
action schema are supplied to the planner as input, as are the map-
pings from high-level actions to low-level robot motor programs. (In
Section 5 we consider how high-level action effects can be learned
directly from state information.)

For instance, if we consider the situation in the example domain
where two unstacked and open objects obj1 and obj2 are on a ta-
ble, the planner can construct a simple plan using the above domain
encoding to achieve the goal of clearing the table:

[graspD-table(obj1),
putInto-object(obj1, obj2),
graspB-table(obj2),
putAway(obj2) ].

(1)

In this plan, obj1 is grasped from the table and put it into obj2, before
the stacked objects are grasped and removed to the shelf.

The planner can also build more complex plans by including sens-
ing actions. For instance, if the planner is given the goal of removing
the “open” objects from the table, but does not know whether obj1 is
open or not, then it can construct the conditional plan:

[findout-open(obj1),
branch(open(obj1))
K+ :

graspA-table(obj1),
putAway(obj1)

K− :
nil ].

This plan senses the truth value of open(obj1) and reasons about the
possible outcomes of this action by including branches in the plan: if
open(obj1) is true (the K+ branch) then obj1 is grasped and put away;
if open(obj1) is false (the K− branch) then no further action is taken.

To execute plans, the planning level interacts with the robot/vision
system. Actions are fed to the robot one at a time, where they are
converted into motor programs and executed in the world. A stream
of ISTFs is also generated, arising from the motor programs being
executed. Upon action completion the robot/vision level informs the
planner as to any world state changes (the final state of the last ISTF).

An essential component in this architecture is the plan execution
monitor, which assesses action failure and unexpected state informa-
tion to control replanning and resensing activities. In particular, the
difference between predicted and actual state information is used to
decide between (i) continuing the execution of an existing plan, (ii)
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asking the vision system to resense a portion of a scene at a higher
resolution (in the hope of producing a more detailed state report),
and (iii) replanning from the unexpected state using the current state
report as a new initial planning state. The plan execution monitor
also has the important task of managing the execution of plans with
conditional branches, resulting from the inclusion of sensing actions.

When a high-level sensing action is executed at the robot level, the
results of the sensing are made available to the robot/vision system
in a subsequent ISTF, and passed to the planner as part of a state
update. In our example domain, sensing actions like findout-open al-
low the robot to use its lower-level object information to make more
informed decisions as to how such actions should best be executed
(e.g., for findout-open the robot could “poke” an object to determine
its openness). The plan execution monitor uses the returned informa-
tion to decide which branch of a plan it should follow, and feeds the
correct sequence of actions to the lower levels. If such information is
unavailable, resensing or replanning is triggered as above.

5 LEARNING ACTION REPRESENTATIONS

The planner is capable of constructing plans that direct the robot’s ac-
tions, in contrast to the reflex-based exploration of the world that the
robot must initially perform. This shift from undirected to directed
behaviour relies on an action specification that encodes the dynam-
ics of the world in which the robot operates. While we have described
how the robot/vision system is capable of generating ISTFs, the state
information encoded in such fragments contains information that is
both relevant and irrelevant to an action specification. The domain
information required for planning actions, however, is more like the
information found in a set of OACs, i.e., a generalization of the in-
formation in a set of ISTFs. Thus, presented with enough examples
of such state transitions, a learning procedure should be able to filter
out the irrelevant information and identify the necessary state infor-
mation required for OACs and planning operators.

Using machine learning techniques to learn action specifications
is not a new idea, and prior approaches have addressed this problem
using a variety of techniques. For instance, inductive learning [32]
and directed experimentation [8] have been applied to data repre-
sented in first-order logic, without noise or non-determinism. Other
approaches have used schema learning to learn probabilistic action
rules operating on discrete-valued sensor data [9]. Also, k-means
clustering of equivalence classes, followed by extraction of sensor
data features, has been used to train support vector machines (SVMs)
to predict deterministic action effects in a given context [4]. [18] pro-
poses a method of modelling actions by learning control laws that
change individual perceptual features of the robot’s world. Recently,
attention has shifted to methods which exploit relational structure in
order to improve speed and generalisation performance. [22] gener-
ates and refines rules using heuristic search, and shows that relational
deictic rules are learnt more effectively than propositional or purely
relational rules. [30] uses a logical inference algorithm to efficiently
learn rules in relational environments.

Our approach is based on a connectionist machine learning model,
namely kernel perceptron learning [2, 6]. This approach is particu-
larly useful for our task since it can be shown to provide good perfor-
mance, both in terms of training time and the quality of the models
that are learnt, making it an attractive choice for practical systems.

Learning the complete dynamics of a planning domain requires
the ability to learn both action preconditions and effects. Currently,
our learning mechanism only addresses the problem of learning ac-
tion effects, and the action schema and preconditions are supplied as

Input vector Corresponding action/property

0 graspA-table(obj1)
1 graspA-stack(obj1)
0 graspB-table(obj1)
0 graspC-table(obj1)
0 graspD-table(obj1)
0 putInto-object(obj1, obj2)

. . .


Actions

1 gripperempty
. . .

}
Object independent
properties

0 ontable
1 clear
0 isin-obj1
1 isin-obj2

. . .


Properties related
to grasped object (1)

1 ontable
0 clear
0 isin-obj1
0 isin-obj2

. . .


Properties related
to grasped object (2)

Figure 3. A binary input vector to the learning mechanism

input. Since an action’s effects determine the changes made to a state
during execution, the problem reduces to learning particular map-
pings between states. Furthermore, our current mechanism can only
learn standard STRIPS and ADL action effects, and is restricted to
relational state properties (i.e., no sensing actions or functions).

The input to the learning mechanism uses a vector representation
that encodes a description of the action being performed and the state
at which the action is applied. For each available action the vector in-
cludes an element that is set to 1 if the action is to be performed, or
0 otherwise. For states, we consider object-independent and object-
dependent properties separately. In the case of object-independent
properties (e.g., gripperempty), the vector includes an element for
each property, representing its truth value at the state being consid-
ered (1 = true, 0 = false). For object-dependent properties we con-
sider each property on a per object basis, and represent only those
properties of the objects directly involved in the action being applied,
and the objects related in some way to those objects. A form of deic-
tic representation is used (similar to [22]), where objects are specified
in terms of their roles in the action, or their roles in a property. Instead
of maintaining a “slot” in the input vector for each possible role, roles
are allowed to overlap. Thus, each object is represented by a set of
inputs, one for each object-specific predicate (e.g., ingripper), and
each relation with another object (e.g., isin). To bind relations to the
correct objects, extra predicates are used isin-obj1, isin-obj2, etc.).
This representation significantly reduces the number of inputs since
its size is dependent on the actions and relations between objects,
rather than the absolute number of objects in the world.

Overall, the input vector has the form: 〈actions, object-
independent properties, object slot 1 predicates, object slot 2 pred-
icates, . . . , object slot n predicates〉. Figure 3 shows one such input
vector for an action-state pair. In this case, the action performed is
graspA-stack. The “grasped object” properties are represented in the
object obj1 slot, while the “object below the grasped object” prop-
erties are represented in the object obj2 slot. Here, gripperempty,
clear(obj1), isin(obj1, obj2) and ontable(obj2) are true in the state,
since the corresponding bits are set to 1; all other bits are set to 0.

The output of the learning mechanism is a prediction of the prop-
erties that will change when the action is performed. The output is
also encoded as a binary vector, with each bit representing one prop-
erty of the state: the output value is 1 if the property changes and 0
if it does not. As with the input vector, object-independent properties
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are represented by single elements, and object-specific properties are
represented on a per-object basis in slots. Overall, the output vec-
tor has the form: 〈object-independent properties, object slot 1 predi-
cates, object slot 2 predicates, . . . , object slot n predicates〉.

Using the above representation, the learning mechanism is tasked
with finding the association between action-precondition pairs and
their effects, i.e., rules of the form 〈A,PreA〉 → EffA. Currently, we
have focused on learning the effects of standard STRIPS and ADL
planning actions. Thus, all action effects involve either conjunctions
of predicates (in the case of STRIPS) or conjunctions of predicates
conditioned on other conjunctions of predicates (in the case of ADL).
As a result, it is sufficient to learn a rule for each effect predicate
separately and we can treat the learning problem as a set of binary
classification problems, one for each (conditional) effect predicate.

A classifier that is both simple and fast is the perceptron [28]. The
perceptron maintains a weight vector w which is adjusted at each
training step. The i-th input vector xi ∈ {0, 1}n in a class y ∈ {−1, 1}
is classified by the perceptron using the decision function f (xi) =
sgn(〈w · xi〉). If f (xi) is not the correct class then w is set to w+yx; if
f (xi) is correct then w is left unchanged. Provided the data is linearly
separable, the perceptron algorithm is guaranteed to converge on a
solution in a finite number of steps [21, 17]. Otherwise, the algorithm
oscillates, changing w at each misclassified input vector.

Since the problem of learning action effects is not linearly sepa-
rable in general, we adapt the perceptron algorithm by applying the
kernel trick [6]. By doing so, we implicitly map the input feature
space into a higher-dimensional space where the data is linearly sepa-
rable. Since the mapping is implicit, we avoid a massive expansion in
the number of features, which may make the problem computation-
ally infeasible. The kernel trick is applied by rewriting the decision
function in terms of the dot product of the input vectors:

f (xi) = sgn(〈w · xi〉) = sgn(
n∑

j=1

α jy j〈x j · xi〉),

where α j is the number of times the j-th example has been misclas-
sified by the perceptron. By replacing the dot product with a ker-
nel function k(xi, x j) which calculates 〈φ(xi) · φ(x j)〉 for some map-
ping φ, the perceptron algorithm can be run in higher dimensional
space without requiring the mapping to be explicitly calculated. An
ideal kernel is one which allows the perceptron algorithm to run over
the feature space of all conjunctions of features in the original in-
put space, allowing an accurate representation of the exact conjunc-
tion of features (action and preconditions) corresponding to a partic-
ular effect. In our case, the kernel k(x, y) = 2same(x,y) is used, where
same(x, y) is the number of bits with the same value in both x and y
[29, 10]. (See [19] for a more detailed discussion of this approach.)

6 INTEGRATION AND EMPIRICAL RESULTS
In this section we consider two separate interactions between the
components described above, forming part of the larger system we
are in the process of implementing (see Figure 4). In Section 6.1
we consider the link between the planning level and the robot/vision
level, and the execution of high-level plans on the robot platform.
In Section 6.2 we focus on the learning mechanism and the actions
that arise from the object manipulation scenario. Certain aspects of
our system, such as the plan execution monitor and the inclusion
of the learning mechanism within the larger system, are currently
under development and have not yet been fully implemented. The
robot/vision system forming the basis of our implementation con-
sists of an industrial 6 degrees of freedom robot with a two finger

Effectors

Learning

Kernel
Perceptron

Sensors

Robot/Vision System

PKS

High−level Planning System

Execution
Monitor

World

Figure 4. System components and proposed/current interactions

grasper, a high resolution stereo camera system, and a haptic force-
torque sensor mounted between the robot and grasper, providing the
measurement of forces at the wrist.

6.1 Linking high-level plan generation with
robot/vision-level plan execution

From an integration point of view, the robot/vision system is cur-
rently linked directly to the planning level and we are experimenting
with plan generation and execution. Since the planner is not able to
handle raw sensor data as a state description, the low-level ISTFs
generated by the robot/vision system must be abstracted into a lan-
guage that is understandable by the planner. As a result, sensor data
is “wrapped” and reported to the planner in the form of “symbolic”
ISTFs with state representations that include predicates and func-
tions. Since our present focus is on object and action learning, we
have simply hard-coded the mappings between certain sensor com-
binations and the corresponding high-level properties.

For instance, some of the predicates used in the example manipu-
lation domain are computed as follows:

• ingripper, gripperempty: Initially the gripper is empty and the
predicate gripperempty is formed. As soon as the robot grasps
an object, and confirms that the grasp is successful by means
of the gripper not closing up to mechanical limits, the system
knows that it has the object in its hand and can form a predicate
ingripper(objX), using its visual information about discovered ob-
jects to identify the label objX corresponding to the object in the
gripper. A negated predicate ¬gripperempty is also generated, as
are negated ingripper instances for objects not in the gripper. Re-
leasing the object returns the gripper to an empty state again.

• reachableX : Based on the position of a circle forming the top of a
cylindrical object in the scene, as returned by the circle detection
algorithm, we can compute possible grasp positions (for the dif-
ferent grasp types) for each object. Using standard robotics path
planning methods we can then compute if there is a collision-free
path between the start position and the pose the gripper needs to
reach the object for a particular grasp.

• isin, clear, instack : These three predicates are computed based on
geometric reasoning. Since the object height is not known we can
only use the x, y-plane information. Furthermore the fact that ob-
jects with a bigger radius are lower in the stack is assumed. Ob-
jects whose centres (in the x, y-plane) are closer than 40mm are
selected as stack candidates. The sorted stack candidates can then
be checked for real inclusion using the circle centres and radii.
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• open: We do not assume that all objects in the world are “open.”
Unlike the previous properties which can be determined directly
from ordinary sensor data, the robot must first perform an explicit
test in order to determine an object’s openness. In this case, the
robot gripper is used to “poke” inside the potential opening of
an object. If the robot encounters a collision where forces acting
upon the gripper are above a certain threshold, then the object is
assumed to be closed. Otherwise, we assume the object is open.
(We also envision a second, purely visual test for openness using
dense stereo, but this approach has not yet been implemented.)

After an initial exploration of its environment, the robot/vision
system provides the planner with a report of the current set of objects
it believes to be in the world, along with a (possibly partial) state re-
port of the sensed properties of those objects. Using this information
as its initial knowledge state, and the high-level action specification
described in Section 4, the planner attempts to construct a plan to
achieve the goal of clearing a set of objects from the table.

Once a plan has been generated, it is passed to the plan execu-
tion monitor which sends actions to the robot/vision level one step
at a time. At the robot level, a high-level action is decomposed into
a set of motor programs which are then executed by the robot in the
world. Currently, the mapping of actions to motor programs is pre-
programmed and supplied as part of the input to the system. During
the execution of low-level motor programs, a stream of ISTFs is gen-
erated and recorded by the robot/vision system. After an action has
been executed its success or failure is reported back to the plan ex-
ecution monitor, along with a new report on the state of the world
(the final state of the last ISTF). In our current implementation, the
plan execution monitor simply terminates the execution of a plan if
it encounters an unexpected state property, or a reported failure of an
action. Otherwise, it sends the next action to the robot for execution.
(No replanning or focused resensing is performed.) For instance, Fig-
ure 5 shows the robot executing the four-step plan described in (1) of
Section 4 for clearing the table. (The “shelf” in this case is a special
area at the side of the table.)

When a conditional plan with sensing actions is executed, the
plan execution monitor sends findout-open actions to the robot/vision
level like any other action. At the robot level, such an action is ex-
ecuted as the specific “poke” test described above to determine an
object’s openness. The results of this test are returned to the plan ex-
ecution monitor as part of the updated state report. The monitor then
uses this information to determine which branch of the conditional
plan it should follow. From the point of view of the robot, it will only
receive a sequential stream of actions and will be unaware of the con-
ditional nature of the plan being executed. Figure 6 shows the robot
testing the openness of two objects after receiving a sensing action
from the planning level. In (a), the test fails since the object is not
open; in (b) the test succeeds and the object is assumed to be open.

6.2 Learning STRIPS and ADL action effects in
the object manipulation domain

Separate from the above robot/vision-planner integration, we estab-
lished a preliminary link between the action effect learning mecha-
nism and the planner. In particular, we applied our learning procedure
to learn the effects of STRIPS and ADL planning actions, using data
simulated from the example object manipulation domain.

The learning mechanism was evaluated using data similar to the
ISTFs the robot/vision system is capable of producing. Both STRIPS
and ADL versions of the high-level actions were considered. (For ex-
ample, the two actions graspA-stack and graspA-table described in

(a) graspD-table(obj1) (b) putInto-object(obj1, obj2)

(c) graspB-table(obj2) (d) putAway(obj2)

Figure 5. Executing a high-level plan to clear a table

(a) Object is not open (b) Object is open

Figure 6. Testing the openness of an object

Section 4 were merged into a single ADL action, along with other
changes.) Sensing actions and references to functional fluents were
ignored. Two data sets were constructed to train and test the learn-
ing mechanism. Individual input vector instances were generated by
randomly selecting an action, and setting the inputs for the precondi-
tions required for the action to 1. The action input was set to 1, and
all other action inputs to 0. The remaining input bits were used to
create the two separate data sets. For the training data, half of the in-
puts in each instance were randomly set to 0 or 1, with the other half
all set to 0 (vice versa for the testing data). Outputs were set to 1 if a
state property changed as a result of the action and 0 if not. Thus, the
data used to train the learning mechanism incorporated the (strong)
assumptions that (i) all the necessary precondition information for
an associated action was included as part of an input vector, and (ii)
no spurious state changes was represented as part of an output vec-
tor. Noise was introduced in the irrelevant bits of the input vector,
however, only relevant changes were included in the corresponding
output vector.

The learning mechanism was evaluated over multiple test runs
using 3000 training and 500 testing examples. To determine an er-
ror bound on our results, 10 runs with different randomly generated
training and testing sets were used. (All testing was done on a 2.4
GHz quad-core system with 6 Gb of RAM. All times were measured
for Matlab 7.2.0.294.) The results of our testing are shown in Fig-
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Figure 7. Results from experiments in the object manipulation domain (from [19])

ure 7. (A more detailed analysis of these results and description of
our implementation can be found in [19].) In (a), the error rate for the
learnt STRIPS actions is shown, while (b) shows the error rate for the
ADL actions. In both cases, the average error dropped to less than 3%
after 700 training examples. The standard perceptron error rate, in-
cluded for comparison, shows significantly worse performance: over
5% error after 3000 training examples. In (c), the training time for
both STRIPS and ADL actions is shown (for 1 bit of the effect vec-
tor), while (d) shows the prediction time (for 1 bit of 1 prediction).

In practical terms, the learning mechanism was quite efficient, re-
quiring 0.035 seconds to train the system on 3000 examples and 1.84
× 10−3 seconds to test the system per output. For our particular ex-
ample domain, there was little difference between the training and
prediction times of STRIPS actions, compared with those for ADL
actions. (In general we expect performance on ADL domains will al-
ways take longer than STRIPS domains, particularly when the condi-
tional effect training examples are very dissimilar to the other train-
ing examples available.) Overall, the learning mechanism was able to
effectively abstract away the irrelevant information from the ISTFs to
produce a high-quality model of the action effects suitable for plan-
ning (at least for our current example domain).

7 DISCUSSION

From a representational point of view we have argued that ISTFs
and OACs, grounded from actions performed at the robot level, can
be viewed as the representational unit that underlies higher-level
representations of objects, properties, and actions (“representation
through integration”). As the low-level robot/vision system explores
the world, successful actions produce ISTFs; on the basis of multiple
experiences of particular ISTFs, OACs and high-level action models
can be learned. Although some aspects of our approach are currently
hard-coded (e.g., the action/motor program mappings), our learning
mechanisms are nevertheless able to abstract away from “irrelevant”
state information in the ISTFs to learn certain high-level OAC rela-
tionships from the robot’s interactions with the world.

The resulting representations also enable interesting interactions
between the components of the system (“integration through repre-
sentation”). For instance, the planner can ignore some details about
the execution of actions at the robot level (e.g., sensing actions like
findout-open) and can avoid making certain commitments that are
better left to the robot level (e.g., planning-level grasping actions are
unaware of low-level properties like object location, gripper orien-
tation relative to an object, etc.). Thus, we do not try to control all
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aspects of robot behaviour at the planning level, but apply the plan-
ner’s strengths to problems it can more readily solve. (For instance,
PKS does not perform path planning but is more proficient at plan-
ning information-gathering operations.) As future work we are ex-
tending these ideas, for instance to allow the robot/vision system to
choose between a set of possible tests to perform when executing a
findout-open sensing action, while leaving the planning-level action
specification unchanged.

We have focused on two particular learning problems in this work:
object learning and action effect learning. As a result, we have
avoided addressing other learning problems (e.g., learning the low-
level sensor combinations that lead to particular high-level proper-
ties, or the mapping of high-level actions to low-level motor pro-
grams), which we leave to future work. Our focus on an implementa-
tion “from the world level to the knowledge level,” however, provides
us with a suitable testing framework for investigating such learning
challenges as well as new planning contexts. Moreover, we are also
interested in using this platform to explore other high-level learning
tasks such as language acquisition.

We must also improve the scalability of our approach and over-
come certain assumptions that are not realistic in real-world robotic
systems. For instance, the learning mechanism has mainly been
tested using state descriptions that are more “complete” than the
ISTFs the robot/vision system is likely to produce. One way we can
adapt our approach is by using a noise-tolerant variant of the per-
ceptron algorithm, such as adding a margin term [11]. We also be-
lieve these techniques can be applied to irrelevant output data (i.e.,
irrelevant state changes in the action effects), since such changes be-
have like noise. Additional work is needed to extend our approach
to more complex action representations, notably sensing actions and
functions. We also believe our approach can be extended to learn ac-
tion preconditions, provided it is possible to only represent a small
number of objects in the state at a time. An attentional mechanism
of some sort may be of help in this task [14]. Finally, although we
have tested our learning mechanism on simulated data from the same
domain used for the robot/vision-planner experiments, we are also
aiming to test our learning mechanism with online data generated di-
rectly from the robot/vision system. Additional work is also needed
to complete the remaining components of our system, most notably
the plan execution monitor.

Our approach for integrating a robot/vision system with a high-
level planner and action learning mechanism combines ideas from
robot vision, symbolic knowledge representation and planning, and
connectionist machine learning. The current state of our work high-
lights some significant interactions between the specific components
of our system, however, we believe our approach is much more gen-
eral and can be applied to other robot platforms and planners. (For in-
stance, we have recently begun work to test some of our components
and specifications on a humanoid robot platform.) The components
we describe in this paper form part of a larger project called PACO-
PLUS4 investigating perception, action, and cognition—combining
robot platforms with high-level representation and reasoning based
on formal models of knowledge and action [12].
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F. Wörgötter, D. Kraft, and N. Krüger, ‘Early reactive grasping with
second order 3D feature relations’, in Recent Progress in Robotics; Vi-
able Robotic Service to Human, Selected papers from ICAR’07, eds.,
S. Lee, I. Hong Suh, and M. Sang Kim, LNCIS Series, Springer-Verlag,
(2007).

[2] M. A. Aizerman, E. M. Braverman, and L. I. Rozoner, ‘Theoretical
foundations of the potential function method in pattern recognition
learning’, Automation and Remote Control, 25, 821–837, (1964).

[3] Renaud Detry, Nicolas Pugeault, and Justus H. Piater, ‘Probabilistic
pose recovery using learned hierarchical object models’, in Interna-
tional Cognitive Vision Workshop (Workshop at the 6th International
Conference on Vision Systems), (2008).
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F. Wörgötter, and N. Krüger, ‘Birth of the Object: Detection of object-
ness and extraction of object shape through object action complexes’,
Special Issue on ”Cognitive Humanoid Robots” of the International
Journal of Humanoid Robotics, (2008). (accepted).

[14] Danica Kragic, Måarten Björkman, Henrik I. Christensen, and Jan-Olof
Eklundh, ‘Vision for robotic object manipulation in domestic settings’,
Robotics and Autonomous Systems, 52(1), 85–100, (July 2005).
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struction using perceptual grouping constraints’, in Proc. of the IEEE
Computer Society Workshop on Perceptual Organization in Computer
Vision, (2006).

[27] Raymond Reiter, Knowledge In Action: Logical Foundations for Spec-
ifying and Implementing Dynamical Systems, MIT Press, 2001.

[28] Frank Rosenblatt, ‘The perceptron: a probabilistic model for infor-
mation storage and organization in the brain’, Psychological Review,
65(6), 386–408, (November 1958).

[29] Ken Sadohara, ‘Learning of boolean functions using support vector ma-
chines’, in Proc. of Algorithmic Learning Theory, Lecture Notes in Ar-
tificial Intelligence, volume 2225, pp. 106–118. Springer, (2001).

[30] Dafna Shahaf and Eyal Amir, ‘Learning partially observable action
schemas’, in Proc. of AAAI-06. AAAI Press, (2006).

[31] Mark Steedman, ‘Plans, affordances, and combinatory grammar’, Lin-
guistics and Philosophy, 25, 723–753, (2002).

[32] Xuemei Wang, ‘Learning by observation and practice: An incremental
approach for planning operator acquisition’, in Proc. of ICML-95, pp.
549–557, (1995).

Page 42 of 42


	Title page
	1 Executive Summary
	2 Publications Associated with D5.1.2
	References
	A. A Scenario for Integrating Low-Level Robot/Vision, Mid-Level Memory, and High-Level Planning with Sensing
	B. Using Kernel Perceptrons to Learn Action Effects for Planning
	C. Representation and Integration: Combining Robot Control, High-Level Planning, and Action Learning

