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Summary

This deliverable consists of six conference papers [1, 2, 3, 4, 5, 7] and one technical report [6],
describing a student project performed during the spring of 2008. Early versions of the papers [3, 4]
were referred to in the PACO-PLUS activity report Feb 2007 – Jan 2008, and have since then been
published.

The objective of WP3.2 is to define a representation of human hand activity so that a robot can
observe the grasping activity being performed, map this activity to its own embodiment and perform the
corresponding activity with its own manipulator(s). The application of this in the PACO-PLUS project
is visual robot learning from demonstration.

1 Recognition-Based Approach to Body and Hand Pose Extraction

The subject of this report is tracking of humans in video for the purpose of recognizing grasp and
manipulation activities and mapping them to a robot. Recognition of these types of activities is to
a great extent based on the human’s hand motion. However, to be robust, articulated1 hand tracking
should rely on estimation of the overall human pose, since the pose of the body constrains the estimation
of hand pose. It is therefore desirable to track the full human (upper) body for grasp and manipulation
activity recognition purposes.

Articulated tracking of the human body from monocular or small-baseline stereo video is a highly
underconstrained and non-trivial problem. Additional complications are added if human body parts of
different spatial scales, such as fingers and torso, are to be tracked simultaneously; normal digital-video
resolution is not high enough to successfully capture small (e.g., finger) movements while keeping the
whole human in view.2

In WP3, we have therefore approached the articulated tracking problem in a recognition-based man-
ner [1, 2, 3]. The key idea is that human motion is highly constrained; the actual number of degrees
of freedom of human motion is much lower than the dimensionality of the space spanned by all joint
angles in the body. Two things can be observed. Firstly, humans do not exploit all physically possible
joint configurations, they instead move according to quite specific patterns, often displaying symmetries,
as in walking for example. Secondly, human motion is to a large extent defined by the type of activity
the human is involved in; this is termed ”tracking in action space” in WP3.1.3, WP3.2.3.

The idea behind the recognition-based upper-body tracking [1, 2] is to classify the type of action
taking place (e.g., pointing), and then parameterize it (e.g., tune the pointing direction) so that the human
action model fits with the human motion visible in the video sequence. In this way, the human is tracked,
although only within limits permitted by the action in which the human is involved. A Parametric Hidden
Markov Model (PHMM) [2] is used, and the method is evaluated on reaching and pointing actions,
where the parameterization steers the hand motion direction or the hand location during the course of
the action.

A method for classification of hand shapes into grasps has also been developed [3]. This method
1Here, articulated tracking means estimation of the motion of individual limbs.
2This problem is addressed in WP2.1 using attention and scene exploration with fovated vision.
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can be seen as a crude estimator of articulated hand pose, as each grasp type represents a certain pose.3

A grasping hand is represented as a Histogram of Oriented Gradients (HOG), a image representation of
shape, capturing finger configuration and orientation to a certain extent. A new hand image is classified
as one of six grasps by an approximate k-Nearest Neighbor (kNN) search among large set of syntheti-
cally generated hand images. For approximate kNN search, we use Locality Sensitive Hashing (LSH).
The dataset contains grasps from all expected viewpoints and with expected occlusion. This makes the
method view-independent although no 3D representation of the hand is computed.

The integration of these methods into a system for tracking human body parts on multiple scales is
very straight-forward: The recognition-based upper-body tracking [1, 2] gives global hand positions in
each frame. These estimated global hand positions are then used as a starting point for the representation
of local hand shape [3].

If the goal is to track the hand only, an alternative to tracking the upper body is to use a segmentation
approach, where each pixel in the image is assigned to either hand, rest-of-body, manipulated-object, or
background. In this way, the hand position is more robustly estimated than with, e.g., skin segmentation
only. Initial investigations of this approach [6] have shown promise, and we will continue to explore it
further.

2 Human-to-Robot Grasp Mapping

The recognition-based hand pose estimator is incorporated in a human-to-robot grasp mapping system,
in which a robot observes the human grasp, classifies it, and selects between a number of predefined
grasping strategies [3, 7]. Each robot grasp strategy is parameterized by the position and orientation
between the hand and the object, detected along with the grasp.

Thus, the 3D tracking and reconstruction of the human hand is implicit. Instead of reconstructing
the human hand and mapping the reconstruction to the robot hand, a ”partial reconstruction”, the type
of grasp, is obtained. The grasp class is then used to reconstruct the full pose of the robot hand. The
mapping is made in grasp space instead of the 3D pose space. This corresponds to the human pose
reconstruction in ”action space” discussed above [1, 2].

3 Manipulation Action Recognition

The HOG representation of hand shape discussed above is also employed in temporal segmentation and
classification of human manipulation actions [4, 5].

The mapping from human to robot motion is in Section 2 restricted to a motor level. If the robot
is humanoid, i.e., has an embodiment very similar to a human, this is adequate for learning to perform
a task consisting on a sequence of hand actions. However, in the general case one cannot assume the
robot to have a human-like embodiment. For example, the number of degrees of freedom in the robot’s
hands and arms, or even the number of robot arms or fingers, might differ from a human. In this case,
the human motion has to be interpreted on a more abstract task level, rather than on a motor evel, in
order to make a mapping to the robot possible.

There is also a statistical correlation between types of objects, object shapes, human hand actions,
and human grasps in a Learning from Demonstration scenario, in analog to the OAC concept. We there-
fore recognize human manipulating actions and manipulated objects in parallel, letting the classifications
of objects and actions influence each other within a Conditional Random Field. Human hand actions
are represented as sequences of 2D hand poses and HOGs, as in Section 2. Objects are represented by
sequences of HOGs. Results show the benefit of modeling objects and actions together, as opposed to
recognizing them independently.

3The extreme of this is to have a continuous hand pose space, and to do regression into this space.
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Abstract—The recognition and synthesis of parametric move-
ments play an important role in human-robot interaction. To
understand the whole purpose of an arm movement of a human
agent, both its recognition (e. g., pointing or reaching) as well
as its parameterization (i. e., where the agent is pointing at)
are important. Only together they convey the whole meaning of
an action. Similarly, to imitate a movement, the robot needs to
select the proper action and parameterize it, e. g., by the relative
position of the object that needs to be grasped.

We propose to utilize parametric hidden Markov models (PH-
MMs), which extend the classical HMMs by introducing a joint
parameterization of the observation densities, to simultaneously
solve the problems of action recognition, parameterization of the
observed actions, and action synthesis. The proposed approach
was fully implemented on a humanoid robot HOAP-3. To evaluate
the approach, we focused on reaching and pointing actions.
Even though the movements are very similar in appearance, our
approach is able to distinguish the two movement types and
discover the parameterization, and is thus enabling both, action
recognition and action synthesis. Through parameterization we
ensure that the synthesized movements can be applied to different
configurations of the external world and are thus suitable for
actions that involve the manipulation of objects.

I. INTRODUCTION

To effectively interact with people, a humanoid robot needs
to be able, firstly, to recognize human movements in order to
understand the intentions of an agent communicating with the
robot, and secondly, to imitate human actions in a human way.
These are essential tools that are needed to enable the robot
to autonomously operate in a human environment.

We are interested in an action representation that is (a)
easily and efficiently trained by demonstrating a set of ex-
emplar movements and (b) able to recognize and synthesize
the demonstrated actions for arbitrary parameterizations. The
action representation should allow the robot to recognize
and perform the learned movements also for not previously
demonstrated parameterizations, e. g., reaching and pointing
at objects at arbitrary locations.

To achieve this goal we utilize parametric hidden Markov
models (PHMMs), which were originally proposed in [1].
We encode PHMMs by observations states that consist of
Cartesian 3-D positions of shoulder, sternum, elbow, wrist,
thumb, index-finger and its knuckle. The advantage of such
an representation is that the goal of the considered actions
(reaching and pointing) is explicitly encoded in the final state
of the PHMMs, which makes it easier to find parameterization

for action interpolation. To assure a proper interpolation that
preserves the shape of the action trajectory, a proper align-
ment of the different exemplar actions, i. e. the alignment of
corresponding hidden Markov states, is essential. We solved
this problem by constraining the state transitions.

As an example, we studied the teaching of a humanoid
robot through pointing and reaching gestures. The goal was to
put differently shaped objects into a children’s toy box with
differently shaped holes corresponding to different shapes. The
robot should learn both symbolic knowledge (which object
belongs to which hole) and continuous action knowledge (how
to move the objects and release them into the appropriate hole).
For training and testing, the objects could be placed at any
location on the table. An online demo is available via web
page [2].

In addition, we present a systematic evaluation of the
recognition and synthesis of our action representation. In the
evaluation, we focus on the actions used in the demonstration
on a humanoid robot HOAP-3, i.e. reaching out for an object
to grasp it and pointing actions. Both actions have very similar
trajectories (starting and ending in the same base pose) and
are thus difficult to distinguish. It is interesting to note that
simple diagnostic features like arm velocity, or the distance
from hand to chest would fail in this context.

In the following sections, we first give a short overview
of the related work. In Sect. III we introduce our exemplar-
based parametric HMM movement representation. The action
synthesis is described in Sect. IV. In Sect. IV-C we present the
results of the robot experiments. In Sect. V we discuss our
systematic evaluation of the precision of our action represen-
tation for recognition and synthesis. Conclusions in Sect. VI
complete our paper.

II. RELATED WORK

The discovery of mirror neurons motivated robotics re-
searchers to look for action representations that can be used
for both recognizing other agents’ actions and generating the
observer’s own movements [3]. Among the representations
that can be used both for synthesis and recognition: dynamic
movement primitives [4], [5], recurrent neural network with
parametric biases (RNNPB) [6], and hidden Markov models
(HMMs) [7], [8], [9].
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Hidden Markov models became popular in the context of
speech recognition [10], [11]. One major advantage of HMMs
is their ability to compensate for uncertainties in time. Inamura
et al. [7] showed that by defining the observation states as
postures on the human trajectories, HMMs can be used to rep-
resent specific movement trajectories, which they called proto-
symbols. However, neither discrete nor continuous HMMs are
able to generalize over a class of movements which vary
according to a specific set of parameters (like for example
reaching and pointing). One possibility to recognize an entire
class of movements is to use a set of hidden Markov models
(HMMs) in a mixture-of-experts approach, as first proposed in
[12]. In order to deal with a large parameter space, one ends
up with a lot of experts, and training becomes unsustainable.

As mentioned above, the extension of the classical HMMs
into parametric HMMs was first proposed by Wilson and
Bobick [1]. They developed an approach that is able to
learn a parametric HMM based on a set of demonstrations,
where training and recognition is performed by using the EM
algorithm with parameterization parameters as latent variables.
Note that this is different from [8], and [9], where HMMs
are trained from multiple examples of an essentially same
movement. However, Wilson and Bobick considered recogni-
tion only, more specifically, e. g., the recovery of the pointing
direction based on wrist trajectories.

Contrary to Wilson and Bobick, we aim at recognition
and synthesis of full arm movements for the control of
humanoid robots within the same framework. In our work,
”recognition” means to recognize the action itself as well as its
parameterization. The synthesis of parametric actions implies
the use of data of high dimension (stacked 3-D trajectories,
one for each joint), and a high number of states for an accurate
movement representation. It has already been shown both in
robotics [13] and in computer graphics [14] that parametric
blending of movements can result in physically feasible actions
that can attain the goal of an action. These works, however,
do not consider the problem of recognition.

Human motion capture [15] as such is not the topics of this
paper. We note, however, that motion capture is an essential
tool for the acquisition of training data for imitation. We
experimented with magnetic systems, optical tracking devices,
and general vision-based methods. General vision data was
tested for recognition, but we used the data from a marker-
based optical system as an initial input when working with the

Fig. 1. Left: Capturing Session for our dataset. — Right: Capture
Model. For motion capturing, the markers of the depicted model (tiny balls)
are aligned to the captured markers (see left figure).

robot (see Fig. 1).

III. MOVEMENT REPRESENTATION BY PHMMS

In this section we first give a short introduction to HMMs
and then discuss our extension to parametric HMMs.

A. Preliminaries of HMMs

A hidden Markov model is a finite state machine extended in
a probabilistic manner. It is defined as a triple λ = (A,B,π).
Let qt be the hidden states of the model at time t and x the ob-
servations associated with each hidden state. Then, B defines
the output distributions bi(x) = P(x|qt = i) of the hidden
states. The transition matrix A = (aij) defines the transition
probability between the hidden states i, j = 1, . . . , N , and thus
encodes the temporal behavior of the modeled sequences. The
initial state distribution is defined by the vector π.

Our approach is based on continuous left-right HMMs [16].
The output probability distribution of each state i is modeled
by a single Gaussian distribution bi(x) = N (x|µi,Σi).
State transitions are either self-transitions or transitions to the
successor. All other transition probabilities are set to zero.
Given a sequence of postures X = x1 . . .xt . . .xT on an
example trajectory, each Gaussian Ni(x) := bi(x) ”covers” a
section of the trajectory, where the state i increases over time.
In the case of multiple trajectories, the Gaussians capture the
variance of the training input. In addition, an HMM compen-
sates for different progression rates of the training trajectories
by varying the transition from one hidden state to the next.
Obviously, the synthesis of movements is straightforward for
this type of HMMs. For a comprehensive introduction to
HMMs, we refer to [10], [11].

For recognition or classification, HMMs are generally used
as follows: For each sequence class k, an HMM λk is trained
by maximizing the likelihood function P(X|λk) with the
Baum-Welch expectation maximization (EM) algorithm [11]
over a given training data set X k. The classification of a
specific output sequenceX = x1 . . .xT is done by identifying
the class k for which the likelihood P(X|λk) is maximal.
The forward-backward algorithm [11] is used to efficiently
calculate these likelihoods.

One obvious approach to handling classes of parameterized
actions for the purpose of parameter recognition is a mixture-
of-experts approach [12] by sampling the parameter space.
However, this approach suffers from the great number of
HMMs needed to be trained and stored for all possible
trajectories within one class. Therefore, we introduce the pa-
rameterization of an action as an additional model parameter.
This is also the basic idea of [1].

B. Parametric HMM Framework

The basic idea of our approach to handling classes of
parameterized actions is to generate a new HMM for novel
action parameters by a locally linear interpolation of exemplar
HMMs that were previously trained on exemplar movements
with known parameters. The generation of an HMM λφ for a
specific parameter φ is carried out by component-wise linear
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Fig. 2. Left: The upper three dark ellipsoids are depicting Gaussians
N 0

1 , . . . ,N 0
3 of states i = 1, 2, 3 of an local HMM λ0, whereas the lower

three dark ellipsoids belong to a model λ1. The dots within the dark ellipsoids
are sketching training sequences with parameterization u = 0, and u = 1
depending on the target at the vertical line. In addition, the Gaussians Ni of
a global model λ are indicated in light gray. This global λ is a model for all
training sequences with u ∈ [0, 1]. — Right: Similar to the left figure,
some states of a global HMM (middle) and local HMMs (right) are shown.
In contrast to the figure left, the HMMs are trained based on recorded 3D
trajectories of a finger tip of a person pointing at three different positions
at table-top (compare Fig. 1). The index finger starts always at the same
point as modeled by the Gaussian which is sketched by the green ball, and
approaches specific positions which are modeled by the light gray balls of the
local HMMs. The global HMM used to setup these local HMMs has a disc
like Gaussian, which models all approached positions at table-top.

interpolation of the nearby exemplar models. In the case of a
single parameter u and two exemplar models λu=0 and λu=0,
a new Gaussian N u

i (x) = N (x|µu
i ,Σ

u
i ) for a model λu with

u ∈ [0, 1] is generated by interpolation

µu
i = (1− u)µ0

i + uµ1
i , Σu

i = (1− u)Σ0
i + uΣ1

i . (1)

This situation is described in Fig. 2. Such an approach, how-
ever, works only if two corresponding states of the two exem-
plar HMMs model the same semantical part of the trajectory
(as in Fig. 2, left). Hence the state-wise alignment is vital and
is described in Sec. III-B1. The expansion to the multi-variate
case of parameterization φ is then straightforward, e. g., by
using bilinear (φ = (u, v)) or trilinear interpolation.

Fig. 3. Time duration by State Replacement. Each state is replaced by several
(here, three) pseudo states which share the same output distribution.

1) Synchronization of HMMs: In this section we show
how to assure that corresponding states of exemplar HMMs
model the same semantical parts of movements. The required
alignment of the states to the sequences is somehow similar
to the alignment of two sequences by dynamic time warping
(DTW) [17]. Here, however, we need to align the hidden states
in the presence of many training sequences.

The underlying idea of the synchronization technique is to
set up local exemplar HMMs λφ by using the invariance of
HMMs to temporal variations. We proceed in two steps: firstly,
a global HMM λ is trained based on the whole training set
X of different parameterizations φ of the same action. This is
done using the EM algorithm mentioned in Sect. III-A. Such
a global HMM is sketched in Fig. 2, left, by the light gray
Gaussians. The situation that actions of different parameter-
izations are covered in such a symmetrical way as in Fig. 2
can be enforced by ensuring that the hidden state sequences
pass the trajectory always in the sequential order from state 1

to N . This is done (a) by choosing left-right HMMs to model
the movement, and (b) by allowing only state sequences that
start in the first and end in the last state. In addition, (c) the
invariance of the HMM to temporal variations, even though
necessary, needs to be somehow constrained. We accomplish
this by adding explicit time durations to the states of the HMM
[11]. This is similar to constraining the warping in standard
DTW approaches [17]. Here, by using explicit state durations,
one can prevent that one state generates only one output
for one sequence and a lot of outputs for another sequence.
Otherwise, one would end up with an improper alignment
of the sequences (see [17], Fig. 2 C, for an improper, and B
for a proper alignment). To avoid the numerical problems
associated with scaling [11], we replaced each state of the
left-right HMM with pseudo states that share one Gaussian
(see Fig. 3). This forces the hidden states sequences to stay
in a state, e. g., as in Fig. 3, for at least two and for maximal
three time steps.

In the second step, we consider the partial training set Xφ

associated with a specific parameterization φ. Using this data
set, we estimate the local HMM λφ again by using the EM
algorithm, but now, we use the parameters of the global HMM
λ as an initial value for the EM algorithm. In addition, to
preserve the state alignment of the local HMM as it is given
by the global HMM, we fix the means after the first EM
step. In the following, we will exemplify, that this adapted
EM procedure gives a proper state alignment of the local
HMMs: In the first E step of the EM algorithm, the posterior
probabilities γk

t (i) = P(qt = i|Xk,λ) of being in state i at
time t are computed for each sequence Xk = xk

1 . . .x
k
T of the

training set Xφ. This is done based on the current parameter
values, which are at this point the values of the global HMM.
Thus, γk

t (i) is the “responsibility” of state i for generating
xk

t , as given by the global HMM. In the M step of the EM
algorithm, each µi of a Gaussian of state i is re-estimated as
γk

t (i)-weighted mean:

µi =

∑
t,k γ

k
t (i)xk

t∑
t,k γ

k
t (i)

(2)

Now, consider Fig. 2. The responsibilities γ0
t (i) of the upper

sequence x0
1x

0
2 . . .x

0
7 for t = 1, 2 are large for i = 1 but small

for i > 1 under consideration of the position of the Gaussian
N1 of the global HMM λ. Thus, µ0

1 of N 0
1 of the local HMM

λ0, as calculated by Eq. (2), lies as desired between x0
1 and

x0
2. Similarly, µ1

1 of the local HMM λ1 computed based on
the lower sequence x1

1x
1
2 . . . would lie between x1

1 and x1
2.

Hence, the alignment of µ0
1 and µ1

1 of the local HMMs λ0

and λ1 as given by the global HMM λ is ensured.
2) Synthesis, Recognition, and Parameters: At first we

consider the synthesis in the general case of a parametric
movement parameterized by φ ∈ Rd. Let φ be the param-
eterization of the movement that needs to be generated. For
synthesis we need properly synchronized HMMs λφn trained
for movements with parameterization φn for the 2d corners
φn of a d-dimensional cuboid (or at least a warped version of
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such an cuboid) that contains the required parameterization
φ. Since φ is inside the cuboid, there exist interpolation
parameters ω(φ) such that φ can be expressed as a d-linear
combination of φn with parameters between 0 and 1. Lets
denote by λφ the component wise d-linear interpolation of
the HMMs λφn interpolated with interpolation parameters
ω(φ). This λφ, based on the local HMMs λφn , is what
we call a parametric HMM (PHMM). The calculation of the
parameters ω = (u, v, w) in the case of 3-D, or (u, v) in the
case of 2-D parameterization interpolation, which we used in
the experiments, is straight-forward, see Sect. IV. The bilinear
interpolation formula is given by (5), the trilinear by (4), the
extension to the d-linear case can be constructed easily. The
movement trajectory f(t) for a specific parameterization φ
can be synthesized using, e. g., linear spline interpolation of
the sequence of means µφ

1µ
φ
2µ

φ
3 . . . of λφ with respect to the

expected time durations encoded in the transition matrix of
Aφ.

The recognition of the type of movement and its parame-
terization can be accomplished as follows. For each class k
we have a PHMM λφ

k that represents a parametric movement.
Now, lets assume that we need to classify a sequence X .
We start by estimating the most likely parameter φk for
each possible parameterized action class k. This involves
maximizing the likelihood functions:

φk = arg max
φ∈[0−ε,1+ε]d

P(X|λφ
k ), (3)

The class identity is given by the class for which the likelihood
P(X|λφ

k ) is the highest. In addition, the associated parameter
φk gives the most likely parameterization. In the experi-
ments we maximized the log likelihood functions lk(φ) =
log P(X|λφ

k ) (see Fig. 9 (c)). This is done using the gradient
descent method and numerical derivatives of lk(φ).

In our evaluation of the movement representation, the pa-
rameterization is given by 2-D coordinates in the plane of a
table-top. In that experiment we have up to 3×3 local HMMs
for each movement type which form a regular raster. In this
case the first guess is always based on the HMMs defined at
the outermost positions, then the estimate is refined based on
the HMMs with parameter positions that define the smallest
rectangle which includes the first guess.

IV. TRANSFER OF MOVEMENTS TO THE ROBOT

In this section we consider how to generate arbitrary robot
reaching and pointing movements using PHMMs. Our ap-
proach can be easily used for other types of parametric move-
ments. For training we use example reaching and pointing
movements that stretch out or point to a number of different
grasping positions distributed in the robot workspace. An
example of the workspace is shown in Fig. 4, where the eight
target tijk positions form a cuboid. This way, the location of
the gripper on the table as well as up to the certain height
above the table can be controlled. The training movements
are used as explained in III to train the PHMM. The PHMM
is based on eight local HMMs, one for each of the eight

u
v

w

ttt

ttt011 ttt111

ttt110ttt010

ttt100ttt000

ttt001 ttt101

Fig. 4. Target Points of Movements at a table-top. In addition, a finger tra-
jectory of a pointing movement with target point t is shown. The coordinates
u, v, w are used for interpolation.

example positions. Note that at each training position, several
movements are used to train the HMM. The training step
assures that the HMMs are all synchronized for interpolation.

In our experiment, the recorded reaching and pointing
movements start and stop at the same base position (hand
beside hip), i. e. we recorded both the reaching for the object or
pointing movement and the withdrawing movement. In order
to be able to synthesize realistically looking sequences of sev-
eral pointing and reaching movements without discontinuities
if played back in sequence, the base pose at the beginning
and at the end of the motions is normalized. This is done
by blending the trajectories with respect to the mean starting
position.

A. Synthesis of Robot Movements for Specific Positions

For each movement type we have a PHMM of eight local
HMMs trained for specific movements to the targets tijk,
like shown in Fig. 4. The recorded movements are a stacked
vector x = (p>, q>, . . .)> of the trajectories of the right arm
shoulder p, elbow q, thumb, finger, and its knuckle.

Since we consider the trajectories relative to the shoulder
position we calculate the mean shoulder position over all
example trajectories and use this as reference. Now, consider
an arbitrary target t = tuvw in the workspace that is given by
interpolating the corners tijk by trilinear interpolation with the
parameters (u, v, w):

tuvw = w̄tuv0 + wtuv1 (4)

tuv0 = v̄(ūt000 + ut100) + v(ūt010 + ut110) (5)

tuv1 = v̄(ūt001 + ut101) + v(ūt011 + tt111), (6)

where

w̄ = 1− w, v̄ = 1− v, ū = 1− u.

Then a movement f = (p>, q>, . . .)> for the target position
t can be synthesized as described in Sect. III-B2. Essentially,
that is interpolating each component (shoulder, elbow, . . . ) of
the means of the corresponding states of the local HMMs
as given by the interpolation formula (4). The interpolation
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parameters (u, v, w) for a specific target t are easily calculated
by

u =
t− t000
|t− t000|

· t100 − t000
|t100 − t000|

, (7)

v =
t− t000
|t− t000|

· t010 − t000
|t010 − t000|

, (8)

w =
t− t000
|t− t000|

· t001 − t000
|t001 − t000|

. (9)

Since the robot is smaller than the demonstrator, these
trajectories are scaled to fit to the overall arm length of the
robot. Of course the distances, e. g. between the wrist and
elbow, are not preserved by interpolation, but become slightly
shorter or longer than the true limb lengths. However, this
does not matter if the movements are transferred to the robot
as described in Sect. IV-B.
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Fig. 5. In figure (a), the points p, q, and r, which represent the shoulder,
elbow, and hand, define a plane, on which the elbow q′ of the robot should
lie. Figure (b) shows the two reference coordinate systems (u1,u2,u3) and
(v1,v2,v3). The coordinate system (u1,u2,u3) is the reference of the
upper arm, whereas (v1,v2,v3) is fixed and does not move with the upper
arm.
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Fig. 6. Rotation of the Robot’s Wrist. The twist angle α = ](b⊥,o
′) of

the wrist is calculated in the twist plane.

B. Calculation of Joint Angles

The interpolation of Sect. IV-A results in an arm trajectory
which is described by the Cartesian trajectories of the shoulder,
elbow, wrist, thumb, index-finger and its knuckle. In this
section, we will describe how the robot joint angles of the
upper arm are computed from this data. The joints under

consideration are the shoulder joint with three degrees of
freedom, and the elbow joint with one degree of freedom.
These values are determined only on the basis of the human
elbow and hand position relative to the shoulder. The hand
position r (Fig. 5) is given as the mean of the human thumb,
index finger, and knuckle of that finger. Furthermore, the
orientation of the hand is given by the thumb and the finger.

To account for a difference in size between the human
demonstrator and the robot, human data is scaled to the size of
the robot as described in Sect. IV-A. For the calculation of joint
angles, only the relative positions of the elbow q and hand r
with respect to the shoulder p are of interest. The shoulder
can therefore be assumed to be at the origin (p = 0); and the
human hand and elbow positions, r and q, of Fig. 5 (b) are
appropriately scaled for the robot.

The four joint angles of the robot arm are calculated so that
the robot hand is at the same position as the scaled human
hand, and that the elbow q′ is in the plane defined by three
points p, q, and r of the human demonstrator. The elbow
position q′ of the robot differs from the (scaled) elbow position
of the demonstrator if the proportions of the robot, i. e. the
upper arm compared to the forearm, differ from those of the
demonstrator.

To calculate the shoulder angles (see Fig. 5 (a)), the direc-
tion u1 of the elbow q′ is required. The angle γ of the elbow
is defined by the length a of the upper arm, the length b of
the lower arm (elbow – hand) of the robot, and the distance
c = pr from the shoulder p to the target point r. We calculate
γ as

γ = arccos
(
a2 + b2 − c2

2ab

)
, (10)

and

β = arccos
(
a2 + c2 − b2

2ac

)
. (11)

Now, u1 is given by

u1 = cosβ ·w1 + sinβ ·w2, (12)

where

w1 = −→pr
/
pr (13)

w2 = w′2
/
|w′2| (14)

w′2 = −→pq − 〈−→pq,w1〉w1. (15)

For HOAP-3, the three shoulder joint angles can be calculated
as Cardan angles for the rotation between the coordinate
systems {vi} and {ui} (see Fig. 5 (b)). The Cardan angles1

φ, θ, ψ are calculated using the rotational matrix between the

1Cardan angles φ, θ, ψ define a rotation R as R = Rz
ψR

y
θR

x
φ .
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coordinate systems2:

φ = arctan2(r32, r33) (16)
θ = − arcsin(r31) (17)
ψ = arctan2(r21, r11) (18)

where

R = (rij) = [u1|u2|u3]> [v1|v2|v3] . (19)

The still unknown vectors u2, and u3 are given by the
equations:

u2 = u′2
/
|u′2| (20)

u′2 = −w2 − 〈−w2,u1〉u1 (21)
u3 = u1 × u2. (22)

The orientation of the hand was initially extracted from the
motion data based on the direction given by the vector from
the finger to thumb. However, it turns out to be better to align
the robot gripper to the plane of the table, at least for that part
of the motion which is used to interact with the objects. The
degree of opening or closing the robot gripper was initially
set to the distance between the finger and the thumb of the
human. However, it turns out to be better to use maximal
gripper opening while interacting with an object, as we used
objects of different shapes in the recording session.

Since the wrist of the HOAP-3 has only one degree of free-
dom (twist), only the projection of the orientational direction
vector o (finger−→thumb) onto the rotation plane of the wrist
is used to set its twist angle. This is illustrated in Fig. 6. The
joint angle is given by (see Fig. 6):

α = arccos
(
〈b⊥,o′〉
|b⊥| |o′|

)
· sign(〈o′, b× b⊥〉), (23)

where

o′ = o− 〈o, b⊥〉
|b⊥|2

b⊥. (24)

C. Experiments with a Humanoid Robot HOAP-3

We tested the effectiveness of our approach by implement-
ing a task involving a number of objects that are first associated
with different openings on the table and need to be placed into
the correct opening (see also Fig. 7 (left)). An online demo
is available via web page [2]; the recording of demonstrated
movements is not included. The experiment proceeds in three
phases:
• The PHMMs for reaching and pointing movements are

learnt.
• Human demonstrator shows to the robot which object

belongs to which hole. The robot associates each object
with the appropriate hole.

• Afterwards, the objects are placed again at arbitrary
positions. In this phase, the human points at one of

2Contrary to arctan(a/b), arctan2(a, b) ∈ (−π, π] respects the signs of
a and b.

the object, which is then identified and placed into the
associated hole using the previously learnt PHMMs. This
is repeated until all objects are removed.

To technically implement the placement of an object into
the appropriate hole, the robot first estimates the transfor-
mation between the robot and the camera coordinate system
by moving the hand of the robot to at least four different
configurations, which is enough to calculate the transformation
between two camera systems. After the object is identified, the
robot reaches for the object using the learnt PHMM. We use
here only a part of the interpolated movement corresponding
to the motion before the grasp. To be able to grasp the object,
the robot reaches towards the position in front of the object
(see Fig. 8). Relocating the object from the current position
on the table to the hole is accomplished by generating a
sequence of reaching positions on the table and using the
PHMM to generate the corresponding reaching movements for
these positions. The configurations where the robot reaches
for these positions are extracted and interpolated to generate
the relocation trajectory. In this way we ensure that the robot
uses only natural arm postures. Grasping and releasing of the
object is implemented using standard robotics methods. The
withdrawing movement is realized in the same way as the
reaching movement, the only difference being that in this case
we use the part of the trajectory after the grasp.

V. EVALUATION OF MOVEMENT REPRESENTATION

In the evaluation we focus our considerations on pointing
(see Fig. 1) and reaching actions, which are not only the
most important movements in our behavioral experiment but
are also important in other interaction scenarios. Both are
performed in a very similar way, starting and ending in the
same base position (arm along the body). The motion data of
our systematic evaluation is acquired using an eight camera
Vicon system with cameras running at 60 Hz (see Fig. 1). The
recognition and synthesis experiments are based on seven 3-
D points located at different segments of a human body. The
seven data points are: sternum; shoulder and elbow of the right
arm; knuckles, index finger, and thumb of the right hand.

Fig. 7. Our Experimental Setup. A person advises the robot HOAP-3 how
to clean up objects. Online Demo, available via web page [2].
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Fig. 8. Approach Motion along the x-axis to grasp an object

The exemplar positions at table-top form a regular raster,
which covers a region of 80cm × 30cm (width × deeps). For
training, a 3 × 3 raster is used, where 10 repetitions have
been recorded for each exemplar position and each action
type (pointing, reaching). For evaluation, a 5 × 7 test-raster
is used with 4 repetitions for each raster position to allow a
good evaluation statistic. All in all, for testing we used several
hundreds of movements.

A. Training: Setup of PHMMs

Training and setup of the exemplar PHMMs for grasping
and pointing is done as described in Sec. III-B1. We used
PHMMs of 20 states, where the hidden state sequences are
forced to stay between 4 and 6 time steps in each state. The
training sequences are normalized to 100 samples. We train
the PHMMs based on data of the full 3×3 raster (9 exemplar
HMMs) or based on a 2×2 raster, which consists of the four
outermost exemplar positions of the 3×3 raster at table-top.
These PHMMs will be refered in the following as 3×3 or 2×2
PHMM of reaching or pointing.

B. Synthesis

Synthesis is done as described in Sec. III-B2 with the setup
described in the section above. The performance of synthesis
is systematically evaluated by plotting the synthesis error
for each of the positions of the 5×7 test-raster. Therefore,
the error is based on the distance between each synthesized
movement and an average of the four test exemplars of a test-
raster positions. The averaging is done by training and re-
synthesizing from an 80 state HMM. Again, the re-synthesis
is a function f̄(t) = (f̄ i(i))7i=1 of “stacked” 3-D trajectories
f i(t) (elbow, wrist, . . . ). The final error ε is calculated as
the root-mean-square error between the time warped synthesis,
f(t), and re-synthesized average, f̄(t):

ε =

√√√√∫ 7∑
i=1

(f i(α(t))− f̄ i(ᾱ(t)))2

7
dt
/∫

α(t)dt, (25)

where α(t) and ᾱ(t) are warping functions. As the starting and
ending points of the reference f̄(t) sometimes vary slightly,
the first and last 10% of the sequences are not considered.
Obviously, the error ε is normalized w. r. t. the length of the
sequence.

The Fig. 9 (a), and (b) compare the synthesis errors of 2×2
and 3×3 exemplar PHMMs. Clearly, the performance in the
middle of the covered region increases, if the 3×3 PHMM

is used. Fig. 9 (c), and (d) show the fact that the results for
the reaching action are very similar to the pointing actions.
If the outer regions are neglected the synthesis errors are
approximately 1.8cm both in the case of reaching and pointing.

C. Recognition

For recognition, we evaluate (a) the performance of estimat-
ing the parameter of a movement, (b) the rate of the correct
classifications of movement types, and (c) the robustness to
noise.

First it is worth to take a look at Fig. 9 (e), which shows
that the optimization problem of maximizing the log likeli-
hood function l(u, v) = logP (X|λuv) given a movement is
tractable by standard optimization techniques (smoothness and
strict concavity). Thus, the most likely parameterization (u, v)
can easily be estimated. The errors for each position of the
5×7 test-raster are calculated as the average deviation of the
estimated position and the ground truth position for the test
example movements. The estimation accuracy of the table-top
positions behaves very similar to the results of the synthesis
Fig. 9 (f). The performance increases similar to the synthesis
in the inner region for our 3×3 PHMM compared to the 2×2
PHMM (not depicted). The rate of correctly classified types
of the 280 grasping and pointing test movements is 94% for
the 2×2 PHMMs, and changes just insignificantly for the 3×3
PHMMs.

We tested the robustness of estimating the parameters of
movements by adding Gaussian noise to each component of
the samples of the movements. Here, we realized no significant
influence for independently distributed noise with σ < 15cm.
Obviously, that is due to a large number of samples in the
sequence.

VI. CONCLUSIONS

We have presented a novel approach to represent, classify,
and imitate parametric movements using parametric hidden
Markov models. Our approach contains several contributions:
(a) how to learn and represent parametric human movements,
(b) how to use this representation for action recognition, (c)
how to transform and project the actions onto the embodiment
of the robot, and (d), how to generate the actions on a new
embodiment. Furthermore, we have solved several subprob-
lems such as multi-dimensional time warping of the multiple
training sequences so that HMMs can be properly interpolated.

We systematically evaluated the synthesis and recognition
performance of the proposed PHMM framework. The experi-
ments show the accuracy of our approach for the generation of
new movements and for the estimation of the associated move-
ment parameters (errors of ≈2cm). This shows that the newly
generated movements are similar to the observed movements.
This also was confirmed in the behavioral experiment of
Sec. IV-C, where the generated reaching movements were sim-
ilar to the training examples, and, like the examples, avoided
collisions with the table. This could not be guaranteed if the
movement was generated by standard robotics approaches. It is
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(a) Pointing Synthesis, 2×2 PHMM
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(b) Pointing Synthesis, 3×3 PHMM
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(c) Reaching Synthesis, 2×2 PHMM
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(d) Reaching Synthesis, 3×3 PHMM
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(f) Recognition of Pointing, 3×3 PHMM

Fig. 9. Error of Synthesis (a-d) and Recognition (f): evaluated at 7×5 raster positions for different PHMMs resolutions, a plot of the log likelihood for the
PHMM parameters (u, v) is given in (e).

worth to note that the synthesis error does not affect the robot-
object interaction since we interpolate based on the gripper
position which is encoded in the movements.

The classification rate of the type movement is ≈ 94%.
It is worth pointing out that this recognition rate is achieved
without any kind of diagnostic features. Furthermore, it should
be noticed that the movements of pointing and reaching are
very similar. In earlier experiments we had trained classical
HMMs on pointing and reaching actions where the training
movements were directed similarly (up to the natural variance
of human performances). During the tests, our classical HMMs
reached a recognition rate of ≈ 85%. The fact that the PHMMs
lead to considerably better recognition rates shows that they
are much better in describing the actions and in compensating
for natural variability of the performances.

We conclude that PHHMs are suitable for imitation because
they are both generative and accurate for recognition.
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Abstract

In humanoid robotics, the recognition and synthesis of parametric move-
ments plays an extraordinary role for robot human interaction. Such a para-
metric movement is a movement of a particular type (semantic), for example,
similar pointing movements performed at different table-top positions.

For understanding the whole meaning of a movement of a human, the
recognition of its type, likewise its parameterization are important. Only both
together convey the whole meaning. Vice versa, for mimicry, the synthesis of
movements for the motor control of a robot needs to be parameterized, e.g.,
by the relative position a grasping action is performed at. For both cases,
synthesis and recognition, only parametric approaches are meaningful as it is
not feasible to store, or acquire all possible trajectories.

In this paper, we use hidden Markov models (HMMs) extended in an
exemplar-based parametric way (PHMM) to represent parametric movements.
As HMMs are generative, they are well suited for synthesis as well as for
recognition. Synthesis and recognition are carried out through interpolation
of exemplar movements to generalize over the parameterization of a move-
ment class.

In the evaluation of the approach we concentrate on a systematical valida-
tion for two parametric movements, grasping and pointing. Even though the
movements are very similar in appearance our approach is able to distinguish
the two movement types reasonable well. In further experiments, we show
the applicability for online recognition based on very noisy 3D tracking data.
The use of a parametric representation of movements is shown in a robot
demo, where a robot removes objects from a table as demonstrated by an
advisor. The synthesis for motor control is performed for arbitrary table-top
positions.

1 Introduction
For the design of humanoid robots, the synthesis and recognition of humanlike move-
ments plays an extraordinary role, as emphasized in [2]. On the one hand, it is desirable
for the robot to synthesize movements in a humanlike way. On the other hand, the robot
needs be able to recognize human movements. For recognition, mirror neurons, which are
supposed to map movements of an observed person onto ones own embodiment, could



justify a generative approach, like HMMs. On the recognition side, it is necessary to rec-
ognize the movement type, as well as its parameterization. Only both together convey the
whole semantics, e.g., of “pointing at this specific object” (see Fig. 1).

Beside the field of robotics, synthesis concerns 3D human body tracking. In human
body tracking, one is interested in using motion models in order to constrain the parame-
ter space (e.g., for simple cyclic motions [7]). In both cases, one is interested in teaching
the system in an easy and efficient manner an additional parametric movement, such that
the demonstration of a sparse set of exemplars of different movement parameterizations
enables the system to synthesize the movement for arbitrary parameterizations. In case of
a humanoid robot, the synthesis should then allow the robot to perform the learned grasp-
ing movements with new parameterizations, e.g., grasping objects at arbitrary positions.
In case of the 3D body tracking, synthesis would allow a better pose prediction, and even
allows an estimate of parametric actions instead of the full joint configuration.

Most current approaches model movements with a set of movement prototypes, and
identify a movement by identifying the prototype which explains the observed movement
best. This approach, however, has its limits concerning efficiency when the space of
possible parameterizations is large. Another approach is the use of diagnostic features,
e.g., the distance from chest to arm. Such an approach might perform well in the case
of movements leading to specific locations, but are doubtful in the cases of parametric
movements.

A pioneering work in this context was done by Wilson and Bobick [10]. They pre-
sented a parametric HMM approach that is able to learn an HMM based on a set of demon-
strations, where training and recognition is performed by the EM algorithm, where the
parameterizations of a movement are taken as latent variables. They mainly aim at recog-
nition, e.g., like recovering the pointing directions based on wrist trajectories, or like the
occurrence of different kind of gestures.

In this paper, we use a similar parametric model. Contrary to Wilson and Bobick, we
aim at recognition as well as synthesis of full arm movements. Here, recognition means
to classify the movement type, and to recover the parameterization of the movement.
The synthesis implies the use of data of high dimension (stacked trajectories), and a high
number of states for an accurate movement representation. This complicates the training
of the model. However, in the case of smooth trajectories also a smaller number of state
might be sufficient in combination with spline interpolation. As synthesis and recognition
is carried out through linear interpolation, a proper alignment of exemplar movements
with different parameterizations is essential. We handle this by constraining the time

Figure 1: Left: Capturing Session for Our Dataset. — Right: Capture Model. For
motion capturing, model markers (tiny balls) are aligned to captured markers (left figure).
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warping capability of the HMMs.
In the experiments we focus on a systematical evaluation of the parameterization of

movements. Therefore, we consider grasping movements (reaching out for an object to
grasp), and a pointing at movement. We consider these movements as most important
for the most scenarios of robot human interaction. Both movements have very similar
trajectories (starting, and ending in the same base pose, and the object is released directly
after the grasp). Thus, a simple diagnostic feature like arm velocity, or the distance from
hand to chest would fail.

In the following section, we give a short overview of the related work. In Sec. 3 we
provide some basics to introduce our exemplar-based parametric HMM in Sec. 4. Exper-
imental results of Sec. 5 contain an extensive and systematic evaluation of the synthesis
and recognition capability of our model, and an online demo for recognition, which shows
the online applicability and robustness for 3D tracking in the presence of noise. In a robot
demo, we show the use of our approach on a humanoid robot. Conclusions in Sec. 6
complete our paper.

2 Related Work
Most approaches for movement representation that are of interest in our problem con-
text are trajectory based: Training trajectories, e.g., sequences of human body poses, are
encoded in a suitable manner. Newly incoming trajectories are then compared with the
previously trained ones. A recent review can be found in [6].

Some of the most common approaches to represent movement trajectories use hidden
Markov models (HMMs) [3, 8]. HMMs offer a statistical framework for representing and
recognition of movements. One major advantage of HMMs is their ability to compensate
for some uncertainty in time. However, due to their nature, general HMMs are only able
to model specific movement trajectories, but they are not able to generalize over a class
of movements that vary accordingly to a specific set of parameters. One possibility to
recognize an entire class of movements is to use a set of hidden Markov models (HMMs)
in a mixture-of-experts approach, as first proposed in [4]. In order to deal with a large
parameter space one ends up with a lot of experts, and training becomes un-sustainable.

Another extension of the classical HMMs into parametric HMMs was presented in
[10], as mentioned above. A more recent approach was presented by [1]. In this work,
the interpolation is carried out in spline space where the trajectory of the end-effector is
modeled. Apart from the fact that the authors have not yet performed an evaluation of
their system, their approach does not seem suitable for controlling entire arm movements.

In addition to HMMs, there are also other movement representations that are interest-
ing in our context, e.g., [5, 9]. However, these approaches share the same problems as the
HMM based approaches.

3 Preliminaries of HMMs
A hidden Markov model is a finite state machine extended in a probabilistic manner, and is
defined as a triple λ = (A,B,π). Here, B defines the output distributions bi(x) = P(x|qt =
i) of the states. The transition matrix A = (ai j) defines the transition probability between
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the hidden states i, j = 1, . . . ,N, and encodes as such the temporal behavior. The initial
state distribution is defined by the vector π .

In our approach continuous left-right HMMs are used with a single Gaussian out-
put distribution bi(x) = N (x|µ i,Σi) for each state i. State transitions are either self-
transitions or transitions to the successor, i.e., other transition probabilities are zero. In
such a model of a single trajectory X = x1 . . .xt . . .xT each Gaussian Ni(x) := bi(x) “cov-
ers” some part of the trajectory, where the state i increases meanwhile the time of the
trajectory evolves. In the case of multiple trajectories the Gaussians capture the variance
of the training input, but in addition, an HMM compensates for different progression rates
of the training trajectories. Obviously, the synthesis of movements is straightforward for
this type of HMMs.

For a comprehensive introduction to HMMs, we refer to [3, 8]. The most important
algorithms of the HMM framework are mentioned in the following example of a recog-
nition framework. For recognition or classification HMMs are generally used as follows:
For each sequence class k an HMM λ

k is trained by maximizing the likelihood function
P(X |λ ) with the Baum/Welch expectation maximization (EM) algorithm [8] for a given
training data set X k. The classification of a specific output sequence X = x1 . . .xT is done
by identifying with that class k, for which the likelihood P(X |λ k) is maximal. Here, the
forward/backward algorithm [8] is used to efficiently calculate these likelihoods.

One obvious approach for handling whole classes of parameterized actions for the
purpose of parameter recognition is a mixture-of-experts approach [4] with sampling of
the parameter space. However, this approach suffers from the great number of HMMs
needed to be trained and stored for all possible trajectories. Therefore, we introduce the
parameterization of the movements as additional model parameters, which also is the
basic idea in [10].

0

1

0

1
1

1

Figure 2: Left: The upper three dark ellipsoids are depicting Gaussians N 0
1 , . . . ,N 0

3 of
states i = 1,2,3 of an HMM λ

0 that is trained by sequences, that are beginning on the left,
and are leading to the upper of the vertical line. In this case the parameter of sequences
is u = 0. The dots sketch one of these training sequences. Similarly, the lower three
ellipsoids of λ

1 model sequences with parameter u = 1. In addition, the Gaussians Ni of
a global model λ are indicated in light gray. In this case, λ is trained with all training
sequences. — Right: Some Gaussians of the finger tip component of a global HMM
trained for our pointing movement are depicted in the middle. The index finger trajectories
are leading from the right (green ball) to the left, where the disc like ellipsoid models the
finger positions for all pointed at positions at table-top. This global HMM is used to setup
the local exemplar HMMs for specific positions in a synchronized way (right).
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4 Parametric HMM Framework
The main idea of our approach for handling whole classes of parameterized actions is a
supervised learning approach where we generate an HMM for novel action parameters
by local linear interpolation of exemplar HMMs that were previously trained on exem-
plar movements with known parameters. The generation of an HMMs λ

φ for a specific
parameter is carried out by component-wise linear interpolation of the nearby exemplar
models. That results, e.g., in the case of a single parameter u and two exemplar models
λ

u, u = 0,1, in a state-wise generation of the Gaussian N u
i (x) = N (x|µu

i ,Σ
u
i ) for the

model λ
u, where

µ
u
i = (1−u)µ

0
i +uµ

1
i Σ

u
i = (1−u)Σ0

i +uΣ
1
i . (1)

This situation of two exemplar models λ
u, u = 0,1 is sketched in Fig. 2. In the case

of such an arrangement, the state-wise interpolation results in a good model λ
u for tra-

jectories with parameters u ∈ [0,1]. But this interpolation approach works only if two
corresponding states of the two exemplar HMMs model the same semantical part of the
trajectory. Therefore, a state-wise alignment is necessary which we describe in Sec. 4.1
below. The expansion to the multi-variate case of parameterization φ is straightforward,
e.g., by using bilinear (φ = (u,v)) or trilinear interpolation.

Figure 3: Time duration workaround by replacing each state by several pseudo states.

4.1 Synchronized State Setup for HMMs
As mentioned above, it has to be made sure that corresponding states of exemplar HMMs
model the same semantical parts of movements. This task is somehow similar to those
handled by standard dynamic time warping (DTW) approaches for aligning two sequences.
However, here, an approach for the hidden states is needed, and this, in addition, in the
presence of many sequences.

The underlying idea is to set up local exemplar HMMs λ
φ by using the invariance

of HMMs to temporal variations. We proceed in two steps: At first a global HMM λ

is trained based on the whole training set X of movements of different parameteriza-
tions φ , but of same type. Such a global HMM is sketched in Fig. 2 by the light gray
Gaussians. The situation that movements of different parameterizations are covered in
such a symmetrical way as in Fig. 2 can be enforced, in some way, by forcing the hidden
state sequences to pass the states always in the sequential order from state 1 to N. This
is caused by the choice of the type of left-right model, and by allowing only sequences
that start in the first and end in the last state. In addition, the invariance of the HMM to
temporal variations needs to be constraint (similar to constraining the warping in standard
DTW approaches). We addressed this by adding explicit time durations to the states of the
HMM [8]. To circumvent the numerical problems of scalings (see, [8]), we replaced each
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state of the left-right HMM with some pseudo states that share one Gaussian (compare
Fig. 3). This forces the hidden states sequences to stay in a state, e.g., as in Fig. 3, for at
least two and for maximal three time steps.

In the second step, consider the partial training set X φ of a specific parameterization
φ . On this training set we train a local exemplar HMM λ

φ while using the global HMM
λ for the alignment. In the framework of the EM algorithm, we do this by computing the
local model λ

φ for X φ by using λ as an initial configuration and by fixing the means of
the Gaussians after the first EM iteration. It is worth to note, that this gives the wanted
result: In the first E step of the EM algorithm, the posterior probabilities γk

t (i) = P(qt =
i|Xk,λ ) of being in state i at time t given the global model are computed for each sequence
Xk = xk

1 . . .xk
T of the training set X φ . Thus, γk

t (i) defines somehow the “responsibility”
of each state i for generating xk

t . Then, in the M step the mean µ i is re-estimated for each
Gaussian of each state i as a γk

t (i)-weighted mean:

µ i =
∑t,k γk

t (i)xk
t

∑t,k γt(i)
(2)

Now, consider Fig. 2, and the depicted upper sequence x1x2 . . .x7. The responsibilities
γt(i) of state i = 1 are only large for the first outputs, e.g., t = 1,2, and are very small
for t > 2 if one considers the position of the Gaussian N1. Thus, the mean µ0

1 of N 0
1 as

given by Eq. (2), lies between x1 and x2, as required.

4.2 Synthesis, Recognition, and Parameters
Consider a grasp position p on a table-top. Then, synthesis is done as follows: At first,
four HMMs λ

i,i=1,...,4 with closest associated grasp positions pi are chosen under the
constraint that at least three of the pi are strongly not collinear and that p lies accurately in
the convex hull of {pi}. Then, the bilinear interpolation parameters u,v are estimated such
that the interpolated point puv approximates p best. Then, the model λ

uv, i.e., the sequence
µuv

1 . . .µuv
N of the Gaussians, is calculated. Afterwards, this sequence is expanded to a

function f (t) by spline interpolation, if needed, with respect to the time durations coded
in the transition matrix.

The recognition of the type and the parameterization of the recognized type of a pa-
rameterized movement is straightforward compared to the nonparametric case of classi-
fication. Consider a given sequence X . We proceed in two steps: First, for each possi-
ble movement type k the most likely parameter φ

k of the corresponding parameterized
HMM λ

φ

k is estimated. Therefore, we maximize lk(φ) = P(X |λ φ

k ) under the constraint of
senseful values φ ∈ [0−ε,1+ε]d by using the gradient descent. Then, the movement is
classified as that class k of highest likelihood lk(φ k). In addition, the parameter φ

k gives
the most likely parameterization. That identifies in the table-top scenario the pointed at
position puv, which is given by the bilinear interpolation parameters (u,v) = φ

k.
In our table-top experiments there are up to nine exemplar HMMs in the PHMM.

Therefore, the estimate of the parameter φ is done in a hierarchical way (starting with a
first estimate φ based on the PHMM given by bilinear interpolation of the four outermost
exemplar HMMs, and ending with a refinement of φ based on the exemplar HMMs nearby
the previous estimate).
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5 Experiments
In our experiments we focus our considerations on pointing (see Fig. 1) and grasping
actions, which are in most human robot interaction scenarios probably the two most im-
portant movements. Both are performed in a very similar way, starting and ending in the
same base position (arm hanging down). — In this section we provide off-line and on-line
evaluations of our PHMMs. First we evaluate the precision of recognition and synthesis
for marker data. Then, we test our PHMMs in on-line setups. Concerning online recogni-
tion and synthesis, we have results in a form of an online recognition, and a robot motor
control demo.

The motion data of our systematic off-line experiments is acquired (Fig. 1) with 60Hz
with an eight camera visual marker motion capture system of Vicon. The recognition and
synthesis experiments are based on seven 3D points located at different segments of a
human body. The seven data points are: sternum; shoulder, and elbow of the right arm;
index finger, its knuckle, and thumb of the right hand.

The exemplar positions at table-top form a regular raster, which covers a region of
80cm× 30cm (width× depth). For training, a 3× 3 raster is used, where 10 repetitions
have been recorded for each exemplar position and each action type (pointing, grasping).
For evaluation, a 5×7 raster is used with 4 repetitions for each position to allow a good
evaluation statistic. All in all several hundreds of repetitions for testing.

5.1 Training: Setup of PHMMs
Training and setup of the exemplar PHMMs for grasping and pointing is done as described
in Sec. 4.1. We used PHMMs of 20 states, where the hidden state sequences are forced
to stay between 4 and 6 steps in each state. The training sequences are rescaled to 100
samples. We train the PHMMs based on data of the full 3×3 raster (9 exemplar HMMs)
or based on a 2×2 raster, which consists only of the outer most exemplar positions of the
3×3 raster. These PHMMs will be refered in the following as 3×3 or 2×2 PHMM of
grasping or pointing.

5.2 Synthesis
Synthesis is done as described in Sec. 4.2 with the setup described in the section above.
The performance of synthesis is systematically evaluated by plotting the synthesis error
for each 5×7-raster position. Therefore, the error is calculated as a distance measure be-
tween each synthesized movement f (t) and an average f (t) of the four test exemplars of
the raster position. The averaging is done by using 80 state HMMs. Both movements
f (t) and f (t) are functions f (t) = ( f i(i))7

i=1 of stacked 3D trajectories f i(t)i=1,...,7 (el-
bow, wrist. . . ). The error ε is calculated as the route-mean-square error between the time
warped synthesis, f (t), and the average f (t) of the test movements:

ε =

√
1
7

7

∑
i=1

∫
( f i(α(t))− f i(α(t)))2dt

/∫
α(t)dt, (3)

where α(t) and α(t) are warping functions. As the starting and ending points of the
reference f (t) do vary slightly, the first and last 10% of the sequences are not considered.
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(a) Pointing Synthesis, 2×2 PHMM
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(b) Pointing Synthesis, 3×3 PHMM
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(c) Grasping Synthesis, 3×3 PHMM
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(d) Grasping Synthesis, 3×3 PHMM

Figure 4: Error of Synthesis at 7×5 raster positions for different PHMMs resolutions.

The Fig. 4 (a), and (b) compare the synthesis errors of 2×2 and 3×3 exemplar PH-
MMs. Clearly, the performance in the middle of the covered region increases, if the 3×3
PHMM is used. Fig. 4 (c), and (d) show the fact, that the results for the grasping action
are very similar to those of the pointing actions. The synthesis errors are approximately
1.8cm for our PHMM for grasping and pointing, if one neglects the outer regions, where
the pose of the person is extremely stretched.
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(a) Loglik of the Model Parameters (u,v)

1 2
3 4 5 6 7

1
2

3
4

5

2

3

4

80cm30cm

er
ro

r 
[c

m
]

(b) Recognition of Pointing, 3×3 PHMM

Figure 5: Loglik logP(X |λ uv) for a fix sequence (left). Recognition Error Plot (right).
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5.3 Recognition
Here, we considered: the performance of recognizing the parameter of a movement, and
the rate of correct classifications of movement types, and the robustness to noise.

In advance, it is worth to take a look at Fig. 5 (a), which gives a hint that the maximiza-
tion of the log likelihood l(u,v) = logP(X |λ uv) given a movement is tractable by standard
optimization techniques (smoothness, strict concavity). Hence, the most likely parameter
(u,v) can be estimated. The error for each position of the 5×7 raster are calculated as the
average deviation of the estimated position (u,v) at table-top and the ground truth position
for the test movements. The recognition performance of the positions behaves (see Fig. 5)
very similar to the results of synthesis. The performance increases similar to the synthesis
in the inner region for our 3×3 PHMM compared to the 2×2 PHMM (not depicted). The
rate of right-classified types of the 280 grasping and pointing test movements decreases
from 94% to 93% by using the 3×3 PHMMs in stead of the 2×2 PHMMs.

We tested the robustness of recognizing the parameterization of movements by adding
Gaussian noise to each component of the samples of the movements. Here, we realized
no significant influence for independent distributed noise with σ < 15cm. Obviously, that
is caused by the great number of samples of a sequence.

Figure 6: Left: Online Recognition Demo. A person is advising a virtual robot arm to
relocate objects (currently, a red one is grasped by robot). The ball nearby the person’s
hand indicates the recognized position, and a high likelihood (green) of pointing. —
Middle: Robot Synthesis Demo. A person advises the robot HOAP-3 (right), which object
to clean up next.

5.4 Online Recognition and Synthesis
In addition to our off-line experiments, we have also implemented and tested our approach
for online and real-time processing. We have done two implementations: In our first
implementation [file1.avi], we have used an augmented reality setup, see Fig. 6 (left), with
an animated robot arm, a stereo camera rig, and two objects on a table. The aim of
the demo is to let the human first point at the object to be grasped by the virtual robot
arm and then to point at the position on the table where the robot arm should place the
object. The stereo camera rig was appropriately calibrated, and the PHMMs were used to
identify what action the human performed. In case that a pointing action was observed,
the parameters were extracted in order to identify at which object the human had pointed.
For tracking the body parts, we used our 3D body tracker.
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In our second implementation [file2.avi] we replaced the animated robot arm with
the humanoid robot HOAP-3 by Fujitsu Fig. 6 (right). Starting point of that demo was a
children’s toy box with special holes for special object shapes. The aim was to tell the
robot though pointing and grasping gestures which object belongs into which hole such
that the robot would be able to learn and perform the appropriate actions later in a different
setup. For training and testing the objects could be anywhere on the table. Again, we used
our PHMMs to identify the teacher’s actions and to synthesize movements for HOAP-3.

6 Conclusion
We have presented and evaluated a novel approach to handle recognition and synthesis
of parametric movements (movements of particular type, or sematic). The basic idea is
to incorporate the parameterization of the movements into the HMM (PHMM). Contrary
to Wilson and Bobick [10], we deal with full arm movements (stacked trajectories), the
recognition of the parameters of movements, likewise its type, and synthesis of move-
ments. Instabilities in the training process are circumvent by restricting the dynamic time
warping capabilities of HMMs. The experiments show the applicability of our approach
for synthesis and recognition of movements (errors ≈2cm). The classification rate is
≈ 94%, without any kind of diagnostic features, for very similar movements.
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Abstract— This paper presents a vision based method for
grasp classification. It is developed as part of a Programming
by Demonstration (PbD) system for which recognition of objects
and pick-and-place actions represent basic building blocks for
task learning. In contrary to earlier approaches, no articulated
3D reconstruction of the hand over time is taking place. The
indata consists of a single image of the human hand. A 2D
representation of the hand shape, based on gradient orientation
histograms, is extracted from the image. The hand shape is then
classified as one of six grasps by finding similar hand shapes
in a large database of grasp images. The database search is
performed using Locality Sensitive Hashing (LSH), an approx-
imate k-nearest neighbor approach. The nearest neighbors also
give an estimated hand orientation with respect to the camera.
The six human grasps are mapped to three Barret hand grasps.
Depending on the type of robot grasp, a precomputed grasp
strategy is selected. The strategy is further parameterized by
the orientation of the hand relative to the object. To evaluate
the potential for the method to be part of a robust vision
system, experiments were performed, comparing classification
results to a baseline of human classification performance. The
experiments showed the LSH recognition performance to be
comparable to human performance.

I. INTRODUCTION

Programming service robots for new tasks puts significant
requirements on the programming interface and the user. It
has been argued that the Programming by Demonstration
(PbD) paradigm offers a great opportunity to unexperienced
users for integrating complex tasks in the robotic system [1].
The aim of a PbD system is to use natural ways of human-
robot interaction where the robots can be programmed for
new tasks by simply observing human performing the task.
However, representing, detecting and understanding human
activities has been proven difficult and has been investigated
closely during the past several years in the field of robotics
[2], [3], [4], [5], [6], [7], [8].

In our work, we have been studying different types of
object manipulation tasks where grasp recognition represents
one of the major building blocks of the system [1]. Grasp
recognition was performed using magnetic trackers [7], to-
gether with data gloves the most common way of obtaining
the measurements in the robotics field. Although magnetic
trackers and datagloves deliver exact values of hand joints,
it is desirable from a usability point of view that the user
demonstrates tasks to the robot as naturally as possible; the
use of gloves or other types of sensors may prevent a natural
grasp. This motivates the use of systems with visual input.

Camera

Object 3D 
recon!
struction

Instantiation of grasp  
with the proposed hand pos
and ori rel object

Execution of the whole grasp
sequence with new object pos

selected strategy

Geometry 

hand pos, hand ori rel object
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L 2D hand image pos,
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hand detection

grasp3(pos,ori) grasp2(pos,ori) grasp1(pos,ori) 
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              1              2              3

   1         2         3         4         5         6

Fig. 1. Human grasps are recognized and mapped to a robot. From
one time frame of video, the hand is localized and segmented from the
background. The hand orientation relative to the camera, and type of grasp
is recognized by nearest neighbor comparison of the hand view with a
database, consisting of synthesized views of all grasp types from different
orientations. The human grasp class is mapped to a corresponding robot
grasp, and a predefined grasp strategy, the whole approach-grasp-retreat
sequence, for that grasp is selected. The strategy is parameterized with the
orientation and position of the hand relative to the object, obtained from the
hand and object positions and orientations relative to the camera. (In our
experiments, the object position and orientation were obtained by hand.)
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(a) 1. (b) 2. (c) 4. (d) 9. (e) 10. (f) 12.

(g) Barret Wrap. (h) Barret Two-finger Thumb. (i) Barret Precision Disc.

Fig. 2. The six grasps (numbered according to Cutkosky’s grasp taxonomy [9]) considered in the classification, and the three grasps for a Barret hand,
with human-robot class mappings ((a,b,c,e)→(g), (d)→(h), (f)→(i)) shown. a) Large Diameter grasp, 1. b) Small Diameter grasp, 2. c) Abducted Thumb
grasp, 4. d) Pinch grasp, 9. e) Power Sphere grasp, 10. f) Precision Disc grasp, 12. g) Barret Wrap. h) Barret Two-finger Thumb, i) Barret Precision Disc.

Vision based recognition of a grasping hand is a difficult
problem, due to the self occlusion of the fingers as well as the
occlusion of the hand by the grasped object [10], [11], [12],
[13]. To simplify the problem, some approaches use optical
markers [14], but markers make the system less usable when
service robot applications are considered. We therefore strive
to develop a markerless grasp recognition approach.

Figure 1 outlines the whole mapping procedure. Although
the scientific focus of this paper is on the classification on
human grasps, the classification method should be thought
of as part of the whole mapping procedure, which consists
of three main parts: The human grasp classification, the
extraction of hand position relative to the grasped object
(with object detection not implemented for our experiments),
and the compilation of a robot grasp strategy, parameterized
by the type of grasp and relative hand-object orientation and
position, described in Section VI.

The main contribution of this paper is a non-parametric
method for grasp recognition. While articulate 3D recon-
struction of the hand is straightforward when using magnetic
data or markers, 3D reconstruction of an unmarked hand
from images is an extremely difficult problem due to the
large occlusion [10], [11], [12], [13], actually more difficult
than the grasp recognition problem itself as discussed in
Section II. Our method can classify grasps and find their
orientation, from a single image, from any viewpoint, without
building an explicit representation of the hand, similarly
to [12], [15]. Other grasp recognition methods (Section II)
consider only a single viewpoint or employ an invasive
sensing device such as datagloves, optical markers for motion
capture, or magnetic sensors.

The general idea to recognize the human grasp and select
a precomputed grasping strategy is a secondary contribution
of the paper, since it differs from the traditional way to go
about the mapping problem [7]; to recover the whole 3D pose
of the human hand, track it through the grasp, and then map
the motion to the robot arm. A recognition-based approach
such as ours avoid the difficult 3D reconstruction problem,
and is also much more computationally efficient since it only
requires processing of a single video frame.

The grasp recognition problem is here formalized as the
problem of classifying a hand shape as one of six grasp
classes, labeled according to Cutkosky’s grasp taxonomy [9].
The classes are, as shown in Figure 2a-f, Large Diameter
grasp, Small Diameter grasp, Abducted Thumb grasp, Pinch
grasp, Power Sphere grasp and Precision Disc grasp.

The input to the grasp classification method is a single
image (one time instance, one camera view point) from the
robot’s camera. The hand is segmented out using skin color
segmentation, presented in more detail in Section III. From
the segmented image, a representation of the 2D hand shape
based on gradient orientation histograms is computed as
presented in Section IV. A large set of synthetic hand views
from many different viewpoints, performing all six types of
grasps has been generated. Details are given in Section III.
The new hand shape is classified as one of the six shapes by
approximate k-nearest neighbor comparison using Locality
Sensitive Hashing (LSH) [16]. Along with the grasp class,
the estimated orientation of the hand relative to the camera
is obtained by interpolating between the orientations of the
found nearest neighbors. This is presented in Section V.

Experiments presented in Section VII show the method to
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(a) Input image I. (b) Hand image H. (c) Synthetic hand image Hsynth.

Fig. 3. Processing of image data. a) Input I from the robot, grabbed with an AVT Marlin F-080C camera. b) Segmented hand image H. c) Synthetic
view of hand Hsynth, generated in Poser 7.

perform comparably to humans, which indicates that it is fit
to be included into complex vision system, such as the one
required in a PbD framework.

II. RELATED WORK

Classification of hand pose is most often used for gesture
recognition, e.g. sign language recognition [12], [17]. These
applications are often characterized by low or no occlusion
of the hands from other objects, and a well defined and
visually disparate set of hand poses; in the sign language
case they are designed to be easily separable to simplify
fast communication. Our problem of grasp recognition differs
from this application in two ways. Firstly, the grasped object
is usually occluding large parts of the grasping hand. We
address this by including expected occlusion in our dataset;
occluding objects are present in all example views (Section
III). Secondly, the different grasping poses are in some cases
very similar, and there is also a large intra-class variation,
which makes the classification problem more difficult.

Related approaches to grasp recognition [14], [18] first
reconstruct the hand in 3D, from infrared images [18] or
from an optical motion capture system which gives 3D
marker positions [14]. Features from the 3D pose are then
used for classification. The work of Ogawara et al. [18]
views the grasp recognition problem as a problem of shape
reconstruction. This makes their results hard to compare to
ours. In addition, they also use a wide baseline stereo system
with infrared cameras, which makes their approach difficult
to adopt in a case of a humanoid platform.

The more recent work of Chang et al. [14] learns a
non-redundant representation of pose from all 3D marker
positions – a subset of features – using linear regression
and supervised selection combined. In contrast, we use a
completely non-parametric approach where the classification
problem is transformed into a problem of fast LSH nearest
neighbor search (Section IV). While a linear approach is
sufficient in the 3D marker space of Chang et al. [14] , the
classes in the orientation histogram space are less Gaussian
shaped and more intertwined, which necessitates a non-linear
or non-parametric classifier as ours.

Using 3D motion capture data as input, Chang et al. [14]
reached an astonishing recognition rate of up to 91.5%. For
the future application of teaching of service robots it is
however not realistic to expect that the teacher will be able
or willing to wear markers to provide the suitable input for
the recognition system. 3D reconstructions, although with
lower accuracy, can also be achieved from unmarked video
[19], [20]. However, Chang et al. [14] note that the full
3D reconstruction is not needed to recognize grasp type.
Grasp recognition from images is thus an easier problem
than 3D hand pose reconstruction from images, since fewer
parameters need to be extracted from the input. We conclude
that the full 3D reconstruction is an unnecessary (and error
prone) step in the chain from video input to grasp type.

Our previous work [7] considered an HMM framework for
recognition of grasping sequences using magnetic trackers.
Here, we are interested in evaluating a method that can
perform grasp classification based on a single image only,
but it should be noted that the method can easily be extended
for use in a temporal framework.

III. EXTRACTING THE HAND IMAGE

Since the robot grasp strategies are predefined, and only
parameterized by the hand orientation, position and type of
grasp, there is no need for the human to show the whole grasp
procedure; only one time instance is enough (for example,
the image that is grabbed when the human tells the robot
”now I am grasping”).

The input to the recognition method is thus a single
monocular image I from the a camera mounted on the robot.
For our experiments, we use an AVT Marlin F-080C camera.
An example of an input image is shown in Figure 3a. Before
fed into the recognition, the image is preprocessed in that the
grasping hand is segmented from the background.

A. Segmentation of hand images

The hand segmentation could be done using a number of
modalities such as depth (estimated using stereo or an active
sensor) or color. We choose to use skin color segmentation;
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Fig. 4. Gradient orientation histograms from the hand image H of Figure 3b, with B = 4 bins, on level l = 1 in the pyramid of L = 4 levels (spatial
resolution 8× 8). a) Bin 1, orientation π
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the details of the method used are described in [21]. To re-
move segmentation noise at the borders between background
and foreground, the segmentation mask is median filtered
three times with a 3× 3 window.

The segmented image Ĥ is cropped around the hand
and converted from RGB to grayscale. An example of the
resulting hand image H is shown in Figure 3b.

B. Generation of synthetic hand images for the classification

The fact that the classification method (Section V) is non-
parametric and that no explicit model of the hand is built
(Section IV) means that a very large set of examples, from
many different views, is needed for each grasp.

As it is virtually intractable to generate such training sets
using real images, we use a commercial software, Poser
7, to generate synthetic views Hsynth of different hand
configurations. Poser 7 supplies a realistic 3D hand model
which can be configured by bending the finger joints. For
our purposes, the model was configured by hand into the
6 iconic grasps, which were a little exaggerated to provide
clear distinctions between the classes. 900 views of each
configuration were generated, with viewing angles covering
a half-sphere in steps of 6 degrees in camera elevation and
azimuth; these are the views which can be expected by a
robot with cameras above human waist-height. The synthetic
hand was grasping an object, whose shape was selected to
be typical of that grasp [9]. The object was black (as the
background), and occluded parts of the hand as it would in
the corresponding real view of that grasp. This will make
the synthetic views as similar as possible to the real views
(e.g. Figure 3b), complete with expected occlusion for that
view and grasp. Figure 3c shows such a database example.

The synthetic images Hsynth can be seen as ideal versions
of the segmented and filtered real hand images H. Note that
the recognition method is tested (Section VII) using real hand
images prepared as described in the previous subsection, and
that the synthetic images are used only for the database. Note
further that the hand in the database is not the same as the
hand in the test images.

IV. IMAGE REPRESENTATION

For classification of grasps, we seek a representation of
hand views (Figures 3b and 3c) with as low intra-class
variance, and as high inter-class variance as possible. We
choose gradient orientation histograms, frequently used for
representation of human shape [22], [23].

Gradient orientation Φ ∈ [0, π) is computed from the
segmented hand image H as

Φ = arctan(
∂H
∂y

/
∂H
∂x

) (1)

where x denotes downward (vertical) direction and y right-
ward (horizontal) direction in the image.

From Φ, a pyramid with L levels of histograms with
different spatial resolutions are created; on each level l, the
gradient orientation image is divided into 2L−l×2L−l equal
partitions. A histogram with B bins are computed from each
partition. An example of histograms at the lowest levels of
the pyramid can be seen in Figure 4.

The hand view is represented by x which is the concate-
nation of all histograms at all levels in the pyramid. The
length of x is thus B

∑L
l=1 22(L−l). The performance of the

classifier is quite insensitive to choices of B ∈ [3, 8] and
L ∈ [2, 5]; in our experiments in Section VII we use B = 4
and L = 3.

V. APPROXIMATE NEAREST NEIGHBOR CLASSIFICATION

A database of grasp examples is created by synthesizing
N = 900 views Hsynth

i,j with i ∈ [1,M ], j ∈ [1, N ], from
each of the M = 6 grasp classes (Section III), and generating
gradient orientation histograms xi,j from the synthetic views
(Section IV). Each sample has associated with it a class label
yi,j = i and a hand-vs-camera orientation oi,j = [φj , θj , ψj ],
i.e. the Euler angles from the camera coordinate system to a
hand-centered coordinate system.

To find the grasp class ŷ and orientation ô of an unknown
grasp view x acquired by the robot, a distance-weighted k-
nearest neighbor (kNN) classification/regression procedure is
used. First, Xk, the set of k nearest neighbors to x in terms
of Euclidean distance di,j = ‖x− xi,j‖ are retrieved.

As an exact kNN search would put serious limitations on
the size of the database, an approximate kNN search method,
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(a) 1, 0.5039, (0,−90,−132). (b) 1, 0.5238, (0,−96,−138). (c) 1, 0.5308, (0,−96,−132). (d) 1, 0.5517, (0,−90,−126).

(e) 1, 0.5523, (0,−96,−144). (f) 1, 0.5584, (0,−102,−132). (g) 1, 0.5870, (0,−90,+108). (h) 4, 0.6068, (0,−90,+120).

Fig. 5. Distance-weighted nearest neighbor classification. a-h) Some of the approximate nearest neighbors to the hand view in Figures 3b, with associated
grasp class yi,j , distance in state-space di,j , and 3D orientation oi,j .

Locality Sensitive Hashing (LSH) [16], is employed. LSH
is a method for efficient ε-nearest neighbor (εNN) search,
i.e. the problem of finding a neighbor xεNN for a query x
such that

‖x− xεNN‖ ≤ (1 + ε)‖x− xNN‖ (2)

where xNN is the true nearest neighbor of x. This is done
as (see [16] for details): 1) T different hash tables are
created independently. 2) For t = 1, . . . , T , the part of state
space in which the dataset {xi,j}i∈[1,M ],j∈[1,N ] resides is
randomly partitioned by K hyperplanes. 3) Every point xi,j
can thereby be described by a K bit binary number ft,i,j
defined by its position relative to the hyperplanes of table t.
4) As the total number of possible values of ft,i,j is large,
a hash function h(ft,i.j) gives the index to a hash table of
fixed size H .

The εNN distance to the unknown grasp view x is now
found as: 1) For each of the T hash tables, compute hash
indices h(ft) for x. 2) Let X∪ = {xm}m∈[1,N∪] be the
union set of found examples in the T buckets. The εNN
distance ‖x − xεNN‖ = minm∈[1,N∪] ‖x − xm‖. In analog,
the min(N∪, k) ε-nearest neighbors Xk are found as the
min(N∪, k) nearest neighbors in X∪.

The parameters K and T for a certain value of ε is dataset
dependent, but is learned from the normal data itself [24].
We use ε = 0.05.

The computational complexity of retrieval of the εNN with
LSH [16] is O(DN

1
1+ε ) which gives sublinear performance

for any ε > 0. For examples of ε-nearest neighbors to the
hand in Figure 3b, see Figure 5.

From Xk the estimated class of x is found as,

ŷ = arg max
i

∑
j:xi,j∈Xk

exp(−
d2
i,j

2σ2
) , (3)

i.e. a distance-weighted selection of the most common class
label among the k nearest neighbors, and the estimated
orientation as

ô =

∑
j:xŷ,j∈Xk oŷ,j exp(−d

2
ŷ,j

2σ2 )∑
j:xŷ,j∈Xk exp(−d

2
ŷ,j

2σ2 )
, (4)

i.e. a distance-weighted mean of the orientations of those
samples among the k nearest neighbors for which yi,j = ŷ.
(The cyclic properties of the angles is also taken into account
in the computation of the mean.) As we can see in Figure 5h,
the orientation of a sample from a different class has very
low correlation with the real orientation, simply because the
hand in a different grasp has a different shape. Therefore,
only estimates with the same class label as ŷ are used in the
orientation regression. All in all, the dependency between
the state-space and the global Euler angle space is highly
complex, and that is why it is modeled non-parametrically.

The standard deviation σ is computed from the data as

σ =
1√

2MN

∑
i

∑
j1,j2∈[1,N ],j1 6=j2

‖xi,j1 − xi,j2‖ , (5)

the mean intra-class, inter-point distance in the orientation
histogram space [25].

The obviously erroneous neighbors in Figures 5g
and 5h could maybe have been avoided with a larger
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Fig. 6. Barret Wrap grasp, carried out on the same type and size of object as the human Large Diameter grasp shown in Figure 3b.

database containing hands of varying basic shape, such as
male/female/skinny/fat/long-fingered/short-fingered hands.
The hand in the test images (Figure 3b) is considerably
different from the synthetic Poser 7 hand (Figures 3c, 5),
and thus their 3D shapes are different even though they take
the same pose. This poses no problem to the method in
general; since the approximate kNN classification/regression
has a sub-linear complexity, the database can be increased
considerably to a limited computational cost.

VI. EXAMPLE-BASED MAPPING OF GRASP TO ROBOT

To illustrate how the grasp classification can be employed
for human-to-robot mapping in a pick-and-place scenario, a
simulated robot arm is controlled with parameterized pre-
defined grasping strategies as illustrated in Figure 1.

A human-to-robot grasp mapping scheme is defined de-
pending on the type of robot hand used; here we use a Barret
hand with three types of grasps as shown in Figure 2. The
type of robot grasp defines the preshape of the robot hand.

The hand orientation estimate ô relative to the camera,
along with the hand position estimate and the estimated
position and orientation of the grasped object relative to
the camera, are used to derive the estimated position and
orientation of the human hand relative to the object, as
depicted in Figure 1. The estimation of object position and
orientation is assumed perfect; this part of the system is
not implemented, instead the ground truth is given in the
simulations.

In contrary to related grasp approaches [26], the robot here
does not explore a range of approach vectors, but instead
directly imitates the human approach vector, encoded in the
hand position and orientation relative to the object. This
leads to a much shorter computational time at the expense
of the non-optimality of the grasp in terms of grasp quality.
However, since the the selection of robotic preshape has
been guided, the stability of the robotic grasp will be similar
to the human one, leading to a non-optimal but successful
grasp provided that the errors in the orientation and position
estimate are sufficiently small.

An analysis of the robustness to position errors can be
found in [26]. For an optimally chosen preshape, there is a
error window≥ 4 cm× 4 cm about the position of the object,

within which the grasps are successful. The positioning of
the robot hand can also be improved by fusing the estimated
human hand position with an automatic selection of grasping
point based on object shape recognition [27].

The robustness to orientation errors depends greatly on
the type of grasp and object shape. We investigate the
robustness of the Barret Wrap grasp with an approach vector
perpendicular to the table (Figure 6). We get good results
for orientation errors around the vertical axis of up to 15
degrees. As a comparison, the mean regression error of this
orientation (Section VII-B) is on the same order as the
error window size, 10.5 degrees, which indicates that the
orientation estimation from the grasp classifier should be
used as an initial value for a corrective movement procedure
using e.g. the force sensors on the hand.

VII. EXPERIMENTAL RESULTS

Quantitative evaluations of the grasp classification and
orientation estimation performance were made.

For each of the six grasp types, two video sequences of
the hand were captured, from two different viewpoints. From
each video, three snapshots were taken, one where the hand
was starting to reach for the object, one where the hand was
about to grasp and one where the grasp was completed. This
test set is denoted X .

The test examples from the beginning of the sequences
are naturally more difficult than the others, since the hand
configuration in those cases are closer to a neutral configu-
ration, thus more alike than the examples taken closer to the
completed grasp. It is interesting to study the classification
rate for the different levels of neutrality, since it indicates
the robustness to temporal errors when the robot grabs the
image upon which the classification is based (Section III). In
some tests below, we therefore removed the 12 most neutral
examples from the test set, denoted X ′. In other tests, we
kept only the 12 most specific examples, denoted X ′′.

A. Classification of human grasps: Comparison of LSH and
human classification performance

Figures 7a, 7b, and 7c show the confusion matrices for
LSH classification of test set X , X ′, and X ′′, respectively.
Apart from the fact that the performances on X ′ and X ′′
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(a) LSH, all hand images: 61%.
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(b) LSH, hand close to object: 71%.
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(c) LSH, hand grasping object: 75%.
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(d) Human, all hand images: 74%.

Fig. 7. Confusion matrices for classification of the six grasps. White represents a 100% recognition rate, while black represents 0%. a) LSH performance, all
hand images (X): 61% correct classifications. b) LSH performance, images with hand close to object (X′): 71% correct classifications. c) LSH performance,
images with hand grasping object (X′′): 75% correct classifications. d) Human performance, all hand images (X): 74% correct classifications.

are better than for X , it can be noted that the performance
on Pinch grasp (9) and Precision Disc grasp (12) are very
good. This is expected since these grasps are visibly very
different from the others. Interestingly, it also concords with
the mapping to the Barret grasps (Figure 2) in which these
grasps have unique mappings while the others all are mapped
to the same grasp. Note however that the human grasps map
differently to more articulated robot hands.

The error rates alone say little about how the method
would perform in a PbD system. The grasp recognition
would there interact with methods for object, shape and
action recognition, and a perfect performance in an isolated
grasp recognition task is probably not needed.

How do we then know what error rate is ”enough”?
Humans are very good at learning new tasks by visual
observation, and reach a near perfect performance on com-
bined object, shape, action and object recognition. Human
recognition performance on the same task as our classifier,
with the same indata, would thus be a good baseline.

As an important side note, two things can be noted about
this comparison. Firstly, in a natural learning situation, a hu-
man would use information about the grasped object and the
motion of the hand as well. This information is removed for
this experiment. As discussed in the Conclusions, we intend
to integrate automatic grasp, object and action recognition
in the future. Secondly, it is debated how important depth
perception is for human recognition; humans perceive depth
both through stereo and through prior knowledge about the
hand proportions. For this experiment, we disregard depth as
a cue in the human experiment.

Figure 7d shows the classification performance of a human
familiar with the Cutkosky grasp taxonomy. The human was
shown the segmented hand images H in the set X in random
order and was asked to determine which of the six grasp
classes they belonged to.

Interestingly, the human made the same type of mistakes
as the LSH classifier, although to a lower extent. He some-
times misclassified Power grasp (10) as Large Diameter grasp
(1), and Small Diameter grasp (2) as Abducted Thumb grasp
(4). This indicates that these types of confusions are intrinsic
to the problem rather than dependent on the LSH and training

set. Since humans are successful with grasp recognition in
a real world setting, these confusions are compensated for
in some other way, probably by recognition of shape of the
grasped objects. It can also be noted that the human was
better at recognizing the most neutral grasps present in X
but not in X ′ or X ′′.

Overall, the LSH performance is at par with, or slightly
worse than human performance. This must be regarded as a
successful experimental result, and indicates that the grasp
recognition method can be a part of a PbD system with low
error rate.

B. Classification of human grasps: Orientation accuracy

Figure 8 shows the mean orientation error for regression
with X . The angular displacement of the two coordinate
systems corresponds to how far off a robot hand would be
in grasping an object without corrective movements during
grasping. As noted in Section VI, the orientation estimate
from this method should only be regarded as an initial
value, from where a stable grasp is found using a corrective
movement procedure.

VIII. CONCLUSIONS

PbD frameworks are considered as an important area for
future robot development where the robots are supposed to
learn new task through observation and imitation. Manipu-
lating and grasping known and unknown objects represents
a significant challenge both in terms of modeling the obser-
vation process and then executing it on the robot.

In this paper, a method for classification of grasps, based
on a single image input, was presented. A grasping hand was
represented as a gradient orientation histogram; a 2D image-
based representation. A new hand image could be classified
as one of six grasps by a kNN search among large set of
synthetically generated hand images.

On the isolated task of grasp recognition, the method
performed comparably to a human. This indicates that the
method is fit for use in a PbD system, where it is used
in interaction with classifiers of object shape and human
actions. The dataset contained grasps from all expected
viewpoints and with expected occlusion. This made the
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Fig. 8. Mean orientation error, all hand images (X): (0, 0.29, 0.18) radians
= (0, 16.8, 10.5) degrees.

method view-independent although no 3D representation of
the hand was computed.

The method was considered part of a grasp mapping
framework, in which precomputed grasp strategies were
compiled based on the detected type of grasp and hand-object
orientation.

A. Future Work

It would be interesting to add an object orientation estima-
tion technique to the system, and to execute the grasps on a
real robot arm. Furthermore, we will investigate the inclusion
of automatic positioning methods into the grasp strategies,
as suggested in Section VI.

The classifier will also benefit from a training set with
hands of many different shapes and grasped objects of
different sizes. Although, this will increase the size of the
database, the sub-linear computational complexity of the
LSH approximate kNN search ensures that the computation
time will grow at a very limited rate.

This paper discussed instantaneous recognition of grasps,
recognized in isolation. Most probably, a higher recognition
performance can be reached using a sequence of images
over time. Moreover, there is a statistical correlation between
types of objects, object shapes, human hand actions, and
human grasps in a PbD scenario. We are therefore on our
way to integrating the grasp classifier into a method for
continuous simultaneous recognition of objects and human
hand actions, using Conditional Random Fields (CRF) [28].
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[26] J. Tegin, S. Ekvall, D. Kragić, B. Iliev, and J. Wikander, “Demonstra-
tion based learning and control for automatic grasping,” in Interna-
tional Conference on Advanced Robotics, 2007.

[27] A. Saxena, J. Driemeyer, J. Kearns, and A. Y. Ng, “Robotic grasping
of novel objects,” in Neural Information Processing Systems, 2006.

[28] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” in
International Conference on Machine Learning, 2001.

[3]:8



Simultaneous Visual Recognition of
Manipulation Actions and Manipulated Objects

Hedvig Kjellström Javier Romero David Mart́ınez Danica Kragić
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Abstract. The visual analysis of human manipulation actions is of in-
terest for e.g. human-robot interaction applications where a robot learns
how to perform a task by watching a human. In this paper, a method
for classifying manipulation actions in the context of the objects manip-
ulated, and classifying objects in the context of the actions used to ma-
nipulate them is presented. Hand and object features are extracted from
the video sequence using a segmentation based approach. A shape based
representation is used for both the hand and the object. Experiments
show this representation suitable for representing generic shape classes.
The action-object correlation over time is then modeled using condi-
tional random fields. Experimental comparison show great improvement
in classification rate when the action-object correlation is taken into ac-
count, compared to separate classification of manipulation actions and
manipulated objects.

1 Introduction

Manipulation actions, i.e. hand actions for picking up objects, doing something
with them and putting them down again, is an important class of hand activity
not well studied in computer vision. The analysis of human manipulation is of
interest for work-flow optimization, automated surveillance, and programming
by demonstration (PbD) applications, in which a robot learns how to perform a
task by watching a human do the same task.

An important cue to the class of a manipulation action is the object handled;
for example, seeing a human bring a cup towards his/her face brings us to believe
that he/she is drinking, without actually seeing the fluid. Similarly, a strong
cue to the class of the object involved is the action; for example, a cup is to
some extent defined as something you drink from. Therefore, it is beneficial to
simultaneously recognize manipulation actions and manipulated objects.

A manipulation action is here defined as beginning with the picking-up of an
object and ending with the putting-down of that object. Only one-hand actions
are considered, although this is not a limitation to the method in a formal sense.
In a video sequence of the action, the human head and hand are segmented and
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tracked using skin color, and objects are segmented as being in the neighborhood
of the hand and moving with it.

The action state space in each frame is the image position of the hand relative
to the face, and the shape of the hand, represented with a gradient orientation
histogram pyramid [1, 2]. Section 5 shows the inclusion of hand shape in the state
space to greatly improve action recognition compared to only hand position.

Objects in this application are ”graspable” i.e. fairly rigid, so shape is a
good object descriptor. We use pyramids of gradient orientation histograms for
representation of object shape as well as hand shape. Experiments in Section 5
show this representation to lead to a state-of-the-art classification performance
on the NORB dataset [3] which contains objects of this type. Specific for our
application is that the classification method has access to several views of the
object over the course of the action, something that improves the recognition.
Section 3 describes the feature extraction.

There are implicit, complex interdependencies in the object and action data.
The sequence of object viewpoints, as well as occlusion from the hand depend
on the action; i.e. what the hand is doing with the object. Similarly, the hand
shape depends on the size, shape and surface structure of the object in the hand.
These dependencies are difficult to model, which leads us to use a discriminative
sequential classifier, conditional random fields (CRF) [4], that does not model
the data generation process.

On a semantic level, there are also action-object dependencies of the type
”drink”–”cup”, ”drink”–”glass”, ”write”–”pen”, ”draw”–”pen” and so on, which
can be explicitly modeled within the CRF framework. The action-object depen-
dence can be modeled on a per-frame basis using a factorial CRF (FCRF) [5].
However, it might be the case that the dependencies between particular frames
are weaker than the dependence beween the action and the object as whole. To
model sequence-level dependence, we introduce a CRF stucture which we call
connected hierarchic CRF:s (CHCRF). This is detailed in Section 4.

Experiments in Section 5 show three things. Firstly, CRF structures with
many degrees of freedom, such as structures with hidden nodes or large data
connectivity, perform worse than simple structures when the amount of training
data is limited. Secondly, the correlated action-object recognition outperform
separate classification, and CHCRF:s perform better than FCRF:s on the action-
object classification task. Last, the information on actions implicit in the object
data is redundant to the information on objects in the action data.

The primary contribution of this paper is the idea of recognizing manipula-
tion actions and manipulated objects in context of each other, while secondary
contributions are the definition of the CHCRF and the representation of object
shape using pyramids of gradient orientation histograms.

2 Related Work

Actions. In the last few years, considerable research effort has been spent on the
analysis of human motion from video [6]. For the purpose of detecting atomic
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actions in video, Laptev and Pérez [7] use a boosted classifier of spatiotemporal
volumes of optical flow. This approach is robust to significant changes in scale,
appearance and viewpoint. Our method differs from [7] in that it is possible to
model actions with a longer extension in time, possibly with a sub-structure.
Furthermore, since our analysis involves the manipulated object, the hand needs
to be located, putting different constraints on our feature extraction.

The analysis of hand motion is most often applied to gesture recognition for
human-computer interfaces or sign language recognition [8]. These applications
are often characterized by low or no occlusion of the hands from other objects,
and a well defined and visually disparate set of hand poses; in the sign language
case the gestures are designed to be easily separable to simplify fast communi-
cation. In contrast, the manipulation actions which we investigate suffer from
large intra-class variability and sometimes occlusion of parts of the hand from
the manipulated objects.

Feature extraction for hand action classification often means tracking the
hand in 2D [9] or 3D [10, 11]. However, to be able to handle low video frame-
rates we prefer to use a segmentation-based method for human pose recovery
not relying on time-incremental estimation [12–14].

Objects. Object recognition is a vast area of research and can be regarded as one
of the core problems in computer vision. We do not make an attempt to review
the whole field, but focus on contextual object recognition and the representation
of shape in object recognition.

The caption of an image says something about what objects can be expected
in it. When labeling images according to object content, any captions should
therefore be taken into account. Caption-guided object detection can be used
to segment the image into object regions and associate them with object labels
[15], or to automatically label or cluster a large set of unlabeled images with
captions given a smaller set of labeled images with captions [16].

In [17–19], the scene itself, the ”gist” of the image, is used to guide object
recognition. The scene itself is a strong prior cue as to which objects can be
expected and where they are most likely to be found. CRF:s have also been used
[19, 20] to automatically learn sub-structure; the relations between different parts
of the object or between different objects and the scene.

Earlier work on contextual object recognition [21, 22] has focused on func-
tional object recognition; objects are then classified in terms of their function.
This is similar in spirit to our contextual recognition; object classes are here
defined by how the objects are used (in which action context they appear), and
classes of manipulation actions are defined by the class (or classes) of objects
that are involved in the action.

Modeling shape is difficult; an important tradeoff is the sparseness of the
representation (from silhouettes [13], via edge maps [14, 23], to maps of gradient
orientation) versus the robustness towards differences in lighting and fine object
texture. We use pyramids of localized histograms of gradient orientation, a rep-
resentation robust to small position and fine texture differences, while containing
more texture information than e.g. edge maps.
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Actions and objects. Moore et al. [24] provide a Bayesian framework for rec-
ognizing scenes, objects in it, and actions being performed on the objects. A
system such as this could be the framework for our method: While their system
keeps track the hands of a human, objects handled by the human, and which ac-
tions are performed on which objects, our method is concerned with classifying
a single action and object.

Wu et al. [25] continue along this line, learning a dynamic Bayesian network
model that represent temporal sequences of actions and objects involved in the
actions. The features used for classification are RFID tags attached to the ob-
jects and the human hand. Again, our method could be incorporated in such a
system, replacing the RFID-based classificiation with simultaneous classification
of objects and actions from video.

Earlier on, Mann and Jepson [26] use a force-dynamic bottom-up approach
to describe the interaction between hands and objects in scenes. In contrast, we
use a statistical formulation, since the underlying process generating the video
sequences in our case is far too complex to be modeled deterministically.

3 Features for Classification

Extraction of image features could be done in a variety of ways [6] depending on
the purpose of the feature extraction. Features representing the human motion
and appearance as well as object motion and appearance are of interest. As
opposed to many other action recognition applications, like video annotation
[7], it is here necessary to obtain the location of the human hand to find the
manipulated object.

Considering the low framerate, large motion blur and low resolution of the
hands of our video sequences, and that articulated hand tracking is a difficult
problem [10, 11], we use a segmentation based approach. The hand and face of
the human is localized using skin color segmentation [27] and hand and face
masks are extracted from the skin mask using connected components detection
or with an αβ-filter when hand and face blobs merge.

Other cues than skin color, e.g. combinations of spatial or spatiotemporal
filters, can of course also be exploited for the localization of hands and face.

The object involved in the manipulation action is in the human’s right hand.
To focus the attention of the object classification onto only that object, an object
segmentation mask is also obtained, right of the hand in the image (based on
the assumption that the object is in that area if grasped by the human). While
the position of the area is automatically obtained from the hand position, the
area shape is selected to fit the object in the first frame of the sequence, and is
then held constant throughout the sequence.

Manipulation actions are here defined as beginning with a pick-up event and
ending with a put-down event. With a fully automatic object segmentation, it
is possible in each time-step to detect whether there is an object in the hand or
not, so that the temporal segmentation can be done automatically.
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(a) Pos (b) Image (c) π/8 (d) 3π/8 (e) 5π/8 (f) 7π/8

Fig. 1. Features used for action classification. a) 2D position pt of the centroid of the
right hand segment relative to centroid of the face segment. b) Hand image Ia

t . c–
f) Gradient orientation histograms from Ia

t , with B = 4 bins, on level l = 1 in the
pyramid of L = 3 levels. c) Bin 1, orientation π/8. d) Bin 2, orientation 3π/8. e) Bin
3, orientation 5π/8. f) Bin 4, orientation 7π/8.

Action features. We seek a representation of hand motion that captures both
the global hand position and the articulated hand pose over time. The global
position of the hand at time t is represented with the 2D position pat of the
centroid of the hand mask relative to the centroid of the face mask (Figure 1a).

The local articulated hand pose is represented using gradient orientation
histograms, frequently used for representation of human shape [1, 2]. Gradient
orientation Φt ∈ [0, π) is computed from the segmented hand image Iat (Figure
1b) as Φt = arctan(∂I

a
t

∂y /
∂Ia

t

∂x ) where x denotes downward (vertical) direction and
y rightward (horizontal) direction in the image.

From Φt, a pyramid with L levels of histograms with different spatial resolu-
tions are created; on each level l, the gradient orientation image is divided into
2L−l × 2L−l equal partitions. A histogram with B bins is computed from each
partition. Figures 1c–f show histograms at the lowest level of the pyramid.

The hand pose at time t is represented by the vector xat which is the con-
catenation of the position pat and all histograms at all levels in the pyramid.
The length of xat is thus 2 + B

∑L
l=1 22(L−l). The performance of the classifier

is quite insensitive to choices of B ∈ [3, 8] and L ∈ [2, 4]; in our experiments
in Section 5 we use B = 4 and L = 3. Before concatenation, pat is normalized
so that the standard deviations of the two dimensions of xat originating from pat
have the same standard deviation in the training set (Section 5) as the remaining
dimensions. The sequence of poses over the sequence is xa = {xat }, t = 1, . . . , T .

Object features. The objects considered in this application are all ”graspable”,
i.e. more or less rigid. For example, a cup is graspable, but water is not. Shape can
therefore be expected to be a good object class descriptor, while local descriptors
like SIFT features [28] are unsuitable for our purposes.

Contrary to in many other object recognition applications, e.g. labeling of
images according to object content, there is no search for object location in-
volved. For manipulated objects, the position of the hand grasping the object
gives an indication of the expected object location, and the recognition problem
becomes one of classifying the given region. However, there might be deviations
in position and orientation of the object within this region, as well as devia-
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(a) Image (b) π/8 (c) 3π/8 (d) 5π/8 (e) 7π/8

Fig. 2. Features used for object classification. a) Object image Io
t . b–e) Gradient ori-

entation histograms from Io
t , with B = 4 bins, on level l = 1 in the pyramid of L = 4

levels. b) Bin 1, orientation π/8. c) Bin 2, orientation 3π/8. d) Bin 3, orientation 5π/8.
e) Bin 4, orientation 7π/8.

tions in size, shape and color of different instances within each object class. The
descriptor must therefore be insensitive to these intra-class variations, but still
capture inter-class variations.

We select the same gradient orientation histogram representation as for the
hand shape, a description that captures the shape of the object, with a certain
insensitivity to absolute greylevels and small displacements of object parts (Fig-
ure 2). Note that this representation is not invariant to e.g. in-plane rotations;
this is deliberate, since global orientation is indicative of object class in our ap-
plication. The object at time t is represented by xot , the concatenation of all
histograms at all levels in the pyramid. In Section 5 this representation is evalu-
ated on the problem of recognizing generic object categories, and it is found to
be robust to intra-class variability in shape, orientation, position, rotation and
lighting conditions, while maintaining a good inter-class discriminability.

Another factor specific to this object recognition application is that the data
consist of not only one, but a sequence of object views. In most cases, parts
of the object are also occluded by the human hand grasping it. The change in
orientation of the object with respect to the camera during the sequence and
the occlusion from the hand are descriptive of the object, since they reflect the
way this object class is used by the human; they can be termed ”typical view
sequences” and ”typical occlusions”. Thus, the classifier should take the whole
sequence of object views into account. Each measurement is therefore described
by a sequence of descriptors xo = {xot}, t = 1, . . . , T .

Correlation between action and object features. As discussed in the introduction,
the shape of the hand encoded in xa gives cues about the object as well, since
humans grasp different types of objects differently, due to object function, shape,
weight and surface properties. Similarly, the view change in xo over the course of
the sequence is correlated with the type of action performed with the object. This
representation of the correlation between manipulation actions and manipulated
objects is implicit and difficult to model accurately, but should be taken into
account when modeling the simultaneous action-object recognition.
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Fig. 3. Different CRF structures used for action-object recognition with pre-segmented
data. Dotted edges and nodes indicate that the weights θ associated with these are
constrained during the training of the CRF. a) Linear-chain CRF [4]. b) Hidden CRF
[20]. c) Factorial CRF [5], data layer not shown. d) Connected hierarchic CRF:s, data
layer not shown.

4 Discriminative Classification using CRF:s

Since we can expect complex dependencies within our action data xa and object
data xo over time, a discriminative classifier which does not model the data gen-
eration process is preferable over a generative sequential classifier like a hidden
Markov model (HMM) [29]. We thus employ conditional random fields (CRF:s)
[4] which are undirected graphical models that represent a set of state variables
y, distributed according to a graph G, and conditioned on a set of measurements
x. Let C = {{yc,xc}} be the set of cliques in G. Then,

P (y|x; θ) =
1

Z(x)

∏
c∈C

Φ(yc,xc; θc) (1)

where Φ is a potential function parameterized by θ as

Φ(yc,xc; θc) = e
∑

k
θc,kfk(yc,xc) (2)

and Z(x) =
∑

y

∏
c∈C Φ(yc,xc; θc) is a normalizing factor. The feature functions

{fk} are given, and training the CRF means setting the weights θ using belief
propagation [4].

For linear-chain data (for example a sequence of object or action features
and labels), y = {yt} and x = {xt}, t = 1, . . . , T as shown in Figure 3a. This
means that the cliques are the edges of the model, which gives

P (y|x; θ) =
1

Z(x)

T∏
t=2

Φ(yt−1, yt,x; θt) (3)

with a potential function

Φ(yt−1, yt,x; θt) = e
∑

k
θt,kfk(yt−1,yt,x). (4)
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Each state yt can depend on the whole observation sequence x – or any subpart
of it, e.g. the sequence {xt−C , . . . , xt+C}, C being the connectivity of the model.

A CRF returns an individual label for each time-step, which means that
the time-sequential data x to be classified do not have to be segmented prior
to classification. However, if a segmentation is readily available, as in our case,
the robustness of the classification is increased by assuming that for all labels
within the segment, yt = y ∀ t ∈ [1, T ]. With pre-segmentation, the model thus
becomes P (y|x; θ) ≡ P (y = [y, . . . , y]|x; θ). This is illustrated by the dotted
layer in Figure 3a. We will formalize this below.

The introduction of a hidden layer, where each hidden label represents the
classification of a sub-part of the sequence (Figure 3b), has been shown [20] to
improve the recognition rate in situations where there is such a sub-structure
present in the data. This is indeed the case in our object and action recognition
problems. With an observable label y and a set of hidden labels h that form a
time-chain, the probabilistic model of a hidden CRF (HCRF) becomes

P (y|x; θ) =
1

Z(x)

∑
h

T∏
t=1

Φ(y, ht,x; θht )
T∏
t=2

Φ(y, ht−1, ht,x; θhht ) (5)

with potential functions

Φ(y, ht,x; θht ) = e
∑

k
θh

t,kfk(y,ht,x), Φ(y, ht−1, ht,x; θhht ) = e
∑

k
θhh

t,kfk(y,ht−1,ht,x).
(6)

Both inference and parameter estimation can be done using exact methods, pro-
vided that there are no loops in the hidden layer [20]. However, the introduction
of hidden parameters leads to a non-convex optimization problem, which means
that the parameter estimation procedure requires more data to converge, and
might also reach local optima. Note also that an HCRF requires pre-segmented
data; for continuous classification, other structures with hidden layers have been
presented, like the latent-dynamic CRF (LDCRF) [30]. CRF and HCRF perfor-
mance for pre-segmented data is compared in the experiments in Section 5.

The CRF in Figure 3a is in fact a special case of the HCRF in Figure 3b,
where the weights θ are restricted so that A) h are not hidden, ht = y ∀ t ∈ [1, T ];
and B) equal weight is given to each timestep, θht1 = θht2 ∀ t1, t2 ∈ [1, T ].

”Early fusion”: factorial CRF. In Section 3 we argue that there are correlations
between action observations xa and object observations xo implicit in the data.
We make use of this correlation on the data level by not imposing a simpli-
fied model on the data generation process and instead using a discriminative
classifier, CRF. However, there is also an explicit, semantic correlation between
actions and objects on the label level, as discussed in the introduction. This
correlation can be modeled in two ways, which we denote ”early” and ”late fu-
sion”. Early fusion corresponds to modeling the correlation on a per-frame basis,
i.e. the correlations between the labels at and ot for each frame of the action,
using a factorial CRF (FCRF) [5]. Figure 3c shows an FCRF with two states,

[4]:8



action class at and object class ot, in each time-step t. The conditional depen-
dence on data is omitted in the figure for visibility. The cliques in this model are
the within-chain edges {at−1, at} and {ot−1, ot}, and the between-chain edges
{at, ot}. The probability of a and o is thus defined as

P (a,o|x; θ) =
1

Z(x)

T∏
t=1

Φ(at, ot,x; θt)
T∏
t=2

Φ(at−1, at,x; θa,t)Φ(ot−1, ot,x; θo,t) .

(7)
The weights θ are obtained during training using loopy belief propagation [5].
As for the linear-chain CRF, pre-segmentation means that at = a, ot = o ∀ t ∈
[1, T ] and that the distribution over the two dotted layers in the FCRF can be
expressed as P (a, o|x; θ) ≡ P (a = [a, . . . , a],o = [o, . . . , o]|x; θ).

”Late fusion”: connected hierarchic CRF:s. Late fusion corresponds to modeling
the correlation on a sequence level. The assumption is here that it is the action
label a that is correlated with the object label o, not the labels at and ot of
a particular frame. The structure of a CRF for ”late fusion”, called connected
hierarchic CRF:s (CHCRF) is shown in Figure 3d. In the most general case the
two linear-chain layers are hidden, and the probability of an action a and an
object o conditioned on the data x is

P (a, o|x; θ) =
1

Z(x)
Φ(a, o,x; θao)

∑
ha

T∏
t=1

Φ(a, hat ,x; θat )
T∏
t=2

Φ(a, hat−1, h
a
t ,x; θaat )

∑
ho

T∏
t=1

Φ(o, hot ,x; θot )
T∏
t=2

Φ(a, hot−1, h
o
t ,x; θoot )

=
Φ(a, o,x; θao)∑
a,o Φ(a, o,x; θao)

P (a|x; θa)P (o|x; θo) (8)

in analog with Eq (5). To make the training more efficient, the data dependency
in the first term is omitted, becoming K(a, o) = Φ(a,o;θao)∑

a,o
Φ(a,o;θao)

, the co-occurrence

rate of action label a and object label o in the training data. The individual
probabilities P (a|x; θa) and P (o|x; θo) are estimated as in Eq (3), Eq (5), or using
any classification method that returns probability estimates. The parameters of
the action and object classifiers are learned separately.

5 Experiments

Evaluation of the object features. The object feature representation was first
evaluated on its own, without the CRF framework. For this we used the NORB
dataset [3], which contains 5 different classes of rigid objects; ”animals”, ”hu-
mans”, ”airplanes”, ”trucks”, and ”cars” with 10 instances of each, 5 for test and
5 for training.The database contains stereo views of each object from 18 different
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azimuths and 9 elevations in 6 different lighting conditions. Only the normalized-
uniform part of the dataset, designed to test classification performance, was used.
(The other part of the dataset is designed to test object detection, a task we do
not claim to address with this method.)

To evaluate the suitability of the feature representation for modeling shape
categories, a support vector machine (SVM) [31] was trained with feature vec-
tors xo extracted from the NORB training images as described in Section 3.
Table 1 left shows the results compared to others. Our object view representa-
tion together with a standard classifier reached the same classification accuracy
as a state-of-the-art method for object categorization [3], which indicates that
the gradient orientation histograms capture the specifics of a shape class, while
allowing a significant variability among instances of that class. In comparison,
training on the raw image downsampled to a size of 32 × 32 led to twice the
classification error (a surprisingly good result, as noted in [3], given that the
task is object categorization, not instance recognition). Furthermore, we note
that the incorporation of stereo does not add much to the accuracy.

Certain robustness towards differences in color and lighting, as well as small
position errors of the object segmentation mask, is also desireable. In [3], this was
tested by adding ”jitter”, i.e. small transformations to both the training and test
set. However, this arguably tested how the methods performed with a larger test
set, rather than how they could handle noise that was not seen before (not present
in the training data). Therefore, we did a variant of this experiment where we
added jitter to only the test set (Table 1 right). First, the overall brightness
of each test image was varied. Our feature representation was very robust to
this noise, which is expected since it relies solely on the gradient orientations
and not on their value. In comparison, the raw image classification error grew
much quicker. Then, the test images were shifted vertically and horizontally in
a random manner. The feature representation was more sensitive to this noise,
but less so than the raw image representation.

Simultaneous action and object recognition. For the purpose of testing the simul-
taneous action-object recognition, the OAC (Object-Action-Complex) dataset
was collected. The dataset consists of 50 instances each of three different action-
object combinations; ”look through binoculars”, ”drink from cup”, and ”pour
from pitcher”. The actions were performed by 7 men and 3 women, 5 times each.
The classes were selected so that the object and action data are complementary:

Table 1. Results on the normalized-uniform NORB dataset, percent error. Left: Clas-
sification error percentage compared to methods presented in [3]. Right: Generalization
test; robustness to different amount of jitter in test data (training data unaltered).

Mono Stereo

Hist + SVM 6.4 6.2

Raw + SVM 12.6 [3] —

Conv Net 80 — 6.6 [3]

Brightness Shift
±0 ±10 ±20 ±30 ±3 ±6 ±9

Hist + SVM 6.4 6.4 7.1 8 10.3 18.1 29.2

Raw + SVM 12.6 [3] 15.8 18 21 20.8 35.1 48.6
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(a) Instance of ”look through binoculars”

(b) Instance of ”drink from cup”

(c) Instance of ”pour from pitcher”

Fig. 4. The three classes of the OAC dataset (for one person, instance each). Training
and testing was performed in a jackknife manner, where the 15 sequences of one person
at a time was used as a test data, the 135 sequences of the other 9 persons as training
set.

two of the actions, ”look through” and ”drink from” are similar, while ”cup”
and ”pitcher” are similar.

Only one instance of each object was used, so the full object representation
generated a perfect classification performance with all parameter settings. To
simulate the performance in the more general object category recognition case,
all spatial information was removed, by using only L = 1 level in the gradi-
ent orientation histogram pyramid, and by normalizing the object segmentation
window with respect to aspect ratio (i.e. scale all object segments to squares).
The experiments below are not indicative of the object classification, but rather
of the action classification and the benefits of combining object and action clas-
sification for manipulation action applications.

Table 2. Experiments with separate action and object (H)CRF classification with
different connectivity C, percent error on the format ”median (max)” of 9 runs.

CRF conn 0 CRF conn 1 CRF conn 2 HCRF conn 0 Baseline

Actions 5.3 (9.3) 6 (12.7) 10.7 (18.7) 14.7 (21.3) 17.3 (20) (2D)

Objects 8 (8.7) 11.3 (13.3) 20.7 (28) 24.7 (28.7) 8.7 (1:st fr)
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Table 2 shows separate action and object classification with different param-
eter settings. The baseline for actions is a representation without spatial infor-
mation – only 2D pos pa over time, and for objects a representation without
temporal information – only the first frame xo1. Two things can be noted. Firstly,
while the object classification does well without the temporal information, the
action is to a large degree determined by spatial information, i.e. the shape of the
hand. Secondly, when comparing to similar experiments in [20] where HCRF:s
outperformed CRF:s, we draw the conclusion that it depends on the amount of
training data. With relatively little data, a model with fewer parameters will
perform better. In the applications we are considering, the less training data
needed, the better, since data collection takes time and the system should be
adaptable to different environments.

When comparing late and early fusion (Table 3) we see that while late fusion
(CHCRF) greatly improves the classification, there is only a marginal improve-
ment in the classification with early fusion (FCRF). There are two possible in-
terpretations which might both be true: A) the per-frame correlation of actions
and objects is simply a bad model of reality; B) the larger set of parameters
defining the FCRF leads to a worse performance with our relatively small train-
ing set. As a side note, the CHCRF object and action classification rates are
identical since the co-occurrence matrix K (Eq (8)) is diagonal in this example.
A non-unique action-object mapping (e.g. ”drink”–”glass” and ”drink”–”cup”)
would lead to differences in action and object classification rate.

How important is the implicit, data-level correlation compared to the ex-
plicit, semantic correlation modeled in the FCRF and CHCRF? To test this,
late fusion was performed with full data, x = [xa,xo], correlation in either cue
removed, x = [xa, xo1] or [pa,xo], and all correlation removed, x = [pa, xo1]. From
Table 4, it seems that the information on objects in the action data xa and the
information on actions in the object data xo is largely redundant; the classifica-
tion performance is not affected to any greater extent by using either pa or xo1,
but if all correlation data are removed, the classification is seriously affected.

6 Conclusions

A method for simultaneous sequential recognition of manipulation actions and
manipulated objects was presented, employing CRF:s trained with object and
hand shape over the course of the action. Two different CRF structures for
fusion of action and object classification were compared; FCRF:s, which model
the correlation on a per-frame level, and CHCRF:s, a structure introduced in this

Table 3. Experiments comparing late (CHCRF) and early (FCRF) fusion, percent
error on the format ”median (max)” of 9 runs. Connectivity 0 everywhere.

Connected Hiearchic CRF:s Factorial CRF Baseline (sep CRF:s)

Actions 3.3 (4.7) 5.3 (8) 5.3 (9.3)

Objects 3.3 (4.7) 6 (12) 8 (8.7)
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paper, which correlate the action and object classifcation as whole. CHCRF:s
outperformed FCRF:s on the task of correlated classification of action and object
sequences, probably because the action and object data are not correlated on a
per-frame basis.

CRF structures with many degrees of freedom, such as HCRF:s, or CRF:s
with high data connectivity, were found to perform worse than simpler struc-
tures with relatively small amounts of training data, although they have higher
descriptive power. Thus, in applications where the training data are limited, the
complexity of the model should be selected so that the training procedure will
converge with the amount of training data at hand. Moreover, the implicit in-
formation on actions in the object data and on objects in the action data was
found to be redundant. Thus, removing the correlated data in one cue or the
other can be done without affecting the overall classification, while removing the
correlated data in both cues will have serious effects on the classification rate.

The representation of object shape using a pyramid of gradient orientation
histograms was shown to give state-of-the-art classification results on the NORB
dataset, indicating that the representation is robust to intra-class differences in
quite general shape categories, while capturing inter-class differences.

In the future, we plan to incorporate the method for correlated action and
object classification into a PbD framework such as [24, 25].
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Abstract— Robot learning of household tasks from human
demonstration necessitates the recognition of human manipula-
tion actions, as well as reasoning about the manipulated objects.
To this end, this paper describes a method for 1) automatically
segmenting human motion from a video of manipulation action,
2) spatially segmenting the manipulated objects based on depth
and motion relative to the manipulating hand, 3) temporally
segmenting the video according to ”pick-up” and ”put-down”
events, and 4) modeling the action as a sequence of primitive
actions, each with one object. The primitives are recognized us-
ing a previously developed method for simultaneous recognition
of manipulation actions and manipulated objects.

I. INTRODUCTION

We are interested in robot learning from demonstration
[1] in household settings. The aim is for a household robot
to learn how to perform a task, e.g. making dinner, by
watching a human performing the task. The specifics of
this environment is that the tasks to be learned involve
manipulation of objects in the environment.

A crucial issue in learning manipulation tasks from
demonstration is that the number of observations of the
specific task is very small. This is usually addressed by
modeling the task as a sequence of primitive actions, which
can be learned beforehand. The task is then described in
terms of these primitives [2]. In this paper we address
the issue of learning primitive actions, and segmenting and
recognizing them from an (unsegmented) video of a new
combination of primitive actions.

Going back to Gibson [3], the concept of affordances is
of importance for learning of manipulation tasks. According
to the affordance theory, objects are defined by how they can
be used, for example, a cup can be defined as ”fillable” and
a chair or stool as ”sittable”. Building upon this concept,
objects and actions performed upon them can be viewed
as an unseparable entity, an object-action complex (OAC)
[4]. In earlier work [5] we, to this end, present a method
for simultaneously recognizing manipulation actions and
manipulated objects. Objects are thus recognized in context
of how they are manipulated, and manipulation actions are
recognized in context of what object is manipulated.

Building on this work, we here show how such an OAC
classifier can be used by a robot to 1) learn a composite
task by modeling it as a sequence of previously seen OAC
primitives, 2) learn about objects in the scene by observing
how they are manipulated.

Specifically, we have extended the method in [5] with a
method for segmenting manipulated objects from the back-

pour from
pitcher

Fig. 1. Visual robot learning from demonstration. The robot models
a human task as a sequence of primitive manipulation actions, classified
simultaneouslty with the manipulated objects.

ground. Using the spatial object segmentation it is possible
to segment primitive actions temporally, a higly non-trivial
issue in action recognition. An action is here defined as
beginning with a pick-up event and ending with a put-down
event. Since the object segmentation method can determine
if there is an object in the hand or not, these events can be
detected automatically and used as temporal segmentation
points. This is described in Section III.

For completeness, we describe the OAC classification
method from [5] in Section IV. Experiments in Section V
investigate the benefits of extending the action classifier with
3D cues, and show how the classification method can be used
to segment a sequence and recognize OACs in it.

II. RELATED WORK

Within the robotics community there is a large interest in
the recognition of human grasp activity for learning from
demonstration applications. The 3D hand pose is typically
recovered from 3D motion capture systems [6] or infrared
images [7]. The hand pose is then classified from this
representation. Instead, we use an implicit representation of
hand shape, together with the global position of the hand in
a human-centered coordinate system. For robot generation of
the recognized action, the hand shape can be reconstructed
from the implicit shape representation [8].

In the last few years, considerable research effort has been
spent on the analysis of human motion from video [9]. The
analysis of hand motion is most often applied to gesture
recognition for human-computer interfaces or sign language
recognition [10]. These applications are often characterized
by low or no occlusion of the hands from other objects, and
a well defined and visually disparate set of hand poses; in
the sign language case the gestures are designed to be easily
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(a) 2D hand-face position (b) 3D hand-face position (c) HOG over hand

Fig. 2. Features used for action classification. a) 2D position pt of the centroid of the right hand segment relative to centroid of the face segment. a)
3D position qt of the centroid of the right hand segment relative to centroid of the face segment, triangulated from stereo pair. b) Hand image Ia

t , HOG
superimposed.

separable to simplify fast communication. In contrast, the
manipulation actions which we investigate suffer from large
intra-class variability and sometimes occlusion of parts of
the hand from the manipulated objects.

Feature extraction for hand action classification often
means tracking the hand in 2D [11] or 3D [12], [13].
However, to be able to handle low video frame-rates we
prefer to use a segmentation-based method for human pose
recovery not relying on time-incremental estimation.

Building upon Gibson’s affordance theory [3], in func-
tional object recognition [14], [15] objects are modeled in
terms of their function. This is similar in spirit to our contex-
tual OAC recognition; object classes are here defined by how
the objects are used (in which action context they appear),
and classes of manipulation actions are defined by the class
(or classes) of objects that are involved in the action. Sim-
ilarly, Mann and Jepson [16] use a force-dynamic bottom-
up approach to describe the interaction between hands and
objects in scenes. In contrast, we use a statistical formulation,
since the underlying process generating the sequences in our
case is too complex to be modeled deterministically.

Moore et al. [17] provide a Bayesian framework for
recognizing scenes, objects in it, and actions being per-
formed on the objects. A system such as this could be
the framework for our method, empoying the temporally
segmented and classified OACs as primitives in the graphical
structure. Wu et al. [18] continue along this line, learning
a dynamic Bayesian network model that represent temporal
sequences of actions and objects involved in the actions. The
features used for classification are RFID tags attached to
the objects and the human hand. Again, our method could
be incorporated in such a system, replacing the RFID-based
classificiation with classification of OACs from video.

III. FEATURES FOR CLASSIFICATION

For our purposes, extraction of image features could be
done in a variety of ways [9] depending on the purpose of the
feature extraction. Features representing the human motion

and appearance as well as object motion and appearance are
of interest. As opposed to many other action recognition
applications, it is here necessary to obtain the location of
the human hand to find the manipulated object.

Furthermore, it should be possible to recreate the recog-
nized action with a robot, which means that the hand 3D
position, orientation and articulated pose should be retriev-
able from the action representation. This is further discussed
in Section III-A below.

The observations consist of small baseline stereo video
from two AVT Marlin F-080C cameras. Considering the low
framerate, large motion blur and low resolution of the video
sequences, we use a segmentation based approach. This is
the same feature extraction approach as in [5], with the
addition of hand position estimation in 3D and automatic
object segmentation.

A. Action Features

The hand and face of the human is localized using
skin color segmentation [19] and hand and face masks are
extracted from the skin mask using connected components
detection or with an αβ-filter when hand and face blobs
merge. This is done separately for the left and right images
ILt and IRt at each time instance t.

We seek a representation of human motion that enables
reproduction of the action in another embodiment, for exam-
ple a robot. We do not here address the problem of mapping
motion from one embodiment to another. However, it can
be noted that in order to be able to map a manipulation
action on a task-level [1] the outcome of the action must be
represented in the feature space. Eventually, modeling the
outcome of manipulation actions necessitates modeling of
object state over time (such as whole/chopped onion). We
here assume a simplified representation of the world where
the outcome of an manipulation action is captured by the
motion of the manipulated object (and the hand grasping
the object) over the course of the action. This means that
the action becomes reproducable if the global position and
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(a) Hand neighborhood in left im-
age.

(b) Temporal log fg likelihood
log(P fg

m ).
(c) Temporal log bg likelihood

log(Pbg
m ).

(d) Temporal log likelihood ratio
log(rm).

(e) Stereo log fg likelihood
log(P fg

s ).

(f) Stereo log bg likelihood
log(Pbg

s ).
(g) Stereo log likelihood ratio

log(rs).
(h) Thresholding on rmrs. (i) Selecting connected region

from (h).
(j) Morphologial operations on

(i).

Fig. 3. Segmentation of manipulated object. The hand has been segmented beforehand [8]. a) Hand region in left image of a stereo pair. The prior
information about a manipulated object is that it is to be found in this region. b) Phase difference between hand region at times t and t − 1 given the
background hypothesis: background static. c) Phase difference between hand region at times t and t − 1 given the foreground hypothesis: object moved
with hand. d) The logarithm of the fg-bg temporal likelihood ratio, log(rm). e) Phase difference between hand region in left and right stereo images
given the background hypothesis: background on any depth. f) Phase difference between hand region in left and right stereo images given the foreground
hypothesis: object on same depth as hand. g) The logarithm of the fg-bg stereo likelihood ratio, log(rs). h) Thresholding on the joint likelihood ratio
map rmrs and removing hand area. i) Selecting the connected region in the object mask larger than a certain number of pixels, closest to the hand. j)
Hole-filling, erosion and dilation of the one-region object mask.

articulated pose of the hand is represented.
The global position of the hand at time t is represented

with the centroid of the hand mask relative to the centroid
of the face mask. In Section V we experimentally compare
a 2D position pat in ILt (Figure 2a) with a 3D position qat
found by triangulation from ILt and IRt (Figure 2b).

Since articulated hand tracking is a difficult problem [12],
[13], we use a holistic representation of hand shape without
modeling individual fingers. The local articulated hand pose
is represented using histograms of oriented gradients (HOG)
[20], [21]. Gradient orientation Φt ∈ [0, π) is computed
from the segmented hand image Iat (Figure 2c) as Φt =
arctan(|∂I

a
t

∂y |/
∂Ia

t

∂x ) where x denotes downward (vertical)
direction and y rightward (horizontal) direction in the image.
The gradient orientation image Φt is divided into L×L equal
partitions. A histogram with B bins is computed from each
partition. Figure 2c shows histograms overlayed on Iat .

Earlier work [8] has shown that it is possible to reconstruct
the articulated hand pose during a grasping action from the
global 3D position of the hand and a HOG representation of
local hand shape.

The hand pose at time t is represented by the vector xat
which is the concatenation of the 2D position pat or 3D
position qat , and all histograms in the HOG. The performance
of the classifier is quite insensitive to choices of B ∈ [3, 8]
and L ∈ [2, 8]; in our experiments in Section V we use
B = 4 and L = 4. Before concatenation, pat or qat is

normalized so that the standard deviations of the dimensions
of xat originating from pat or qat have the same standard
deviation in the training set (Section V) as the remaining
dimensions. The sequence of poses over the sequence is
xa = {xat }, t = 1, . . . , T .

B. Object Features

The objects considered in this application are all ”gras-
pable”, i.e. more or less rigid. For example, a cup is
graspable, but water is not. Shape can therefore be expected
to be a good object class descriptor, while local descriptors
are unsuitable for our purposes.

Contrary to in many other object recognition applications,
there is no search for object location involved. For manip-
ulated objects, the position of the hand grasping the object
gives an indication of the expected object position and mo-
tion, and the recognition problem becomes one of segmenting
the object from the background using that information [22],
and classifying the found image region. However, there might
be deviations in position and orientation of the object within
this region, as well as deviations in size, shape and color of
different instances within each object class. The descriptor
must therefore be insensitive to these intra-class variations,
but still capture inter-class variations.

Given the hand positions pLt and pRt in the left and right
images ILt and IRt at time t, and the hand position pLt−1

in the left image ILt−1 at time t − 1, the object in the hand
can be detected and segmented from the background in ILt .
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Note that we do not attempt to segment the whole scene into
objects and background. Rather, objects are segmented as
they are manipulated and thus move in a predictable manner.

Images are compared in terms of phase, i.e. gradient
direction Ψt = arctan(∂I∂y /

∂I
∂x ). This cue represents shape

and texture rather than absolute pixel value; for example,
a black object does not look more different from a light
background than a white object with the same shape would.

The following assumptions are made:
1) The object is in the vincinity of the hand when manipu-

lated. This prior information is exploited by only segmenting
a window around the hand (Figure 3a).

2) The object is translated with the hand, with no in-plane
or out-of-plane rotations. The likelihood of a pixel pLt + δ
being foreground (Figure 3b) is therefore

P fg
m (pLt +δ) = G(ΨL

t (pLt +δ)−ΨL
t−1(pLt−1+δ); 0, σm) (1)

where G(·; 0, σm) is a Gaussian with mean 0 and standard
deviation σm. In our experiments, σm is equal to the width
of the hand. Our backgound hypothesis is that the rest of
the scene near the hand is static. This gives a background
probability (Figure 3c) for each pixel pLt + δ

P bg
t (pLt +δ) = G(ΨL

t (pLt +δ)−ΨL
t−1(pLt +δ); 0, σm) . (2)

Object areas in the image thus tend to have high likelihood
ratio rm = P fg

m/P
bg
m while background has low ratio (Figure

3d). This assumption is valid also for slow object rotations,
since the images are blurred (increasing image scale) before
the phase computation, making the phase less noisy.

3) The object is at the same depth as the hand. In analog
to the temporal assumption, the likelihood of a pixel pLt + δ
being foreground (Figure 3e) is

P fg
s (pLt + δ) = G(ΨL

t (pLt + δ)−ΨR
t (pRt + δ); 0, σs) (3)

i.e. maximal when the disparity at pLt + δ is identical to the
hand translation pLt − pRt . In our experiments, σs = σm.
The background hypothesis is that the pixel is at any depth
(Figure 3f),

P bg
s (pLt + δ) =

1
N

N∑
n=1

G(ΨL
t (pLt + δ)−

ΨR
t (pLt + [0, ρ] + δ); 0, σs) (4)

assuming no rotation between left and right camera coor-
dinate systems. ρ is a random number, and N = 100 in
our experiments. As with the temporal cue, object areas in
the image tend to have high likelihood ratio rs = P fg

s /P
bg
s

while background has low ratio (Figure 3g). This assumption
is valid if the depth changes over the object is much smaller
than the object-camera distance.

4) The object has an outline with a low 2nd order
moment, i.e. few pointy features. When thresholding the joint
likelihood ratio image rmrs (assuming that the temporal and
stereo cues are independent given the scene), a noisy object
mask is obtained (Figure 3h). The threshold is close to 0,
in our experiments exp(0.01). Assuming that the object is
continuous, the connected foreground region larger than a

Fig. 4. Features used for object classification: Object image Io
t , HOG

superimposed.

certain number of pixels (a tenth of the total number of
foreground pixels), closest to the hand is selected (Figure
3i). Furthermore, assuming that the object is ”roundish” (with
low 2nd order moment) and without holes, the mask is pro-
cessed using hole-filling, eroding and dilating morphological
operations (Figure 3j).

When the object is segmented from the background, the
same HOG representation as for the hand shape is used. This
description captures the shape of the object, with a certain
insensitivity to absolute greylevels and small displacements
of object parts (Figure 4). Note that this representation is
not invariant to e.g. in-plane rotations; this is deliberate,
since global orientation is indicative of object class in our
application. The object at time t is represented by xot , the
concatenation of all histograms in the HOG.

While we here do not evaluate the object recognition
performance in itself, HOG:s have previously [21], [5]
been found to be robust to intra-class variability in shape,
orientation, position, rotation and lighting conditions, while
maintaining a good inter-class discriminability.

Another factor specific to this object recognition applica-
tion is that the data consist of not only one, but a sequence
of object views. In most cases, parts of the object are also
occluded by the human hand grasping it. The change in
orientation of the object with respect to the camera during
the sequence and the occlusion from the hand are descriptive
of the object, since they reflect the way this object class
is used by the human; they can be termed ”typical view
sequences” and ”typical occlusions”. Thus, the classifier
should take the whole sequence of object views into account.
Each measurement is therefore described by a sequence of
descriptors xo = {xot}, t = 1, . . . , T .

C. Correlation Between Action and Object Features

The classifier described in Section IV models explicit
semantic dependencies between manipulation actions and the
manipulated objects. However, there are also dependencies
on the feature level.

The shape of the hand encoded in xa gives cues about
the object as well, since humans grasp different types of
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objects differently, due to object function, shape, weight and
surface properties. Similarly, the view change in xo over
the course of the sequence is correlated with the type of
action performed with the object. This representation of the
correlation between manipulation actions and manipulated
objects is implicit and difficult to model accurately, but
should be taken into account when modeling the simul-
taneous action-object recognition. The implications of the
explicit and implicit object-action dependence are further
investigated in our previous experiments in [5].

D. Temporal Segmentation of Action

A non-trivial but often overlooked problem in action
recognition is temporal segmentation. Here, manipulation
actions are defined as beginning with a pick-up event and
ending with a put-down event, and temporal segmentation is
possible if these events can be detected. For this, we use the
fact that the object segmentation results in an empty mask if
there is no large enough area of high likelihood ratio (Figure
3i). In the case of an empty mask, the frame is classified as
”no object in hand”, otherwise as ”object in hand”.

An example of a temporal segmentation is shown in Figure
8. To segment a sequence, each frame is classified as ”no
object in hand” or ”object in hand”. An eroding and a dilating
operation are then performed over time, to remove spurious
positive or negative classifications. Thereafter, all pick-up
events (transfers from ”no object in hand” to ”object in
hand”) and put-down events (transfers from ”object in hand”
to ”no object in hand”) are detected. Periods with ”object
in hand” shorter than 1 sec are considered as noise and
removed. The remaining periods are considered as primitive
OACs to be classified.

The performance of the automatic temporal segmentation
is evaluated in Section V.

IV. DISCRIMINATIVE CLASSIFICATION USING CRF:S

Since we can expect complex dependencies within our
action data xa and object data xo over time, a discrimi-
native classifier which does not model the data generation
process is preferable over a generative sequential classifier
like a hidden Markov model (HMM) [23]. We thus employ
conditional random fields (CRF:s) [24] which are undirected
graphical models that represent a set of state variables y,
distributed according to a graph G, and conditioned on a set
of measurements x. Let C = {{yc,xc}} be the set of cliques
in G. Then,

P (y|x; θ) =
1

Z(x)

∏
c∈C

Φ(yc,xc; θc) (5)

where Φ is a potential function parameterized by θ as

Φ(yc,xc; θc) = e
P

k θc,kfk(yc,xc) (6)

and Z(x) =
∑

y

∏
c∈C Φ(yc,xc; θc) is a normalizing factor.

The feature functions {fk} are given, and training the CRF
means setting the weights θ using belief propagation [24].

For linear-chain data (for example a sequence of object
or action features and labels), y = {yt} and x = {xt},

y

2 3

x x x

y y y

1 2 3

1

(a) CRF

321

a

321

o

a a a

o o o

(b) CHCRF

Fig. 5. Different CRF structures used for action-object recognition with
pre-segmented data. Dotted edges and nodes indicate that the weights θ
associated with these are constrained during the training of the CRF. a)
Linear-chain CRF [24]. b) Connected hierarchic CRF:s [5], data layer not
shown.

t = 1, . . . , T as shown in Figure 5a. This means that the
cliques are the edges of the model, which gives

P (y|x; θ) =
1

Z(x)

T∏
t=2

Φ(yt−1, yt,x; θt) (7)

with a potential function

Φ(yt−1, yt,x; θt) = e
P

k θt,kfk(yt−1,yt,x). (8)

Each state yt can depend on the whole observation sequence
x – or any subpart of it, e.g. the sequence {xt−C , . . . , xt+C},
C being the connectivity of the model.

A CRF returns an individual label for each time-step,
which means that the time-sequential data x to be classified
do not have to be segmented prior to classification. However,
if a segmentation is readily available, as in our case, the
robustness of the classification is increased by assuming
that for all labels within the segment, yt = y ∀ t ∈ [1, T ].
With pre-segmentation, the model thus becomes P (y|x; θ) ≡
P (y = [y, . . . , y]|x; θ) (dotted layer in Figure 5a).

In earlier work [5] we introduced a structure termed
connected hierarchic CRF:s (CHCRF). As shown in Figure
5b, the assumption is that the overall action label a is
correlated with the overall object label o, not the labels at
and ot of any particular frame. As indicated by the dotted
edges and nodes, the probability of action a is approximated
as P (a|x; θ) ≡ P (a = [a, . . . , a]|x; θ) and the probability
of object o as P (o|x; θ) ≡ P (o = [o, . . . , o]|x; θ). The
probability of a and o conditioned on the data x is

P (a, o|x; θ) =
1

Z(x)
Φ(a, o,x; θao)

T∏
t=2

δ(at−1 − at)Φ(at−1, at,x; θat )

T∏
t=2

δ(ot−1 − ot)Φ(ot−1, ot,x; θot )

=
Φ(a, o,x; θao)∑
a,o Φ(a, o,x; θao)

P (a|x; θa)P (o|x; θo) (9)

where δ(·) are Dirac functions ensuring that at−1 = at = a
and ot−1 = ot = o. To make the training more efficient,
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(a) Instance of ”look through binoculars”

(b) Instance of ”drink from cup”

(c) Instance of ”pour from pitcher”

Fig. 6. The three classes of the OAC dataset [5], performed by 10 different persons. Green = face mask, blue = hand mask, red = object mask.

the data dependency in the first term is omitted (indicated
by the middlemost edge being dotted), becoming K(a, o) =

Φ(a,o;θao)P
a,o Φ(a,o;θao) , the co-occurrence rate of action label a and

object label o in the training data. The individual probabilities
P (a|x; θa) and P (o|x; θo) can of course be estimated from
any classification method that returns probability estimates.
The parameters of the action and object classifiers are learned
separately.

in a scenario with several OACs following each other,
the object history can be taken into account. Every time
an OAC i is detected in a certain scene, its classification
P hist
i = P (a, o|x; θ) and the final hand position phist

i in
the image is stored. The underlying assumption is that an
object only moves when manipulated by the human. When
classifying a new OAC, the history i = 1, . . . , I is used as
prior information:

P (a, o|x,Phist,phist; θ) =

P (a, o|x; θ)
1

I + 1
(

1
δhist
0

P hist
0 +

I∑
i=1

1
phist
i − pa1

P hist
i ) (10)

where i = 0 corresponds to the hypothesis that the object
has not been manipulated before; δhist

0 is a default distance,
and P hist

0 is a uniform density.

V. EXPERIMENTS

For training and testing of the object-action CHCRF, the
OAC dataset was used [5]. The dataset consists of 50 tem-
porally segmented instances each of three different action-

object combinations; ”look through binoculars”, ”drink from
cup”, and ”pour from pitcher”. The actions were performed
by 7 men and 3 women, 5 times each. The classes were
selected so that the object and action data are complemen-
tary: two of the actions, ”look through” and ”drink from”
are similar, while ”cup” and ”pitcher” are similar. Three
examples are shown in Figure 6.

In addition, a longer sequence was collected with different
combinations of the three actions and objects in the OAC
dataset, performed by one of the individuals in the OAC
dataset. Ground truth temporal segmentation points indi-
cating pick-up and put-down events were added manually,
to enable testing of the automatic temporal segmentation.
The three first OAC are correct in the sense that they are
present in the training set, which means that they have a
non-zero entry in the co-occurrence matrix K. Of the last
two previously unseen OACs, the first one, ”drink from
pitcher”, is more plausible than the second one, ”pour from
binoculars”, because a pitcher is similar to a cup both
in terms of functionality and appearance than a pair of
binoculars to a pitcher. Six frames are shown in Figure 8.

TABLE I
HOW IMPORTANT IS THE DEPTH INFORMATION TO THE ACTION

CLASSIFICATION? % CORRECT CLASSIFICATION (MEDIAN OF 9 RUNS).

2D 3D
Actions 95.3 95.3
Actions Baseline (only pos) 80 85.3
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(b) Face centered 3D world hand position

Fig. 7. Trajectories over hand position relative to face from the OAC dataset. a) 2D image hand position relative to face. b) 3D world hand position
relative to face.

The first contribution of this paper compared to [5],
modeling hand position in 3D, is first evaluated against the
2D representation. When testing with instances in the OAC
dataset, training and testing was performed in a jackknife
manner, where the 15 sequences of one individual at a time
was used as a test data, the 135 sequences of the other 9
individuals as training set.

Figure 7 shows the 2D and 3D hand trajectories (dotted
curves) in the OAC database. Although not used in training,
the mean of each class is plotted (solid curves) for visibility.
Apart from increasing the usability for learning from demon-
stration purposes, the estimated depth clearly increases the
discriminability between the actions.

This is also supported by the classification results in Table
I: Action classification using only 3D position qa gives
a slightly better result (85% correct classifications) than
with only 2D position pa (80% correct classifications). The
difference is however diminished when adding the shape
information (95.3% correct classifications). Obviously, the
improvement from adding depth depends on the quality
of the depth estimation; Figure 7b shows that the depth
estimation from the center of gravities of segmented skin
areas is quite noisy. A direction of future improvement is
therefore to extract 3D human pose in a more accurate and
robust way than skin color segmentation.

The main constribution of this paper, the spatial object
segmentation and the temporal action segmentation was then
evaluated with the longer sequence (Figure 8). For training,
all sequences in the training set with the same individual as
in the longer sequence were removed, leaving 135 sequences
of the other 9 individuals for training of the CHCRF.

As shown in Figures 6 and 8, the object segmentation is
successful in situations when the assumptions about object
motion and position relative to the hand are not violated.
However, if the object rotates (Figure 6c and a, third image)
or differs too much from the hand in depth (Figure 6b, fourth
image), the segmentation fails to find the correct object mask.

A direction for future research is therefore to improve the
object segmentation method so that it takes these common
deviations from the segmentation assumptions into account.

The object segmentation is successful in the respect that it
provides a correct temporal segmentation (Figure 8, middle
bottom row); all the five actions are detected, with a mean
error of 1.2 frames for pick-up and 3.4 frames for put-down
compared to the ground truth.

Figure 8, top-most row, shows the CHCRF classification
(Eq (9)) of each segmented OAC individually. Classification
of the three first OACs is near-perfect, in concordance with
the results in [5]. The results for the two last OACs show
that the action classification is more accurated than the object
classification, steering the OAC classification to a result that
concords with the action class (”drink from cup”, ”pour from
pitcher”). The object classification will improve with a better
segmentation.

When the object history is taken into account, Eq (10), the
object classification becomes more accurate. Figure 8, middle
upper row, shows that the classifications of the conflicting
two last OACs correspond to what can be expected: In ”drink
from pitcher”, there are two options, most likely ”drink from
cup” and less likely ”pour from pitcher”. This is reasonable,
since the cup and the pitcher actually look similar, while the
actions ”drink from” and ”pour from” look very different. In
”pour from binocular”, there are two approximately equally
likeliy (or unlikely) options, ”pour from pitcher” and ”look
through binoculars”. Consequently, the sum of unnormalized
probabilities Z(x), Eq (9), proportional to the overall prob-
ability of seeing this OAC, is much lower for ”pour from
binoculars” (45000) than for ”drink from pitcher” (85000)
and certainly lower than for the three previously seen OACs
(O(107)).

VI. CONCLUSIONS

A method for recognition of objects and manipulation
actions from unsegmented video was presented. Our ap-
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Fig. 8. Temporal segmentation and classification. Far bottom row) Spatial segmentation in frames 54, 135, 217, 291, 368 and 446 of the longer sequence.
Middle bottom row) Temporal segmentation based on spatial object segmentation. Grey thick line is the ground truth, thin black line is the raw frame-by
frame segmentations. Dotted thick black line is the segmentations processed as described in Section III-D. Far upper row) CHCRF classification of each
of the 5 segmented OACs. The first three are present in the training set, the last two are previously unseen object-action combinations. Solid bars are
classification results, semi-transparent bars are ground truth. Classes are color-coded according to the legend. Middle upper row) CHCRF classification
where previous classifications of the same object have been taken into account.

plication of interest is robot learning of household tasks
from human demonstration. A task can be described as a
combination of primitive actions and objects drawn from
a previously learned codebook. The intention is to train
the codebook using the presented method, then recognizing
primitive actions and objects in a new scene using the code-
book. Future work include improving the object recognition
to account for change in object state over time, improving
the object segmentation method, as well as methods for
representing composite tasks using the learned primitive
actions and objects.
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Abstract

This report summarizes the work done by the first author during the
spring of 2008 at KTH, within the EU project PACO-PLUS, FP6-2004-
IST-4-27657 (www.paco-plus.org).

Robots are usually taught by writing thousands of lines of code. In the
future, a more natural way will be used, called Programming by Demon-
stration (PbD); somebody will show a robot how to do something just
doing it; the robot will learn how to do that. In order to achieve this, the
robotmust be able to get, from a video sequence, the movements of the
person, and find out what they represent, for instance, a grasping. It will
also need to find the object/s that the user is using to recognize them; in
the last term, if the robot does not recognize the object, it could simply
ask ”what’s that?”, as humans do.

We propose a level set method that integrates different cues for the
segmentation of moving objects inside a video sequence; those objects are
manipulated by a person who is teaching a robot how to do something.
We also obtain a segmentation of the person’s hands and head in order
to retrieve actions. Objects, hands and the head are tracked along the
sequence to help the segmentation and deal with occlusions. During the
sequence, new objects can appear in the scene.

1 Introduction

This report summarizes the work done by the first author during the spring
of 2008 at KTH, within the EU project PACO-PLUS, FP6-2004-IST-4-27657
(www.paco-plus.org).

A method for segmentation of a scene containing a human and objects ma-
nipulated by the human is presented. The segmentation is intended as a pre-step
to a method for jointly recognize actions and objects [1].

At the beginning of the video sequence the person is outside the range of
vision of the robot, and then he begins entering the scene; after a few frames
the user is already in front of the robot, and the segmentation of moving objects
can start.
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Each frame consist of 3 layers: the background, a layer with the person, and
a layer with moving objects; the hands and the head also belong to the object’s
layer, as they can be treated as moving objects.

The key idea is that the level set method can be used to integrate different
cues to segment an image, in our case to segment moving objects being manip-
ulated by a user. Those cues alone do not need to be very reliable. As it is
common in level set approaches, colour and texture can be used to improve the
segmentation.

The report is outlined as follows. Section 2 discusses work related to the
present method. In Section 3, our approach is described. Section 4 discusses
the automatic vs manual learning of thesholds in our system. Section 6 goes
deeper into details about the implementation, while Section 7 concludes the
report.

2 Related Work

The segmentation of moving objects in a video sequence is a well studied vision
problem. Foreground layer extraction [2,3] is a fast and reliable method, but it
is not able to differenciate among moving objects. A more general approach is
to find regions of coherent motion to split the sequence into layers [4]; if these
methods rely too much upon motion, problems may arise with non-textured
regions, fast moving objects, etc. It is interesting to integrate different cues
besides motion; two recent frameworks for image segmentation are able to in-
tegrate common cues like intensity, colour, texture, motion or stereo. Graph
cuts [5] and normalized cuts [6] consider an image as a graph whose nodes are
the pixels; the segmentation is performed by minimizing an energy functional,
and this minimization is done by finding minimum cuts of the graph. The other
framework is called level set [7, 8]; it is an elegant way of evolving one or more
contours implicitly represented by a level set function.

3 Our Approach

As explained before, we use a level set method to integrate different cues in
order to segment the hands and the head of the preson and the moving objects.
While the skin model is the same for all the sequences, we can not expect to have
the same background or a person wearing the same clothing. Thus, we need a
training phase at the beginning of each sequence to learn the background and
the person’s model. We consider that at the beginning the robot can only see
the background, not the person; when he comes into the scene, we can detect
him with the background substraction method explained in subsection 3.5. We
can then build a model for the person and another one for the background.
After several frames, the segmentation phase will begin. In a real setup, the
person could be the one who tells the robot when to begin.

3.1 Level Set Method

Let I : Ω → R
n, Ω ⊂ R

2 be the image we want to segment, where n is the
number of channels (3 for a RGB image). We want to segment the image into
a set of t regions {Ri}t

i=1 so that they cover the full image, ∪t
i=1Ri = Ω; an
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additional restriction is that they must be pairwise disjoint to avoid ambiguities,
Ri ∩ Rj = ∅, ∀i 6= j.

We use a set of curves {Γ}N
i=1 implicitly represented via level set functions

φ : Ω, R+ → R to divide the image into regions; the curve Γi is then represented
by the zero level set of φi(x, y, t): Γi = {(x, y) ∈ Ω|φi(x, y, t) = 0}. The level
set function evolves as time increases according to a specified energy functional.
The regions inside and outside the curve can be distinguished by the sign of φi

at each pixel of the image. φ must be a signed distance function to use the level
set method.

The level set is used to minimize an energy functional E that depends on
the image and φ. The evolution equation that drives the zero isocontour of φ is

∂φ

∂t
= −

∂E

∂φ
(1)

Following the active geodesic regions model [9], if we consider only 2 regions,
the energy functional to minimize has this form:

E = −

∫

Ω1

log(p1(x))dx −

∫

Ω2

log(p2(x))dx + α

∫

Ω

|∇H(φ)|dx (2)

where p1(x) and p2(x) are the probability density functions for regions Ω1

and Ω2, respectively. In this model it is assumed that both regions have the
same prior probability, and that pixels are independent.

The last part of equation 2 is called a regularization term that measures
the length of the zero level set, and is used to smooth the segmentation; α is a
parameter. H(φ) is the Heaviside function.

The integrals can later be extended to the whole domain Ω:

E = −

∫

Ω

log(p1(x))H(φ)dx

−

∫

Ω

log(p2(x))(1 − H(φ))dx

+ α

∫

Ω

|∇H(φ)|dx (3)

Finally, the evolution equation becomes

∂φ

∂t
= δ(φ)

(

log(p1(x)) − log(p2(x)) + αdiv

(

∇φ

|∇φ|

))

(4)

As usual, we use smoothed approximations of the Heaviside and delta func-
tions [7]:

H(φ) =















0 φ < −ǫ
1
2 + φ

2ǫ
+ 1

2π
sin

(

πφ
ǫ

)

−ǫ ≤ φ ≤ ǫ

1 ǫ < φ

(5)

δ(φ) = H ′(φ) =















0 φ < −ǫ
1
2ǫ

(1 + cos
(

πφ

ǫ

)

−ǫ ≤ φ ≤ ǫ

0 ǫ < φ

(6)
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3.2 Multiple Regions

We want to segment each frame into 4 regions: one for the skin, one for the
person, one for the moving objects and another one for the background. We
will not always have all these regions, as occlusions may appear, the user might
not be manipulating anything, etc. If we consider 1 level set per region, then
equation 4 can be used for each level set; in this case we need two models for
each region, the model of the region we want (i.e the skin model), and a model of
what we do not want (i.e. the background). With this system of 4 independent
evolution equations we cannot guarantee to obtain disjoint regions Ω.

Instead, we will use an approach that guarantees to obtain pairwise disjoint
regions; moreover, the number of models we need is reduced. We still need
one level set per region to segment, but in this case the model of that region
competes with all the remaining ones [10]. The evolution equations become

∂φi

∂t
= δ(φi)

(

ei(x) − max
j 6=i,H(φj )>0

ej(x) +
α

2
div

(

∇φi

|∇φi|

))

(7)

The resulting regions do not form a partition of the image because there are
some pixels that are not assigned to any region due to numerical inaccuracies;
those pixels are placed on the limits of the regions, and thus can be ignored.

3.3 Skin

For the skin we use a GMM with 4 Gaussians. The parameters for the mixture
distribution are found with the Expectation-Maximization algorithm. The skin
model does not depend on the sequence, so it can be obtained in advance and
be used for all the sequences.

3.4 Person

Several frames at the beginning of the sequence are used to build the person’s
model. During the first frames we consider that the person is out of the video,
and then he enters; we also consider that in those frames there is nothing else
moving. Those moving regions of the video will belong to the person; we use
Stauffer’s approach [11] to detect the moving regions; we explain it in detail
in subsection 3.5. Once we know for each frame which pixels belong to the
person, we can construct a Gaussian Mixture Model of the person and another
one for the background. The number of Gaussians is chosen with the Bayesian
Information Criterion [12]:

BIC = −2 ln(L(x1, . . . , xN )) + k ln(N) (8)

where x1, . . . , xN is the set of N pixels used to obtain the model, L is the
likelihood given by the model for our dataset and k is the number of parameters,
which for a d-dimensional GMM with t Gaussians is k = t(d + 1)(d + 2)/2.
Several GMM with different t are constructed, and the preferred is the one with
minimum BIC.

To improve the model, one can use data from several frames; instead of
keeping all the points from all the frames, which is very slow and needs a lot of
memory, one can construct a GMM per frame, and then use statistical criteria
to mix, update or remove Gaussians from all the models until we get a global
one.
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3.5 Background

In order to detect moving objects, we need something that can deal with very
long movements; currently we implement Stauffer’s and Grimson’s approach [11]
for background subtraction; in this approach each pixel is modelled with a GMM
with K Gaussians (3 in our case); thus, the probability of observing a pixel value
X at position (x, y) is

P (X) =

K
∑

i=1

w(x,y),iη(X, µ(x,y),i, Σ(x,y),i) (9)

where η(X, µ(x,y),i, Σ(x,y),i) is the Gaussian pdf. To check if a pixel is moving
or not we check it against all the Gaussians for that pixel position. If there exist
a Gaussian distribution that matches well the pixel X (if |X − µ| < 2.5σ), it is
considered as background.

This approach is dynamic, and after each frame an update step is done to
adapt to illumination changes, shadows, etc. If there exist a good match for
pixel p, whose value is Xt, the following formulas can be used:

wp,k,t = (1 − α)wp,k,t−1 + αMp,k,t∀k = 1, . . . , K

µp,bestk,t = (1 − ρ)µp,k,t−1 + ρXt

σ2
p,bestk,t = (1 − ρ)σ2

p,k,t−1 + ρ(Xt − µp,k,t)
T (Xt − µp,k,t) (10)

where α is the learning rate (we use alpha = 0.05), and ρ is a learning factor
for adapting current distributions; it can be ρ = αη(X, µ(x,y),i,

∑

(x,y),i) or, to
speed up the update, it can be set to a constant; we just use ρ = α. Mp,k,t is
1 for the best matched Gaussian and 0 for the rest. Notice that, while all the
weights are updated at each time, only the mean and variance of the Gaussian
that best matched the pixel are updated; the other Gaussians are kept the same.
Also, the weights must be renormalized so that

∑k

i=1 wp,k,t = 1, ∀p.
If there is no good match for the pixel, the worst Gaussian is replaced by

a new one whose mean is the pixel value, and with a high variance and low
weight.

Stauffer’s approach only tells us which pixels do (not) belong to the back-
ground, but not their motion vectors. When the user is moving the model will
detect it as motion, but when he stops moving, after several frames parts of the
person will be considered as background, something that we do not want; for
that reason, we avoid updating pixels that belong to the person, so they are
always detected as motion, even if the person is still; it is a way of improving
the background model in the long term. The same can be done with the moving
objects once they have been detected and tracked.

3.6 Object

So far, we have models for the skin, for the person and for the background, but,
as the object has not yet been recognized, we have no model for the object.
We know that the object will be moving (we only recognize objects when they
move), and that the other models will give low likelihoods. We can use one
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threshold per model to decide when a pixel is well matched with that model.
Then, pixels that are not matched to any of our three models, and that are
moving, will belong to an unrecognised object.

From here, there are options: 1) Get the object’s mask, find the blobs and
recognize objects with the object-action classifier [1], keeping in memory their
positions after they have been put down by the human.

2) Once a new object is detected, add a new level set for that object, building
a new model for each one; the general level set for objects will be used only in
case there is a new object.

We are using approach 1, as it is faster and easier to implement, although
approach 2 is more elegant.

3.7 Tracking

We can track objects even when they are not moving to know their position.
When they are moving it can be useful because we can predict the position at
the next frame. When they are not moving they will be integrated after several
frames with the background model unless we explicitly avoid it, as explained
before.

The initial level set curves for a frame i + 1 are the final curves from the
previous frame i; this speeds up the convergence of the method, as long as
the moving objects for frame i + 1 are not too far from the position at the
previous frame. In that case, if there is no curve close to the moving object, the
convergence may be very slow, or we could even reach the maximum number
of iterations without a proper segmentation. In this case the tracking is useful
because it tells us if we have this problem. Possible solutions could be to use
a standard initialization, to artificially translate the curve to the new predicted
position, or to keep the curve where it is and add small curves around the
predicted new position. The implicit representation of the curves allows us to
do all the things explained before; all the choices should be analysed, although
the most natural seems to be the third one.

The hands and the head are also tracked (actually they are also considered
as objects). In the case that several moving objects appear (we consider that at
most 2 objects could be moving, one per hand), the position of the hands and
the moving objects and the tracking mechanism will help us decide which ones
are actually being manipulated by the user.

This tracking is also useful when the person is using something without
moving it; for instance, if the action is pouring water onto a glass, the user will
grasp the glass, but he will not move it. If we have tracked before the glass,
then we can find out that it is being used.

An α−β tracker is used. With a high frame rate it should work really good,
and it should only fail with sudden and sharp movements. To do tracking, we
assume that objects, hands and head can be modelled as ellipses, and then we
use Argyros tracker [13].

4 Thresholding

We have a model for the skin, for the person and for the background, but we
lack of such a model for the objects, as we do not know in advance what kind
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of objects we will have. To cope with this, thresholding is used to decide when
a pixel does not match those models well. Pixels that do not match any model
and that are moving will be recognized as objects. The skin threshold can be set
in advance, while the person and background are found in the training phase.

5 Implementation Details

One common way of speeding up the segmentation is the use of a multiscale
approach; the level sets are first computed on a downsampled image, and the
obtained segmentation is used to initalize the algorithm at a coarser scale. We
use 2 scales, 60x80 pixels and 240x320.

High order methods, as proposed in [7], can be used for the spatial deriva-
tives; for the temporal derivatives we can use a Runge-Kutta method. But,
instead, we have used simple central differencing and the Euler method, as
higher order methods do not increase the accuracy of the segmentation.

To detect convergence and stop the evolution, we get the length of the con-
tours after each iteration, and when their change is not significant (below a
threshold ) during several frames, the process is stopped. Also, we guarantee
that the number of iterations is in the range [ITmin, ITmax], even if the previ-
ous condition is satisfied before ITmin. This convergence criteria is explained
in [14]. These parameters have been set manually.

φ must be always a signed distance function [7], but after several iterations
this does not happen. To solve this, a common choice is the use of a reinitializa-
tion function that modifies φ without moving the curve so it is again a signed
distance function. Instead, we add another term to the energy functional, as
explained in [15], that forces φ to be always close to a signed distance function:

Efinal(φ) = µP (φ) + E(φ), with P (φ) =

∫

Ω

1

2
(|∇φ| − 1)2dx (11)

where µ > 0 is a parameter that penalizes the deviation of φ from a signed
distance function.

6 Conclusions

This report summarized the work done by the first author during the spring
of 2008 at KTH, within the EU project PACO-PLUS, FP6-2004-IST-4-27657
(www.paco-plus.org).

A method for segmentation of a scene containing a human and objects ma-
nipulated by the human was presented. The segmentation was intended as a
pre-step to a method for jointly recognize actions and objects [1].

This work will be continued by Master students within the PACO-PLUS
project during the winter and spring of 2009.

References

[1] H. Kjellström, J. Romero, D. Mart́ınez, and D. Kragic, “Simultaneous vi-
sual recognition of manipulation actions and manipulated objects,” in Eu-

ropean Conference on Computer Vision, vol. 2, pp. 336–349, 2008.

[6]:7



[2] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and C. Rother, “Bi-
layer segmentation of binocular stereo video,” in IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, vol. 2, 2005.

[3] J. Sun, W. Zhang, X. Tang, and H. Shum, “Background cut,” in European

Conference on Computer Vision, pp. 628–641, 2006.

[4] J. Wang and E. Adelson, “Representing moving images with layers,” IEEE

Transactions on Image Processing, vol. 3, no. 5, pp. 625–638, 1994.

[5] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimiza-
tion via graph cuts,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 23, no. 11, pp. 1222–1239, 2001.

[6] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8,
pp. 888–905, 2000.

[7] S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces.
Springer-Verlag, New York, 2002.

[8] D. Cremers, M. Rousson, and R. Deriche, “A review of statistical ap-
proaches to level set segmentation: Integrating color, texture, motion and
shape,” International Journal of Computer Vision, vol. 72, no. 2, pp. 195–
215, 2007.

[9] N. Paragios and R. Deriche, “Geodesic active regions: A new paradigm to
deal with frame partition problems in computer vision,” Journal of Visual

Communication and Image Representation, vol. 13, no. 1/2, pp. 249–268,
2002.

[10] T. Brox and J. Weickert, “Level set based image segmentation with multiple
regions,” Pattern Recognition, vol. 3175, pp. 415–423, 2004.

[11] C. Stauffer and W. E. L. Grimson, “Learning patterns of activity using
real-time tracking,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 22, no. 8, pp. 747–757, 2000.

[12] S. Calinon, F. Guenter, and A. Billard, “On learning the statistical rep-
resentation of a task and generalizing it to various contexts,” in IEEE

International Conference on Robotics and Automation, 2006.

[13] A. Argyros and M. Lourakis, “Real-time tracking of multiple skin-colored
objects with a possibly moving camera,” in European Conference on Com-

puter Vision, vol. 3, pp. 368–379, 2004.

[14] K. Chaudhury and K. Ramakrishnan, “Stability and convergence of the
level set method in computer vision,” Pattern Recognition Letters, vol. 28,
no. 7, pp. 884–893, 2007.

[15] C. Li, C. Xu, C. Gui, and M. D. Fox, “Level set evolution without re-
initialization: A new variational formulation,” in IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 430–
436, 2005.

[6]:8



Markerless Human-to-Robot Grasp Mapping based on a Single View

Javier Romero Hedvig Kjellström Danica Kragić
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Abstract— The paper presents a system for robot grasp gener-
ation in an imitation based framework. The grasp observation
is based on visual classification of human grasps using only
a single image without any markers. Grasp are generated
and evaluated on a three fingered Barrett hand and a five
fingered Karlsruhe hand. The orientation of the hand relative
to the objects is taken into account during the execution of
the grasp. The contributions of the paper are the markerless
grasp classification system, the analysis of grasp mapping
and the use of virtual fingers approach for the evaluation of
mapping quality. Experimental evaluation is performed both in
simulation and on the real robot where tactile feedback is used
to guide the grasp execution.

I. INTRODUCTION

During the last decade, detection, representation and map-
ping of human activities to robots have been important
areas of research in the field of robot learning through
imitation and demonstration, [1]. There are examples of
systems performing imitation of the arm motion [2] or,
more generally, the upper-body [3], [4]. The systems used to
measure the motion of the human consider mainly magnetic
trackers although there have also been examples of vision
based tracking systems [4]. For robots that are intended to
perform human-like tasks in natural environments, grasping
and manipulating objects is a necessary skill. In humans,
during object grasp, there is a coordinated activation of
distal muscles that supports to shape the hand in relation
to the physical properties of the object. The human hand
has extreme flexibility as a manipulator but there is still
very little known of the muscular activation patterns that
allow objects of different sizes and shapes to be grasped. In
addition, complex movements of the hand are challenging to
measure, model and imitate.

Programming robots for manipulating various objects in
natural environments is difficult and equipping robots with
the ability to learn from observing a human may reduce the
cost of explicitly programming the new grasping behaviors.
For objects of same/similar geometry there may potentially
be many different grasps, dependent on their function. It is
also important that the robot can learn from humans without
any need of specialized sensors or markers, performing the
grasping action as naturally as possible. In our previous
work, [6] we have presented a vision based grasp recog-
nition system that recognizes grasps from a single camera
image independent of the viewing angle. The system is able
to classify grasps according to a predefined set of grasp
classes and also estimates the orientation of the grasp using

Camera

Object 3D 
recon−
struction

Geometry 

hand pos, hand ori rel object

object pos,

stereo image (one frame, one view)

segmented mono imageobject ori rel camera

L 2D hand image pos,
R 2D hand image pos

Skin segmenation,
hand detection

Geometry 

hand pos rel camera
grasp recognition
Non−parametric

kNN

rel camera
hand ori

grasp type

selected strategy

Instantiation of grasp  
with the proposed hand pos
and ori rel object
Execution of the whole grasp
sequence with new object pos
Corrective movements

grasp3(pos,ori) grasp2(pos,ori) grasp1(pos,ori) 

Selection of robot grasp strategy 

Mapping of human grasps to robot grasps 
   1          2          3          4          5          6
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Fig. 1. Human grasps are recognized and mapped to a robot. From one
video frame, the hand is localized and segmented from the background.
The hand orientation relative to the camera, and type of grasp is recognized
by a non-parametric classifier/regressor. The human grasp class is mapped
to a corresponding robot grasp, and a predefined grasp strategy, the whole
approach-grasp-retreat sequence, for that grasp is selected. The strategy is
parameterized with the orientation and position of the hand relative to the
object. Using this strategy, the robot performs the grasping action.
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(a) 1. (b) 2. (c) 4. (d) 9. (e) 10. (f) 12.

(g) Barrett Wrap. (h) Barrett
Two-finger
Thumb.

(i) Barrett Precision
Disc.

(j) Karlsruhe Power. (k) Karlsruhe Wrap. (l) Karlsruhe Sphere. (m) Karlsruhe Disc.

Fig. 2. The six grasps (numbered according to Cutkosky’s grasp taxonomy [5]) considered in the classification, and the three grasps for a Barrett hand and
Karlsruhe hand, with human-robot class mappings ((a,b)→(g),(c,d)→(h), (e,f)→(i)), (a,c,d)→(j), (b)→(k), (e)→(l), (f)→(m) shown. a) Large Diameter
grasp, 1. b) Small Diameter grasp, 2. c) Abducted Thumb grasp, 4. d) Pinch grasp, 9. e) Power Sphere grasp, 10. f) Precision Disc grasp, 12. g) Barrett
Wrap. h) Barrett Two-finger Thumb, i) Barrett Precision Disc, j) Karlsruhe Power, k) Karlsruhe Wrap, l) Karlsruhe Sphere, m) Karlsruhe Disc

regression. Since it is known that the velocity profile of the
human hand movement reaches the minimum once the grasp
is to be performed and just before the object is to be moved,
this knowledge can be used to acquire an image used for
classification and final mapping to a robot, see Figure 1.

In this paper, we present how the grasp classification is
used to map grasps to a robot hand. While articulated 3D
reconstruction of the hand is easy when using magnetic
data or markers, 3D reconstruction of an unmarked hand
from images is an extremely difficult problem due to the
severe self-occlusion [7], [8], [9], [10]. Our method classifies
grasp types and estimates their orientation from a single
image and from any viewpoint, without building an explicit
representation of the hand, similarly to [9], [11]. As outlined
in the next section, most state of the art methods perform
classification only from a single viewpoint or employ special
sensing devices such as datagloves, magnetics sensors or
different type of markers.

Grasp classification is here formalized as the problem of
classifying a hand posture as one of six grasp classes, labeled
according to Cutkosky’s grasp taxonomy [5]. The classes are,
as shown in Figure 2a-f, Large Diameter grasp, Small Diame-
ter grasp, Abducted Thumb grasp, Pinch grasp, Power Sphere
grasp and Precision Disc grasp. The mapping is then made
to two different robotics hands, the three fingered Barrett
hand and the five fingered Karlsruhe hand, see Figure 2g-i.
The four degrees of freedom and three fingers of the Barrett
hand allow us to define just three different preshapes. For the
Karlsruhe hand, Abducted Thumb, Pinch and Large Diameter
are mapped to the same preshape. We also note here that the
distinction between the grasps is not made just in terms of

the hand preshape, but also in terms of different strategies for
approaching the objects; as pointed out by [12] the approach
strategy for a precision grasp is different to the approach
strategy for a power grasp. Apart from the classification and
mapping, the important contribution of the paper is the use
of virtual fingers, [13] for performing a quantitative analysis
of grasp mapping.

In Section III we describe grasp mapping that also uses
the tactile sensors on the robot hand to perform successful
grasps. In Section IV we present the experimental evaluation
in terms of similarity between contact positions and virtual
fingers ([13], [12]) as well as the experiments with the real
robot. Finally, Section V concludes the paper.

II. RELATED WORK

According to [14], grasping in humans involve two well
separated components: the approach component (involving
the arm muscles) and the grasp component (involving the
hand muscles). Despite that it has been showed that these
systems are closely correlated, [15] research in robotics
related to the imitation focuses mainly on one of the two
components.

In the field of robotics, there are examples of systems
that perform grasp execution based on the object geomet-
rical properties, [16], [17], [18], [19], [20], [21] human
observation or combination of both, [22]. [16] and [17]
create a database of optimal grasps for objects whose 3D
models are known which is then used online assuming object
recognition. In [18], the authors use an offline learning
approach to find a grasping point on an object for two-
fingered grasps. In [19], complex objects are modeled with
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a set of boxes to allow for grasp planning. Given the 3D
model of an object, [21] use a database to extract a hand
pose that fits the shape of the object, based on the normal to
the object and hand in different random points. Finally, [23]
classify objects based on their affordances (categories like
“sidewall-graspable”), so the classification itself determines
how to grasp the object.

For the above examples, once the training has been
performed the systems perform well. However, it has been
showed in [24] that appropriate usage that affects grasp types
of objects requires information not related just to the objects’
structure. For example, the way a human grasps a hammer
is not the most natural or most stable for this object, but it
is the best for the purpose a hammer is used. It is further
argued that a longterm experience with handling objects
comes into play and influences the interaction. Rather than
reprogramming the robot system once the function of the
object has to be taken into account, the approaches based on
human demonstration provide the necessary experience in a
natural way. In addition, such systems can be integrated with
any of the above systems to provide a set of grasps for the
objects stored in the database.

Classification of hand pose is most often used for gesture
recognition, [9], [25], often characterized by low or no
occlusion of the hands, and visually disparate set of hand
poses. In our case, the grasped object usually occludes large
parts of the grasping hand and different grasping poses may
be very similar, [6]. Related approaches to grasp recognition
[26], [27] first reconstruct the hand in 3D and use it for
classification but the latter approach notes that the full 3D
reconstruction is not needed to recognize grasp type.

Once the information about human grasp is available, it
has to be mapped to the robot. This step is highly dependent
on the dexterity of the robotic hand: in [28], mapping to a
parallel jaw gripper has been done just by setting the gripper
positions to the position of two fingertips. However, mapping
to more complex robot hands is more complicated. In [13]
the concept of virtual finger is introduced where one or more
real fingers are acting in unison. [12] use this concept as an
intermediate step in the mapping procedure. We use this work
to evaluate the quality of our mapping strategy.

III. GRASP CLASSIFICATION AND MAPPING

The estimated grasp class as well as hand and object
orientation and position are used to instantiate a robotic grasp
strategy, as illustrated in Figure 1.

The input to the recognition method is a single monocular
image from the robot camera. The classification method
is non-parametric; grasp classification and hand orientation
regression is formulated as a problem of finding the hand
poses most similar to those in the database. For the database,
a large set of examples, from many different views, is
provided for each grasp. The details are described in [6].

The human-to-robot grasp mapping scheme depends on
the type of robot hand used, two in our current system. The
Barrett hand is a three fingered, four degrees of freedom hand
with kinematics substantially different to that of a human

hand. Our Barrett hand is equipped with tactile sensors on the
interior part of the three fingers and on the palm. Karlsruhe
hand is a five fingered, eight degrees of freedom hand with
kinematics similar to a human hand. The preshapes used for
the hands are shown in Figure 2. There are three different
grasps for the Barrett hand: the Barrett Wrap, used for grasps
with a preshape with large aperture, like Large and Small
Diameter grasps; the Barrett Two-finger Thumb, for small
aperture preshapes like the Pinch grasp, and the Abducted
Thumb (executed as a pinch grasp); and the Barrett Precision
Disc, for circular objects. There are four preshapes for the
Karlsruhe hand. The Karlsruhe Power preshape is applied
for grasps with four parallel fingers and thumb opposed
to them, like Large Diameter grasp and Pinch grasp (and
Abducted since this grasp cannot be imitated properly). The
Karlsruhe Wrap is applied for the Small Diameter where the
thumb is not opposed to the rest of the fingers. There are
finally two preshapes for round objects, Karlsruhe Sphere
(for Power Sphere) and Karlsruhe Disc (for Precision Disc);
the differences are in the pose of the thumb (slightly more
opposed in the Disc) and in how straight are the rest of the
fingers (more bent in Power Sphere).

The hand orientation estimate relative to the camera, along
with the hand position estimate and the estimated position
and orientation of the grasped object relative to the camera,
are used to derive the estimated position and orientation of
the human hand relative to the object, as depicted in Figure 1.
The estimation of object position and orientation is assumed
known.

Different from our previous work, [29], the robot does
not explore a range of approach vectors, but instead directly
imitates it from the human, as encoded in the hand position
and orientation relative to the object.

Based on the estimated type of grasp, the system first
differentiates between volar and non-volar grasp ([12]), i.e.,
whether there should be a contact between the palm and
object or not. The original volar grasps are the Large
Diameter, Small Diameter, Abducted Thumb and Power
Sphere grasps, see Figure 2. However, the hand kinematics
make it impossible to use the palm in the Abducted Thumb
and Power Sphere grasps. In a human Abducted Thumb
grasp, the palm adapts its shape to the object and the
abduction/adduction degrees of freedom of the fingers are
used; the robotic hands studied here lack those degrees of
freedom, so the Abducted Thumb is mapped to the Pinch
Grasp. In the case of the Power Sphere, the robotics hand
cannot apply a volar grasp due to the differences in size of
the fingers. The contact between the palm and the object
makes possible to use tactile sensors on the robotic hand to
perform corrective movements during the final part of the
grasp execution. This makes the grasping less sensitive to
object pose estimation errors, as we will show in Section IV.

The volar grasping is performed in the following order:
First, the robot adopts the hand orientation and preshape
corresponding to the estimated human grasp. The robot hand
then approaches the centroid of the object until a contact is
detected. After that, it closes the fingers. Two different ways
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of approaching the object are used, based on the orientation
of the human hand; if the palm plane is approximately
parallel to the table plane the object is approached from the
top, otherwise it is approached from the side. If the first
contact did not occurred in the palm, the hand retracts and
the trajectory is replanned. The new goal position for the
hand is a weighted average between the detected contact
(computed through contact information and kinematics of
the robot and the hand) and the original goal position:
pnew = α∗ c+(1−α)∗pold, where c is the contact position
and p the estimation of the object position. The weight α
is decreased as αnew = α2

old to stabilize the process of
goal correction, in case the goal is not reached in the first
correction.

The non-volar grasps, which have no contact between the
palm and the object, are originally the Pinch grasp and the
Precision Disc grasps. Since there is no expected contact
between the palm and the object, in our system the grasp is
performed open-loop. The robot adopts the hand orientation
and preshape based on the human example and the robot
hand approaches the object until it is at a predefined distance
over the object. After that, it closes the fingers.

IV. EXPERIMENTAL RESULTS

We present grasp mapping both in simulation using
GraspIt! and on a real robot equipped with the Barrett hand.

A. Simulated grasping with GraspIt!

GraspIt! is used because it provides the access to different
robotic hands and easy control of the object pose so that we
can study the effect of pose estimation noise to each of the
grasp types.

Evaluating the performance of a grasp imitation system is
not trivial. It cannot be based on grasp stability, since the
human grasps are not always optimal in terms of stability. A
comparison of joint angles between a robot and a human
hand is not possible because of the differences in the
kinematics and number of degrees of freedom. The contact
points on the object may however provide more information
about how similar the grasps are, but the differences in the
kinematics makes again a direct comparison difficult.

We therefore compare the grasps using the concept of
virtual fingers, [13], implemented based on the methodology
stated in [12]. The position and orientation of contacts is
automatically extracted from the robotic simulator for the
robot grasps, and it was tagged manually from images for
the human grasp. As cited in Section II, a virtual finger is a
group of real fingers, including the palm, that act in unity.
In theory, the average position and orientation of the virtual
finger contacts in the imitated grasp should be as similar as
possible to the ones in the human grasp. However, as it will
be discussed later in this section, there are cases where this
does not apply.

In the first experiment, object pose is assumed known.
Figure 3 represents the grasps and the contact comparison
between the robotic hands (black) and the human hand
(blue). The big arrows show the position of the virtual

fingers for each. It can be seen from the figure that the
pose and number of the virtual fingers does not always
correspond between the human and the robot hand. For
example, the Barrett hand has three virtual fingers for the
Small Diameter grasp, while Human and Karlsruhe hands
have two, Figures 3a,g,m,s. The reason for this mismatch
is that Barrett fingers are longer than human and those of
the Karlsruhe hand, so the object is touched by the last
phalanx on the edges instead of the face. Another significant
difference in the number of virtual fingers appears in the
Power Sphere grasp, Figures 3c,k,q,w. The human grasp
has just one virtual finger, while the robotic hands have
two. For the human, placing the thumb opposed to the rest
of the fingers is uncomfortable. The large contact surface,
hence large friction, between the hand and the ball allows to
place the fingers in a relatively unstable way. However, the
contact surface between the robotic hands and the object is
much smaller, so the thumb should be placed in opposition
to the rest of the fingers. In contrast, in the Precision
Disc grasp (Figures 3f,r,l,x) the human needs to place the
thumb in opposition to the rest of the fingertips due to the
lower friction between the hand and the object. It is also
interesting to reason about the results for the Large Diameter
grasp, Figures 3b,h,n,t. There is a big difference between the
average virtual finger position, but the actual contacts look
similar. The reason is that the human fingers have contacts
in both the proximal and distal phalanges, while the robot
achieves a contact just in the distal ”phalanges”. Finally, it
should be pointed out that despite of not imitating properly
the Abducted Thumb grasp, the position of the virtual fingers
is quite accurate. There is a small deviation in orientation in
one of them due to the two contacts from the human palm
and index fingertip in the top of the object, which does not
exist in the robot grasps.

A quantitative evaluation of the experiments is shown in
Figure 4: it represents the average error in virtual fingers
position and orientation between the robotic hands (where
Barrett error is represented in black and Karlsruhe in white)
and the human hand. However, it should be noted that this
measure is a lower bound of the error: in cases where the
number of virtual fingers is different, this represents the
average distance between the best matching virtual fingers.
Sometimes this mismatch is known and natural (like the
different number of virtual fingers in the Power Sphere
grasp), but sometimes this means that one finger failed to
touch the object. This happens mainly in the experiments
with position error with the Karlsruhe hand, and is explained
later on in the section.

For the case of known pose, Figure 4a for orientation,
Figure 4e for position, we can conclude that Karlsruhe hand
performance in terms of virtual fingers orientation is better.
The performance in terms of position of the virtual fingers
is similar; the biggest errors appear in the Large Diameter
grasp, for the reasons stated before.

We have further evaluated the robustness of the imitation
to object position errors. For this purpose, the object pose
was varied 5cm in 6 different directions (multiples of π

3
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

Fig. 3. First and third row shows the grasp execution in absence of errors for Barrett and Karlsruhe Hand. Second and forth row show a comparison
between the contacts for Barrett(black)-Human(blue) hands and Karlsruhe(black)-Human(blue) hands. The big arrows show the average pose of the virtual
fingers

rad). The difficulty of the problem should be considered
first: the size of the objects along the major axis is around
10cm, so the error is significant. Another factor to take into
account is the lack of any visual feedback. This experiment
shows principally the importance of the feedback (tactile
feedback in our case) in the presence of errors. The grasps
where tactile feedback was used are the Large and Small
Diameter grasps since only for these we expect a first
contact to be on the palm: this means that a first contact
detected on any other finger is considered to be an error
in the object pose that should be corrected. It can be seen
that the error increases much more in the grasps without
corrective movements (grasps 3,4,5 and 6) than in the ones
with corrective movements (grasps 1 and 2). Another thing
that can be seen in Figures 4b,f is that the Karlsruhe hand
is more sensitive to the errors than the Barrett hand. The
error for the Karlsruhe hand in not corrected grasps is higher
than the one showed, because the thumb commonly failed to

touch the object, and therefore the thumb virtual finger was
not compared. There are two reason for this performance:
first, the shortest length of the fingers; second, the palm
configuration in the Karlsruhe hand. The shortest length of
Karlsruhe fingers affect the non-volar grasps, as we can
see in Figure 5a,b. The configuration of the palm that has
a small distance between the base of the thumb and the
base of the rest of the fingers. This affects the volar grasps,
that usually collide with the finger bases before touching
the palm. However, this is mostly solved by the corrective
movements.

Finally, the last two columns of Figure 4 represent the
errors for an experiment with rotation error in the object of
15◦, Figure 4c,g and 30◦, Figure 4c,g. The most important
lesson to learn from this group of experiments is that the
tolerance to object orientation errors is higher.
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(a) Orientation error: perfect pose (b) Orientation error: 5cm pose error (c) Orientation error: 15◦ error (d) Orientation error: 30◦ error

(e) Position error: perfect pose (f) Position error: 5cm pose error (g) Position error: 15◦ error (h) Position error: 30◦ error

Fig. 4. Error in position (mm) and orientation (degrees) for each of the six grasps tested (Small Diameter, Large Diameter, Abducted Thumb, Pinch,
Power Sphere, Precision Disc). Each column represents experiments with no error, error of 5cm in position and error of 15◦ and 30◦ in orientation

(a) (b)

Fig. 5. Example of performance of a grasp without corrective movements.

B. Real grasping with a KUKA arm

For the real experiments, the scenario is composed of
a robotic stereo head looking at a table where the human
performs various grasps to be imitated by the robotic arm
and hand (KUKA industrial arm and Barrett hand). The
image of the human grasp is captured and passed to the
grasp recognition [6], which returns the type of grasp and
the position and orientation of the hand. The object pose is
given manually. With all this data, the grasp policy is selected
and executed.

The scenario, illumination and subject is different to the
experiments presented in [6], but we get similar results in the
classification. Large diameter, small diameter and abducted
thumb are correctly classified most of the time, while pinch
grasp, power sphere and precision disc grasp are sometimes
confused with the power grasp. In terms of orientation, the
typical error is around 15 degrees, which is acceptable in the
execution of the grasp, as discussed above.

The object position is given manually, with an error of ±3
cm. The position error did not affect the grasp execution,
except when performing Precision Disc grasp with a ball,
which rolled when the hand was not centered over the ball.

Figure 6 shows the robot being shown four different
grasps (Large Diameter, Abducted Thumb, Pinch and Pre-
cision Disc, respectively), mapping them and performing
the corresponding grasp (Barrett Wrap, Barrett Two-finger
Thumb, Barrett Two-finger Thumb and Barrett Precision
Disc, respectively).

V. CONCLUSIONS

In this paper, a method for grasp mapping based on
single view human grasp classification was presented. The
grasp classification retrieves the grasp class together with the
orientation of the hand. This information was used to select
and parameterize a policy for performing the grasp on a
robot in a simulated and a real environment. The experiments
indicated a need for sensor feedback during the execution of
the grasp on the robot.

The main contribution of the paper, apart from the mark-
erless classification strategy, is the use of virtual fingers
approach for the evaluation of the mapping quality. This
strategy also gives a better insight into the relation and
mapping between two very different kinematic chains such
as the human and the Barrett hand.

Our current work considers evaluation of the approach on
other robotic hands and the use of additional non-parametric
regression methods for estimating grasp type and hand pose
for a larger set of classes. This will allow us to concentrate
on more detailed modeling of grasping strategies related to
functional aspects of objects.
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(a) 1 → Barrett Wrap. (b) 4 → Barrett Two-finger Thumb. (c) 9 → Barrett Two-finger Thumb. (d) 12 → Barrett Precision Disc.

Fig. 6. Execution of grasps in a real robot environment. First row shows images grabbed by the robotic head at the grasping moment, second row shows
the nearest neighbors to the first row pictures in the database, and the third row shows the robot execution of the same grasp. a) Large Diameter grasp,1,
mapped to Barrett Wrap. b) Abducted Thumb grasp, 4, mapped to Barrett Two-finger Thumb. c) Pinch grasp, 9, mapped to Barrett Two-finger Thumb. d)
Precision Disc grasp, 12, mapped to Barrett Precision Disc.
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