
30/1-2008 Page 1 of 17

IST-FP6-IP-027657 / PACO-PLUS

Last saved by: SDU Public

Project no.: 027657

Project full title: Perception, Action & Cognition through learning of
Object-Action Complexes

Project Acronym: PACO-PLUS

Deliverable no.: D8.1.4
Title of the deliverable: Multi-sensory object categorisation

Contractual Date of Delivery to the CEC: 1.2.2008
Actual Date of Delivery to the CEC: 31.1.2008
Organisation name of lead contractor for this deliverable: SDU
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Abstract:

We present our work on multi-sensorial object categorisation. The categorisation problem is embedded
in a three level cognitive architecture that is realized in an embodied system in a simplified domain. The
architecture consists of three hierarchically nested layers: a low-level, sensorimotor layer connecting
sensory processors to motor procedures; a mid-level layer that stores object-action episodes (Object-
Action Complexes or OACs) and reasons about memorised events; and a high-level symbolic planner that
creates abstract action plans to be specified at lower levels. The current domain simplification addresses
the use of a simple two-finger grasping device as well as the restriction to objects with 3D circles as
parts. The simplification allows for the processing and use of object categories on all three levels of the
processing hierarchy including planning and plan execution. Besides describing the currently realized
cognitive system in the simplified domain we also present our work on the extension of the domain to
general objects and more complex grasping devices.

Keyword list: Cognitive Architecture, Grounding, Learning, Object-Action Complexes



IST-FP6-IP-027657 / PACO-PLUS

Page 2 of 17

Public

Table of Contents
1. I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. T L A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3. O L, O C  P E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 S     F H    S. . . . . . . . . . . . . . . . . . . . . 8

3.2 W  O L  P E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.1 Refinement of Learned Object Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Learning Feature Combinations for Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 S O R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.1 Similarity based Object Categorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.2 Active Object Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 U V  S A  O C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4. L A E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5. L  W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



IST-FP6-IP-027657 / PACO-PLUS

Page 3 of 17

Public

1. Introduction

We have developed a three level hierarchy representation in which we perform learning, planning as well
as plan execution as described in section 2 (see also Delverable 1.2.1). Based on this three level hierarchy,
we have been realising embodied systems as described in this deliverable. For this, we have been following
a parallel design strategy. On the one hand, we have already realised a system that computes and performs
plans as well as learning in a simplified domain realising the full hierarchy (this is described in section
2). This simplified domain consists of objects having circular parts. The aim of working in this simplified
domain is to realize the full hierarchy by reducing some aspects of the vision and robotic problems. This
allows for treating the categorisation problem in a cognitive perspective. In parallel, we have done important
steps towards extending the domain to arbitrary objects and more elaborated actions which is described in
section 3.

Categorisation takes place on multiple levels. In the context of realising the full hierarchy we found it im-
portant that the categories ’objectness’, ’graspability’ as well as the categories open/closed and full/empty
are realised on all levels, in particular that the highest planning level makes use of these categories. Further-
more, we addressed elaborated tactile sensing for shape categorisation in section 3.1 as well as aspects of
efficient memorisation, active manipulation and the combination and extension of categories in section 3.

Our work is described in an accepted journal publication [E] as well as conference contributions [A, C, D,
H, I] and technical reports [B, F, G].

2. Three Level Architecture

The cognitive system we have been developing consists of three hierarchically nested layers: a low-level,
sensorimotor layer connecting sensory processors to motor procedures; a mid-level layer that stores object-
action episodes (Object-Action Complexes or OACs) and reasons about memorised events; and a high-level
symbolic planner that creates abstract action plans to be specified at lower levels (see also Delverable 1.2.1).
The cognitive system works in two modes. In the first mode, the system explores its environment and learns
object–action associations such as object–grasp associations or consequences of actions such as ’poking’.
Furthermore, representations of objects which have been grasped become learned. In that way, the world
knowledge of the system becomes extended during exploration. In the second mode, it constructs and
performs plans. In both modes it is able to deal with unexpected events or errors (i.e., the system can
recover from such situations) and is also able to adapt internal representations based on the different events
occurring either in the exploration or plan performance mode.

This architecture is the basis for the different embodiments used in PACO-PLUS. One of the settings (used at
SDU) is an embodied system consisting of an industrial 6 degrees of freedom (DoF) robot with a two finger
gripper, haptic sensing by means of a force-torque sensor and a high resolution stereo system in which a
preliminary attention system is realized (see figure 1 and Deliverable D4.1.2). One task we want to address
is cleaning up a table, but the proposed architecture allows for more general tasks. Furthermore, in parallel
to the planner’s performance, the system is provided with a memory of past experiences that allows for
learning processes.

The aim of the architecture is not only to solve a given task with best possible performance but also to allow
for a set of cognitively rich processes in which the robot

• derives a plan to solve the given task,

• executes the plan,
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Figure 1: Embodiment of the Cognitive System

(a) (b) (c)

Figure 2: Withdrawal after the detection of a collision. (a) Approaching the object, (b) collision is detected,
(c) start of withdrawal action.

• is able to recognise and react on unexpected events during the exploration or execution of the plan on

– either a rather low level (for example in case of collisions by withdrawal, see figure 2),

– or on the mid–level by reinspecting the scene with a certain problem statement in mind (e.g., by
looking at a certain aspect with higher resolution (see figure 3) and hence, resolving the situation
within the given plan),

– or on the high-level by a complete replanning.

In parallel, made experiences in terms of Object Action Complexes (OACs) become stored and transferred
to various learning processes on a mid-level stage (see figure 4).

In its early stages, this work focuses on a limited domain: objects become represented as 3D circle and
grasps become associated to these. This limitation is merely for development purposes and there is ongoing
work toward the extension of the proposed system to arbitrary objects (see section 3)

The system consists of three levels: The low, sensorimotor robot-vision level providing multi-sensorial
information and action options, a mid-level on which made experiences are stored and provided for different
learning processes, and on various levels as well as a planning level that generates plans based on the
information provided by the robot-vision or the mid-level and which also monitors the execution of these
plans. This architecture integrates several approaches and concepts from the computer sciences, artificial
intelligence, and cognitive psychology, and it allows for learning and adaptation processes at all three levels.

The robot-vision level provides visual and tactile information to the higher levels in terms of scene affor-
dances (see figure 5) as well as object identities and poses. It also is able to handle action commands, such
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(a) (b)

Figure 3: Circle detection is not successful (a) because of the small number of feature descriptors extracted
from a downsampled version of the high resolution images. It is successful (b) when the system focuses on
the object at full resolution.

(a) (b) (c) (d)

Figure 4: Objects (top row) and an associated object representation with tested actions (bottom row). The
actions are recorded after they have been executed and have a success description attached: (a,b) successful
grasps, (c) unsuccessful grasp (collision with object), (d) unsuccessful grasp (object could be grasped but
grasp was unstable).

as:

• apply grasp A on object B,

• start an explorative action such as ‘poking’, or

• shift attention to a certain location (see figure 3).

Moreover, it has control mechanisms that allow for the detection of unexpected events, events that would
normally either lead to emergency stops and/or damaging the objects or the robot itself. It has pre-programmed
behaviours to overcome such situations (see figure 2).

In its current (preliminary) state, the mid-level is responsible for the following tasks:

• the storage of OACs in memory, and their access by different learning processes,

• the refinement of grasping reflexes and object-action models based on the stored OACs (see figure 6),

• and the stabilisation of transient sensorial input into messages passed onto the planning level.

Figure 8 shows how an object with a circle part can be tested if it falls into the categories open or closed.

The planning level is responsible for constructing high-level, goal-oriented plans and for feeding those



IST-FP6-IP-027657 / PACO-PLUS

Page 6 of 17

Public

(a) (b)

Figure 5: Scene information. (a) Example scene. (b) Example affordances associated to potential objects in
the scene.

plans to the lower level systems for execution by the robot. To do so, the planner maintains an abstract
model of the objects, properties, and actions available to the robot in the world (described in detail in [F]).
The planner also receives regular updates on the state of the world from the lower levels, which it uses to
monitor the success of plans being executed, and to control resensing and replanning activities in the system.
The execution of a simple plan is shown in Figure 7.

For instance, a category like “open/closed” which arises at the robot and mid levels, also has a counterpart
at the planning level as a high-level property (i.e., a logical predicate). In this case, “open” is used by the
planner in three different ways. First, it acts as a precondition to particular grasping operations (e.g., an
object can only be grasped using Grasp Type A if it is open). Second, the planner can obtain information
about the state of “open” by including a knowledge-producing action in a plan (e.g., the sense-open action
requests information from the lower levels as to whether or not an object is “open”). Finally, “open” can be
specified as part of a goal condition to be achieved by the planner (e.g., the planner can construct a plan to
remove only open objects from the table). Together, the planner can use this representation to construct a
plan such as:

sense-open(obj1),
branch(open(obj1))
K+ : graspA-table(obj1),putAway(obj1).
K− : nil.

Here, the planner first senses the openness of an object obj1: if it is open (the K+ branch) then it grasps obj1
using Grasp Type A and clears it from the table; otherwise (the K− branch), it leaves obj1 unchanged. (We
note that although the planner can reason about the outcome of an action like sense-open, the lower system
levels must actually execute this action and return the results back to the planner.) The treatment of other
lower-level properties and actions that are part of the abstracted high-level model is similar.

3. Object Learning, Object Categorisation and Pose Estimation

In its current state, the embodied system realises already the outlined three level hierarchy which is a suitable
framework for our ongoing research. Our research now focusses on the extension of the system in terms of
a richer embodiment (in particular on more sophisticated grasping devices), an extension to general objects
and actions as well as on enriching of internal structures in the three level architecture.
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Figure 6: Grasp experiences and success distributions for two grasps associated to the circle part. The x-axis
is representing the radius of the circle in mm. Grasp A represents a grasp where the gripper grasps the object
with with fingers inside the circle, opening the fingers to grasp. Grasp B grasps the object on the brim of
the circle. (a)-(c) show the results for artificial data, while (d)-(f) show data from real experiences. (a) and
(d) show grasping experiences made for grasp type A for different radiuses while (b) and (e) show the same
for grasp type B. In these diagrams the green crosses (in the upper row) represent a successfull grasp, while
the red crosses (lower row) represent failures. (c) and (f) show success probabilities for the two grasp types
in discrete radius bins. These can be used as a indicator which grasp to choose for an unknown grasping
situation. A more detailed description of the circle grasp relationship can be found in Deliverable D4.1.2.

More specifically, we are currently working on the following extensions:

• The end–effector is limited to a two–finger parallel gripper and needs to be extended to a more flexible
device. In this context we have been developping a finger that is fully equipped with tactile sensors
(see Deliverable D4.1.2) by which we can detect categories such as openness and closedness as well
as information about the weight of objects. We also equipped a five finger hand with the tactile sensors
as described in section 3.1.

• The object domain is limited to objects including circles as parts and needs to be extended to arbitrary
objects. The limitation concerns the learning of object representations, the association of actions
as well as the recognition based on the learned representations. However, we want to stress that
representing objects as a combination of parts has a number of advantages already useful in our
limited system. In the context of the extension to arbitrary objects, we have

– developed a system in which the combination of two OACs leads to the detection of the category
’objectness’ as well as the extraction of object shape. This work has been published in [E].

– improved the object shape extraction process by using Kalman filtering. This work has been
described in [G] and section 3.2.

– addressed the problem of object recognition using these extracted representations. This work
has been described in [B] and is briefly described in section 3.2.2.

• The representation of learned objects need to be structures that allow for efficient storage and enable
the robot to decide about what aspects of the object are relevant in a certain situation. In this context
in [I] the problem of finding similar categories between object views is addressed to arrive at a more
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(a) (b) (c) (d) (e)

Figure 7: Performing a Plan: (a) Initial scene. The small blue cup is obj1, while obj2 stands for the light-
blue bowl. The blue rectangle represents the shelf area. (b) Scene after executing graspD-table(obj1). (c)
Scene after executing putInto-object(obj1,obj2). (d) Scene after executing graspB-table(obj2). (e) Scene
after executing the final command putAway(obj2).

(a) (b) (c) (d)

Figure 8: Open/closed detection using the force-torque sensor. The finger pokes into an potential object
opening (here detected using the circle extraction described in [1]). By evaluating the force-torque sensor
values it can be determined if the object is closed or open. (a) Depiction of the process without opening in
the object. (b) Same for an object with opening. (c) Setup of the robot with the force-torque sensor. (d)
Force graph for a collision situation. If the gravity corrected force (red line) exceeds a certain threshhold a
collision is assumed, a poking action can be aborted and the object can be categorised as closed.

general representation of sets of objects (see section 3.3.1). In addition, the active use of different
views of objects for object separation has been addressed in [H]. This approach is briefly described
in section 3.3.2.

• A further limitation concerns the number of categories and properties being integrated into the system
architecture which needs to be extended and linked to actions. We have addressed this issue in section
3.4.

• In addition, a cognitive system requires to learn the relations between objects and their affordances as
well as the consequences of actions on different levels of the hierarchy. This is addressed in section 4.

3.1 Shape exploration with a five Finger Hand equipped with tactile Sensors

A two finger grasper naturally set limits to the exploration process in terms of the kind of objects that can
be grasped or manipulated as well as in terms of tactile exploration. Hence, it is important to extend the
embodiment to a more sophisticated manipulation device such as a five finger hand with rich tactile sensing
for which also rich interactions with visual information can be realized. In this context, the sensor system for
the humanoid robot hand was further developed at UniKarl. This comprised development and integration
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(a) Triangle contour (b) Grid structure contour

Figure 9: Resulting point clouds for tactile contour following of planar shapes and corresponding fitted
planes. Red points are situated below the plane, green points above, [A].

Figure 10: Surface exploration data and superquadric approximation for a box and a salad bowl.

of tactile sensor modules based on the commonly investigated technology. The details of the system are
described in detail in Deliverable D1.1.1

Also, progress in processing and interpreting rich tactile sensor data was achieved. In [A] a framework
for haptic exploration was presented which may be used for tactile data acquisition with both, a five-finger
humanoid robot hand as well as with a human hand. The fusion of proprioceptive and tactile sensor data
input acquired during haptic exploration was shown in experiments, see figure 9. The approach aims towards
3D shape recovery based on the haptic exploration data acquired by touching the object and following
arbitrary trajectories on the surface.

The resulting scattered spatial point clouds of the explored objects were processed to extract geometric
shape primitives using superquadrics, as shown in figure 10. The application of shape estimation techniques
to sparse 3D point data lead to further investigations on how available contact normal information may be
introduced in the estimation process. This is promising to stabilise the results and to establish a robust
estimation process.

The hand is equipped with tactile and position sensors. Furthermore, joint torques can be derived from
actuator pressure sensors. The humanoid robot hand is described in detail in Deliverable D1.1.1. This hand
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will be used to investigate haptic exploratory procedures on the humanoid robot.

3.2 Work on Object Learning and Pose Estimation

Already in the Deliverable D8.1.2 we presented work on the extraction of ’objectness’ as well as object
shape — which we called the ’Birth of the Object — and confirmed grasping hypotheses (see figure 5 as
well as [E]). We have done significant progress on this by stabilising and evaluating the initial grasping
reflex for a number of complex scenes (see Deliverable D4.1.2) as well as the improvement of shape ex-
traction as described in section 3.2.1. We also addressed the object recognition problem using the extracted
representations, which is described in section 3.2.2.

3.2.1 Refinement of Learned Object Models

Categorisation, recognition, grasping as well as pose estimation profit from a precise representation of the
learned objects. In this context, we have improved the extraction of the object models based on multi-
modal primitives by combining a particle filtering process with a Kalman filter (for details, see [G]). The
envisionned framework will make use of a Rao-Blackwellised particle filter [6] to correct estimated camera
poses. Rao-Blackwellised particle filters make the assumption that visual landmarks are independent, allow-
ing to correct landmark position using separate, small Kalman filters. This is advantageous because Kalman
filtering variants increase quickly in complexity with the number of landmarks considered and are sensitive
to outliers. A particularity of the approach is that the Kalman filtering does not only take place in the 3D
position but also the 3D orientation space, i.e., we do Kalman filtering of the complete 3D-primitives’ pose
(6 DOF). This was evaluated using sequences with accurate known motion and lead to an improvement of
the representation in two respects: 1) the filtering allowed to discard erroneous hypotheses and thus to re-
duce ambiguity; and 2) 3D-primitives were corrected over time, increasing their accuracy. Figure 11 shows
the extracted representations with and without the Kalman filtering process.

Figure 11: Illustration of the effect of Kalman based 3D-primitive correction over time. Inserts A, B, and
C show details of the accumulated 3D-representation, with (right) and without (left) Kalman filtering of the
primitives’ pose.
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3.2.2 Learning Feature Combinations for Pose Estimation

Object representations for pose estimation are based on the multi-modal primitives and are under develop-
ment at ULg. The proposed representation has the form of a hierarchy of increasingly expressive object
features. Bottom-level features are the most local, they correspond to the multi-modal primitives.

The hierarchy encodes probabilistic 3D relationships between neighboring features. It is learned by itera-
tively combining correlated features together. Instances are detected using a nonparametric belief propaga-
tion algorithm which propagates evidence through the hierarchy to infer globally consistent poses for every
feature of the model. See figure 12 for an example result.

While we currently only use visual primitives as input, our method can in principle incorporate features from
diverse perceptual modalities within a coherent framework. For example, vision plus haptic and proprio-
ceptive inputs could be used simultaneously. This would produce cross-modal descriptions and cross-modal
behaviours directly applicable to robotic tasks such as grasping and object manipulation. Our objective is to
observe haptic and kinematic features that correlate with successful grasps, and integrate them into the fea-
ture hierarchy (see figure 4). Then, given a visual scene, grasp parameters can be suggested by probabilistic
inference within the feature hierarchy.

3.3 Structuring Object Representations

In this section, we present results on processes which allow to efficiently store object representations and
to apply them in the context of Object-Action Complexes. Throughout this section, objects are represented
using aspect graphs [2] which cover rotational variations of objects. Sensorimotor processes that can be
utilised to acquire the initial views of new objects have been developed in WP2 and will be reported in
D2.1.4 [7].

3.3.1 Similarity based Object Categorisation

In order to store object representations in a compact way, similarities between objects and object views
can be exploited. In [I] a representation scheme is introduced which allows for reduction of the storage
requirements for object representation while maintaining the information about similarities between objects.
This is achieved by selecting important views of objects, depending on their similarities among different
views and multiple objects.

The approach consists of two stages:

• View clustering
In the clustering step, prototypical views are extracted using unsupervised clustering techniques. We
use the growing neural gas algorithm (GNG) [4] to cluster the feature space with respect to the input
distribution.

• View labelling
In the labelling step, objects are associated with the prototypical views. Each object representation
references the prototypical views which are most similar to the views of the object.

With only storing prototypical views, the storage requirement has been significantly reduced. In the exper-
iments, 720 views of 10 objects were represented with about 20 prototypical views. The uncertainty about
the currently perceived object could be reduced from 10 to 2.7 on the average.

In the experiments, we used colour histograms [3] as global descriptors of objects. However, the approach
can be used without modifications for all feature descriptors which allow to determine the similarities be-
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(a) (b)

(c) (d)

(e)

Figure 12: Learning Feature Combinations for Pose Estimation (a) Input scene used for learning the object
model: toy kitchen. (b) Input scene in (a) represented by multi-modal primitives. (c) Input scene where
our system will locate the toy kitchen. (d) Instantiation in (c) of the hierarchy learned from (a). Positions
of the bottom-level features (higher levels are not shown). The bottom-level features correspond to input
multi-modal primitives, colour indicating correspondences. Note that this representation is sparse compared
to (b), which demonstrates the kind of noise our system is robust to. (e) Illustration of the pose estimation
accuracy. The picture shows in green the ground-truth pose of the kitchen in scene (c) and in red its pose
inferred by our system.
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(a) The path hypothesis for the correct object representa-
tion approximates the controlled path.

(b) The path hypothesis for the incorrect object represen-
tation does not converge to the controlled path.

Figure 13: Object Separation

tween views. With this in mind, the approach can be applied to different visual modalities in order to further
reduce the uncertainty during perception. This uncertainty can also be reduced by using active vision meth-
ods as described in the next section (Section 3.3.2).

3.3.2 Active Object Separation

Daily life objects reveal natural similarities, which cannot be resolved with the perception of a single view of
an object. In [H] we present a method for the separation between objects making use of active methods and
taking into account multiple object views. By actively rotating the object, i.e. having physical control over
the object, the coherence between controlled action path, acquired object representations (inner models) and
percepts (object views) are observed over time and allows to reject implausible path hypotheses. At the same
time, the controlled path can be registered on the surface of the aspect graph [2] of each plausible object
hypothesis. Once the percept is registered, a movement is generated which reveals the most separating view
of the remaining object hypotheses in order to perform robust object separation.

Our approach determines hypotheses for the pose of each aspect graph representation. In each iteration,
the hypothesis is updated and rated on the basis of the coherence between controlled action path, object
representations and current percept.

The approach uses three different measures to rate path hypotheses:

• Similarity of the current percept with the feature associated to the current view from the aspect graph
as predicted by the pose hypothesis.

• Similarity of the course of the controlled path and estimated path on the surface of the aspect graph.

• Similarity of past views and the corresponding views from the object representation, determined by
accumulation over time along the hypothesis path course.

Figure 13 shows the course of the controlled path (red) and the best path hypothesis (blue) for two box-
shaped objects which have a different texture on one side. The left object was perceived during a separation
task. The controlled path is approximated well by the path hypothesis for the correct object (Figure 13(a)). In
contrast, the path hypothesis of the incorrect object is not coherent with the controlled path (Figure 13(b)).
The rating of both paths is shown in Figure 14(a). Once an object view is perceived and it differs from
the inner model, the patch rating drops. The rating can be deployed to separate between different objects.
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Figure 14(b) shows the number of feature comparisons required in the course of the approach. Compared to
a brute-force approach, only few comparisons have to be performed.
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path hypotheses the number of required comparisons de-
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Figure 14: Experimental results using the proposed approach.

3.4 Using Visual and Shape Attributes for Object Categorisation

In [C], we present a visual subsystem in which we integrated both visual and shape attributes towards the
concept of OACs. The attribute determination is part of a more general vision system which can support
also other applications, as briefly proposed in the paper. For the learning of OACs, we focus on the issue
of meaningful attributes that constitute an object as opposed to a thing. While finding complex attributes
like hollowness or emptiness is hard using vision only, we start by collecting very basic visual 2D and
3D attributes. The presented system computes both visual (from attention) and shape (from 3D segmen-
tation) attributes, as listed in Table 1, combines and uses their advantages in a supplementing manner and
also provides a fundament of attributes that can serve several higher-level learning and planning processes.
Combining pure visual attributes with shape attributes has practically been exemplified by validating visual
hypotheses according to shape attributes. Hereby, it is possible to neglect wrong hypotheses, to cluster and
affirm the good ones (see Figure 15), or even to distinguish between a car-like object and the plain image of
it.
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Figure ??: Left: A set of best hypotheses for the described task (2D visual attention). Right: shape
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Figure 15: Left: A set of best hypotheses for the described task (2D visual attention). Right: shape at-
tribute information (3D segmentation) allows for grouping and validating of hypotheses by comparison of
qualitative shape attributes.
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Table 1: Attribution distributions of 7 test objects. In brackets, each object carries the number of its appear-
ance along the test sequence of 6 scenes.

Besides the different attribute detectors, the framework consists of a server database which holds a set of
attribute classes (e.g. height, size, colour) and corresponding attribute instances (e.g. small, medium, large
for size). One can change or extend this very simply in case that new attribute detectors (e.g. for mass)
become available. An agent (in our case it is only the vision system client) can access the server, ask for
available attributes classes, as also insert or request a perceived attribution, i.e. an object. The current
system server is able to notice and reply if this object and its attribution, respectively, has been seen before.
However, as we have not yet introduced manipulative capabilities and feedback in practice, the system is not
yet able to connect and learn actions from attributes. However, it offers a fundamental technique to produce
the necessary attributes for such learning issues.

Categories of objects will thereby not be built by visual appearance only, but by the actions an agent can
perform and the attributes it can perceive. The core of the OAC concept is constituting objects from a set
of attributes, which can be manifold in type (e.g. colour, shape, mass, material), to manipulative actions.
Including manipulation attributes, e.g. hollowness or weight, by interacting with a thing, is one issue of
future work.

4. Learning Action Effects

Although the planner is a powerful tool for controlling the robot’s actions, it relies on an accurate model
of the dynamics of the world in which the robot will operate. Using state information provided by the
lower levels, and returned to the high level, the planner can improve its domain model (and thus, the quality
of its plans) by applying machine learning techniques. In particular, we are investigating an approach
based on a kernel perceptron learning model, where action and state information is encoded in a compact
vector representation as input to the learning mechanism, and resulting state changes are produced as output.
Currently, our approach can only be used to learn STRIPS/LDEC-style action effects. However, we are in
the process of adapting it to action preconditions. Empirical results indicate efficient training and prediction
times, with low average error rates (< 3%). Details of this work can be found in [5].
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5. Links to other Workpackages

Deliverable D8.1.4 is linked to and makes use of work made in a number of workpackages. It is linked to
the software and hardware integration issues dealt with in WP1. There are potential links to be exploited in
terms of grasp evaluation and optimal actions for object learning in WP2. In Deliverable D8.1.1 a number
of sub-modules are used that have been developed in WP4 (see Deliverable D4.1.2) and the integration with
the higher level planning system (see WP5).
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Abstract—In order for humanoid robots to enter human-
centered environments, it is indispensable to equip them with the
ability to recognize and classify objects in such an environment.
A promising way to acquire the object models necessary for
object manipulation appears in the supplement of the information
gathered by computer vision techniques with data from haptic
exploration. In this paper we present a framework for haptic
exploration which is intended for use with both, a five-finger
humanoid robot hand as well as with a human hand. We
describe experiments and results on haptic exploration and shape
estimation of 2D and 3D objects by the human hand. Volumetric
shape data is acquired by a human operator hand using a data
glove. The exploring human hand is located by a stereo camera
system, whereas the finger configuration is calculated from the
glove data.

I. INTRODUCTION

In humans, different types of haptic exploratory procedures
(EPs) for perceiving texture, weight, rigidity, contact, size and
the exact shape of a touched object are known [1]. These EPs
require the exploring agent to initiate contact with the object
and are therefore also referred to as active touch sensing.

In this paper, the contour following EP for shape recovery
is subject of interest. A volumetric object model composed
this way delivers a rather high amount of information for
discriminating between objects. Also, volumetric object data
is most suitable for supplementing and verifying geometric
information in multimodal object representations.

Several approaches have been proposed for acquiring object
shape information by robots through haptic exploration. An
early, comprising experimental setup was presented in [2],
where a dextrous robot hand was used in conjunction with
a manipulator arm. The hand probed contact by enclosing the
test objects at predefined positions and evaluating joint angle
and force readings. The resulting sparse point clouds were
fitted to superquadric models defined by a set of parameters
describing shape and pose.

In addition to the contact locations, the contact normal
information gathered during haptic exploration was used in [3].
Instead of a superquadric model here a polyhedral model
was chosen as volumetric object representation. For object
recognition the Euclidian distances of the polyhedral surface
points to the borders of a surrounding cubic workspace box
were measured at equidistant coordinates and matched to those

of synthetic models. This approach was evaluated only in
simulation.

The basic kinematics of contact and its application in
contour following are presented thoroughly in [4]. Moreover,
several procedures for haptic exploration of object features
have been investigated in [5], [6]. Other approaches in active
contact sensing concentrate on the detection of local surface
features [7].

In our approach, a framework has been developed that
allows haptic exploration of unknown objects for recovery of
the exact global shape using different types of manipulators
equipped with contact sensing devices. This separates our
work from approaches involving model based pose estimation
of known objects as in [8].

As we are interested to integrate the framework as basis for
haptic exploration in our humanoid robot system [9] which
is equipped with two five-finger human-like and human-sized
hands, we focus on the application of exploring with five-
finger hands. In particular, the developed framework allows us
to use the human hand of an operator as exploring manipulator
by deploying a data glove with attached tactile sensors. This
gives us the opportunity to already investigate the EPs of
interest until the humanoid robot hand is fully integrated into
our robot. It also provides rich possibilities for immediate
comparison of haptic exploration results by a human versus a
humanoid robot hand.

Our aim is to establish a robust exploratory process for 3D
shape reconstruction and modeling which can be performed in
an unstructured environment, while only providing observabil-
ity of the hand pose, the finger configuration and the contact
information. Currently we are limited by the constraint that
the object being explored must remain in a fixed pose.

As modeling primitive we chose an extended superquadric
function as in [2] which can represent a variety of cubical
and spherical geometries. In the context of grasp planning
this type of representation has just recently been investigated
for modeling physical objects by superquadric decomposition
[10]. Yet, in this paper we only address modeling of basic
superquadric shapes. Also, we can not give results related to
non-convex objects at this stage of our work, as those are
not reflected by the chosen model, although the exploration
process itself is not limited to convex objects.

This paper is organized as follows. In the next section



the relevant details and components of our system for haptic
exploration focusing on object shape recovery are described.
This includes a description of the human hand model and
visual tracking of the operator’s hand. In section III we present
an evaluation of the system in terms of haptic exploration on
real world objects. Finally we give a conclusion and an outlook
on our future work in sectionIV.

II. SYSTEM DESCRIPTION

Figure 1 gives a system overview with the components
involved in acquisition of contact points during contour fol-
lowing EP.

Fig. 1. System for acquisition of object shape data from haptic exploration
using a human or a humanoid robot hand as exploring manipulator.

During haptic exploration with the human hand, the subject
wears a data glove that serves as an input device for calculating
the joint angle configuration of the hand. The data glove we
use is equipped with binary micro switches at the distal pha-
langes. When touching an object, the switches are actuated as
local contact force exceeds a given threshold. During actuation
the clicking of the switch also provides the operator with a
mechanical sensation, that helps to control the contact pressure
during exploration. The data glove is made of stretch fabric
and uses 23 resistive bend sensors that provide measurement
data of all finger joint angle positions and the orientation of
the palm.

Before starting exploration the operator needs to calibrate
the data glove sensors with the forward kinematics of the
underlying hand model. Subject to calibration are abduc-
tion/adduction and flexion/extension of all fingers, curvature
of the palm and the thumb motion.

A linear relation is used for projecting glove sensor readings
to joint angles. Calibration is accomplished by engaging posi-
tions which result in minimum and maximum sensor response
in a separate calibration procedure.

Wrist position and orientation are determined in the ref-
erence frame of the camera coordinate system as described
in section II-B. During exploration the subject visually guides
the finger tips following desired paths. When the micro switch

is actuated by touch, the current location of the sensor in the
global reference frame is registered as a point in the 3D object
point cloud. The sensor position is calculated using the forward
kinematics of the hand model as described in the following
section.

For exploration with our humanoid robot platform Armar-
III we may later use a model for the forward kinematics of the
robot hand as presented in [11]. The robot is equipped with
an advanced version of this hand with joint angle encoders
attached to all controllable degrees of freedom (DoF) and
tactile sensors at the fingertips.

The data acquired as 3D point coordinates in the haptic
point cloud set is finally used for performing a superquadric
model estimation.

A. Human hand model

The forward kinematics of the human hand must be modeled
accurately to transform the coordinates of the tactile sensor
locations gathered from the data glove sensor readings to a
global reference frame in which the resulting 3D contact point
cloud is accumulated. Furthermore, the model is required to
cover the entire common configuration space of the human
hand and the data glove, so that the human operator is
preferably not restricted in the choice of hand movements that
can be projected to the model.

A complex hand model deploying 27 DoFs was introduced
in [12] and used in several studies requiring exact models
([13], [14]) for hand pose estimation from sensor input.
The Carpometacarpals joints (CMC) were fixed, assuming
the palm to be a rigid part of the hand. The fingers were
modeled as serial kinematic chains, attached to the palm
at the metacarpophalangeal joints (MCPs). Interphalangeal
joint (IP), distal interphalangeal joints (DIP) and proximal
interphalangeal joints (PIP) have one DoF for flexion and
extension. All MCPs joints have two DoFs, one for flexion
and extension and one for abduction and adduction. The CMC
joint of the thumb is modeled as a saddle joint. Several variants
of this model exist in literature (see [15], [16]).

Fig. 2. The hand model for haptic exploration by a human operator wearing
a data glove.



The hand model which we use in the presented framework
is shown in Fig. 2. We have added two modifications to the
basic model to improve the representation of real human hand
kinematics. The first modification affects the modeling of the
thumb’s CMC joint. Following [16], the first metacarpal of the
thumb performs a constrained rotation around a third orthog-
onal axis in the CMC joint, which contrasts the CMCs joint
model as a two DoF saddle joint. For reasons of simplicity we
model this joint as a three DoF joint.

The second modification is to overcome the inadequate
representation of the palm as a rigid body. As we want to
incorporate the distal phalanges of the ring and little finger
in the exploration process, we have extended the model by
adding one DoF at the CMCs of these fingers respectively. By
doing this the ability of the palm is reflected to fold and curve,
when the little finger is moved towards the thumb across the
palms inner side [17]. It is important to model this behavior
as a human operator will occasionally utilize these types of
movement when touching an object with the whole hand.

The resulting hand model consists of 26 DoFs. The four
fingers have 4 DoFs each at the DIP, 4 DoFs at the PIP and
8 DoFs at the MCPs. The thumb is modeled with 1 DOF
at its IP, its MCP is modeled with 2 DoFs and its CMC, as
mentioned before, with a 3 DoF joint. Additionally we model
the palm with 2 DoFs representing the CMCs of the little and
ring fingers and add 2 DoFs for the wrist movement.

We have used the Open InventorTM1 standard for construct-
ing the hand model. This 3D modeling package allows the
implementation of local reference frames as described before
in a transparent way.

B. Wrist tracking

As mentioned earlier, the absolute position and the orien-
tation of the data glove are determined using vision. In order
to track the data glove in a robust manner, we use a marker
bracelet which is attached to the wrist of the subject wearing
the data glove and is tracked using a stereo camera system.
Figure 3 shows the marker bracelet used for our experiments.
The bracelet comprises twelve red markers for tracking and
one green marker for initialization. All markers are printed
on yellow background. The wrist localization consists of two
phases. In the initialization phase, the pose of the wrist is
estimated without the knowledge of past poses. Once an initial
pose has been calculated, a particle filter approach is used to
track the pose of the wrist.

For the initialization, the relevant markers are identified by
HSV color segmentation performed in the current scene. Only
green and red markers inside yellow areas are considered
for color segmentation. With the calibration of the stereo
camera system, the 3D coordinates of the green marker and
the second and third closest red markers are calculated. Since
these markers lie all in the same plane, the plane normal
can be calculated from this information. With the radius of
the bracelet known, the center of the circle described by the

1http://oss.sgi.com/projects/inventor/

three considered markers can be calculated. The x-axis of the
coordinate system (denoted red) can be derived from plane
normal and center. The y-axis (denoted green) is calculated
from the difference of the green marker and the center. The
z-axis is calculated as the cross product of x- and y-axis.

Fig. 3. Bracelet and coordinate system.

After initialization, the bracelet is tracked using a particle
filter [18] based on a model of the bracelet comprising all
12 red markers. The configuration of the model is defined
by the 6D pose of the band. In each iteration of the particle
filter algorithm 100 new configurations are generated using
a gaussian distribution with variance σ2 = 0.45. Furthermore
the movement of the model is estimated by taking into account
the movement in the previous frame. In order to retrieve the
estimated 6D pose of the wrist band, the visible part of the
model is projected into both camera images using the camera
calibration. To validate each particle, a weighting function
is used which compares the segmentation mask for the red
color with the model. In order to derive a weighting function
for each configuration, we count all red pixels inside yellow
regions f and all red pixels, which overlap with the projected
model m. The probability for each particle z and the current
images i can then be formulated in the following way:

p(z|i) ∝ exp
(
λ ∗ m

f

)
where λ defines the sector of the exponential function which
is used. After all particles have been weighted according to
this equation the 6D pose is estimated by the weighted sum
of all configurations.

C. Superquadric fitting for shape estimation

The concept of superquadrics has been introduced as a
family of parametric 3D shapes in [19], among which the
superellipsoid has become the most popular one and therefore
is often termed as superquadric, a convention we will preserve
here.

A superquadric centered in the origin and with its axes
aligned to the x, y, z coordinate axes can be described with
the following parametric equation

χ(η, ω) =

a1 cosε1(η) cosε2(ω)
a2 cosε1(η) sinε2(ω)

a3 sinε1(η)

 .



The parameters a1, a2, a3 describe the extent of the su-
perquadric along each axis. The exponents ε1, ε2 ε [0..2]
produce a variety of convex shapes and describe the shaping
characteristics from cubic to round in x and y directions.
This way different 3D primitive shapes can be modeled, e.g.
boxes (ε1, ε2 ≈ 0), cylinders (ε1 = 1, ε2 ≈ 0) and ellipsoids
(ε2 = 1).

To locate the superquadric arbitrarily in space, we further
introduce a rotational matrix R and a translation vector x0,
which add 6 more parameters to our model.

As superellipsoids are restricted to symmetric shapes only,
we also add deformation parameters {tx, ty ε [−1..1]} for
modeling tapering in z direction as described in [20]. This
enables our model to also represent wedge resembling shapes.
Applying a scaled tapering deformation function

Dt(x, y, z) =

tx z
a3

+ 1
ty

z
a3

+ 1
1

xy
z


we finally get the model function

m = RDt(χ(η, ω)) + x0 .

To estimate the 11 parameters of our superquadric model
from the 3D contact point data we use the Levenberg-
Marquardt non-linear least-squares algorithm [21] to minimize
the radial Eucledian distance d between the data points and
the superquadric surface

d = ‖x‖
(

1− 1
F (x)

)
.

as proposed in [22]. Here, F (x) is the inside-outside func-
tion of the superquadric, which has a value of 1 for points
x = (x, y, z)> on the surface of the superquadric, while points
inside result in F < 1 and points outside result in F > 1.

III. EXPERIMENTS FOR OBJECT SHAPE RECOVERY

For evaluation of the system described above we have
performed experiments related to the exploration by a human
subject. The experimental setup hereby is shown in Fig. 4.

Fig. 4. Experimental setup. Here a planar grid structure is subject to contour
following.

The region viewable by the stereo camera system defines
the workspace in which the objects to be explored have to

reside. The human operator wears a data glove with the wrist
marker attached and performs a contour following EP with
the tip of the index finger upon the object, i.e. the human
operator visually guides the contact sensor along the contours.
As mentioned earlier, the micro switch for contact sensing is
also located at the distal phalanx. During the EP the object is
fixed within the workspace. The human operator is allowed to
move hand and fingers arbitrarily within the workspace as long
as the marker bracelet may be visually detected and localized.
In case the marker localization fails, the subject needs to move
the hand until it can be detected again.

A. 2D contour following in 3D space

As an initial experiment we chose to follow the visible
contours of a planar structure to verify whether the exploration
system delivers length and angle preserving point clouds.
These properties were inspected visually from the resulting
point cloud data. We calculated the PCA for all points in the
point cloud for approximation of the plane the structures are
located in. Further, we determined the standard deviation of
the point locations in respect to this plane.

As planar shapes we chose a circle, an isoceles triangle and
a 3 × 3 grid. The edge length of the bounding box for each
of these shapes was set to 160mm. The subject followed the
contours of a printout of the respective shape with the index
finger. Resulting point clouds for triangle and grid contours are
shown in Fig. 5. The figures show that the contours of the test
shapes are situated in different planes, which originates from
a change in the position of the camera system between the
two explorations. The duration of the exploration process was
40 seconds for the circle and triangle shapes and 2 minutes
for the grid structure. Exploration speed was mainly limited
by the performance of the wrist tracking algorithm.

(a) Triangle contour (b) Grid structure contour

Fig. 5. Resulting point clouds for tactile contour following of planar shapes
and corresponding fitted planes. Red points are situated below the plane, green
points above.

During circle contour following 245 contact points were
acquired, the standard deviation to the fitted plane was cal-
culated to σ = 5.37mm. For the triangle contour following
exploration 259 data points were acquired with σ = 6.02mm.
For the grid exploration finally, 1387 data points were acquired
with σ = 5.86mm.

B. Edge tracking of a 3D object

In this experiment the subject had to follow the edges of
a rectangular box situated on a table in the workspace. The
exploration procedure delivered 1334 data points, the resulting



point cloud is depicted in Fig. 6. The box dimensions were
150×50×120mm and therefore in the range of the dimension
of the human hand itself.

Fig. 6. Resulting point cloud for haptic contour following of a rectangular
box.

It is not possible to directly fit exploration data to a
superellipsoid which comprises only points from the edges of
an object as the data is ambiguous in describing the adjacent
surfaces without having additional surface normal information.
Yet, we wanted to proof the systems capability to generate
contiguous 3D point clouds of real world objects.

C. Arbitrary touch exploration and superquadric fitting of a
3D object

In a further experiment the exploring subject acquired con-
tact coordinate information by arbitrarily touching all reach-
able surfaces of the objects while no preference was given to
the edges. For exploration a different box and an upside-down
placed salad bowl were chosen. As all fingers were involved
the exploration process could be performed within less than
a minute while acquiring still enough data points. During the
exploration it was considered not to acquire too many data
points as this significantly extends the amount of calculation
time for the superquadric estimate. From the acquired data
approximating superquadric representations were successfully
estimated, as shown in figure 7.

The estimation algorithm could also handle incomplete
surface point data as in case of the box, where it was not
possible to acquire point data from the bottom side on which
it was situated. The acquired data set comprised 176 points.

For the salad bowl the resulting data set comprised 472
points. As the superquadric function involved naturally only
describes convex shapes the approximation of the salad bowl
was rendered in the figure only in the representative range
ω ε [−π..0], which describes one half of the superellipsoid.

For the objects explored the extension coefficients a1,2 ,3 of
the superquadric model were in good correspondence to the
dimensions of the real object.

It can be seen in the result plots, especially figure 6 and
7, that the haptic point cloud exhibits basic noise and outliers

Fig. 7. Surface exploration data and superquadric approximation for a box
and a salad bowl.

in some regions. From these experiments we found several
reasons to affect the quality of the resulting point clouds:

1) The parametrization of our human hand model intro-
duces a static error which could be minimized by adapt-
ing the model to the data glove’s basic dimensions. Yet,
hands of different individuals lead to irregular stretching
of the glove fabric and occasionally to misalignment
between finger joints and strain gauge sensors. This
introduces a static model error which is not covered by
the calibration process. We decided not to address this
issue as our final goal is the operation of the system with
a humanoid robot hand, where these problems cease to
apply.

2) The measurement signal of the glove’s strain gauge
sensors is naturally afflicted with background noise
which limits the resolution of physical features. We also
expect this type of measurement noise for the joint angle
sensors of our robot hand.

3) Beside the above, the pose data from visual tracking is
superimposed by anisotropic interference as the estima-



tion of the wrists z-coordinate shows a significant higher
amount of noise level than for the x- and y-coordinates,
which is natural for stereo-camera systems. Also, some
noise arises in the pose estimation, as the bracelet still
has some clearance to move when worn by an individual.
Further, estimation uncertainty increases if only a low
number of markers can be detected in the scene, e.g. due
to lighting conditions. The latter problems will become
diminished when using a robot arm for exploration, as
we get additional pose information from joint angle
sensors and attach the marker band in a stable position.
This can be used in conjunction with the visual tracking
system using data fusion.

IV. CONCLUSION AND FUTURE WORK

In this paper we presented a framework for acquiring and
estimating volumetric object models via haptic exploration
by contour following. In a first evaluation results for haptic
exploration of 2D and 3D shapes by a human subject wearing
a data glove in an unstructured environment were described.

It could be shown that the underlying human hand model
and the data acquisition process is sufficiently precise enough
to acquire contact position data when exploring the shape of
objects having the magnitude of dimension as the human hand
does, while the exploration process could be performed using
the modeled set of degrees of freedom of the human fingers.
Further we could demonstrate fitting the resulting contact data
to superquadric shapes.

As a next step we will address the transfer of the haptic
exploration framework to our humanoid robot platform. The
platform already incorporates the same stereo vision system
as used for the experiments described in this paper. A tactile
sensor system for the robot hand has been developed that
provides more information over the binary switches deployed
with exploration by a human.

Hence, the focus of our work will move to the development
of autonomous and robust visually guided haptic exploration
strategies for shape recovery by a humanoid robot with five-
finger hands.
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Abstract. This paper presents a probabilistic representation for 3D ob-
jects, and details the mechanism of inferring the pose of real-world ob-
jects from vision. Our object model has the form of a hierarchy of in-
creasingly expressive 3D features, and allows probabilistic encoding of
3D relations between these. Features at the bottom of the hierarchy are
bound to local visual perceptions. While we currently only use visual
features, our method can in principle incorporate features from diverse
modalities within a coherent framework. Model instances are detected
using a Nonparametric Belief Propagation algorithm which propagates
evidence through the hierarchy to infer globally consistent poses for ev-
ery feature of the model. We present an importance-sampling mechanism
for belief updates that is critical for efficient and precise propagation. We
finally present a series of pose estimation experiments on real objects,
along with quantitative performance evaluation.

1 Introduction

Representations of objects as configurations of parts have many potential advan-
tages. Part-based representations are more robust to occlusions and viewpoint
changes than global representations, and spatial configurations increase their
expressiveness. Moreover, they not only allow bottom-up inference of object pa-
rameters based on features detected in images, but also top-down inference of
image-space appearance based on object parameters.

The advantages of visual part-based representations naturally extend to multi-
sensory cases. For example, haptic and proprioceptive information won’t directly
relate to an object as a whole. Instead, they typically emerge from specific grasps,
on specific parts of the object. Part-based representation offer a neat way to lo-
cally encode cross-modal descriptions that emphasise the relations bewteen the
different types of percepts.

We are currently developing a framework for object representation that com-
bines local appearance and 3D spatial relationships, along with mechanisms for
unsupervised learning and probabilistic inference of the model. We emphasize
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that we are not developing an object classification framework, which would imply
concentrating on specific aspects that separate a number of object types. Instead,
we intend to develop object-centric representations that lend themselves to more
application than mere classification (e.g. manipulation).

Our model has the form of a hierarchy. Features at the bottom of the hierar-
chy are bound to local visual perceptions. Pairs of features that present strong
geometric correlation are iteratively grouped into higher-level meta-features that
encode probabilistic relative spatial relationships between their children.

The features organized in our hierarchies are not specially restricted to one
input modality. We currently work with visual input only, but our model is in-
tended to unite different types of perceptual information, e.g. vision plus haptic
and proprioceptive inputs simultaneously. This would produce cross-modal de-
scriptions and cross-modal behaviors directly applicable to robotic tasks such as
grasping and object manipulation, as a grasp strategy may be linked directly to
visual features that predict its applicability.

In previous work [1], we presented a learning method, and we gave an overview
of inference mechanisms. Inference is responsible for propagating local evidence
to top-level features, leading to one or more consistent scene interpretations;
Propagation was carried out following a straightforward Nonparametric Belief
Propagation [8] scheme, which allowed pose recovery on artificial objects. In
this paper, we present in greater details an evolution of these inference mecha-
nisms, along with practical considerations. We added the importance-sampling
(IS) message product suggested by Ihler et al. [2], and extended it to a two-
level IS sampling of implicit message products which is now applicable for pose
estimation on real-world objects, as presented in Section 5.

2 Hierarchical Model

Our object model consists of a set of generic features organized in a hierarchy.
Features that form the bottom level of the hierarchy, referred to as primitive
features, are bound to visual observations. The rest of the features are meta-
features which embody spatial configurations of more elementary features, either
meta or primitive. Thus, a meta-feature incarnates the relative configuration of
two features from a lower level of the hierarchy.

A feature can intuitively be associated to a “part” of an object, i.e. a generic
component instantiated once or several times during a “mental reconstruction”
of the object. At the bottom of the hierarchy, primitive features correspond
to local parts that each may have many instances in the object. Climbing up
the hierarchy, meta-features correspond to increasingly complex parts defined in
terms of constellations of lower parts. Eventually, parts become complex enough
to satisfactorily represent the whole object. Figure 1 shows a didactic example of
a hierarchy for a bike. The bike is the composition of frame and wheel features.
A wheel is composed of pieces of tire and spokes. The generic piece of tire at
the bottom of the hierarchy is a primitive feature; the pieces of tire squared in
green in the scene (Figure 2) are instances of that primitive feature.
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Meta–features

Primitive features

Fig. 1. A didactic example of a hierarchical model of a bike.

Fig. 2. Instances of the generic piece-of-tire primitive feature in the bike scene.
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Fig. 3. A Pairwise Markov Random Field representing a feature hierarchy. Features
correspond to hidden variables (white). Observed variables (black) correspond to ob-
servations, bound to bottom-level primitive features.

At the bottom of the hierarchy, primitive features are tagged with an appear-
ance descriptor called a codebook vector. The set of all codebook vectors forms a
codebook that binds the object model to the feature observations, by associating
observations to primitive features.

In summary, information about an object is stored within the model in the
three following forms:

i. the topology of the hierarchy,
ii. the relationships between related features,
iii. the codebook vectors annotating bottom-level features.

Formally, the hierarchy is implemented using a Pairwise Markov Random
Field (see Figure 3). Features are associated to hidden nodes (white in Figure 3),
and the structure of the hierarchy is reflected by the edge pattern between them.
Each meta-feature is thus linked to its two child features. Observed variables yi
of the random field stand for observations.

When a model is associated to a particular scene (during construction or
instantiation), features are associated to corresponding instances in that scene.
The correspondence between a feature i and its instances is represented by a
probability density over the pose space SE(3) = R3 × SO(3) represented by a
random variable xi.

As noted above, a meta-feature encodes the relationship between its two
children. However, the graph records this information in a slightly different but
equivalent way: instead of recording the relationship between the two child fea-
tures, the graph records the two relationships between the meta-feature and each
of its children. The relationship between a meta-feature i and one of its children
j is parametrized by a compatibility potential function ψij(xi, xj) associated to
the edge eij . A compatibility potential specifies, for any given pair of poses of the
features it links, the probability of finding that particular configuration for these
two features. We only consider rigid-body relationships. Moreover, relationships
are relative spatial configurations. Compatibility potentials can thus be repre-
sented by a probability density over the feature–to–feature transformation space
SE(3).
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Compatibility potentials allow relationship distributions to have multiple
modes. In the bike model, let us consider the meta-feature that represents a
generic wheel. There are two wheels in the picture; two instances of the wheel
feature will be used in a mental reconstruction of the bike. Hence, the compat-
ibility potential between the wheel feature and the bike feature will be dense
around two modes, one corresponding to the transformation between the bike
and the front wheel (“the front wheel is on the right side of the bike”), the other
between the bike and the rear wheel (“the rear wheel is on the left side of the
bike”).

Finally, the statistical dependency between a hidden variable xi and its ob-
served variable yi is parametrized by an observation potential φi(xi), also re-
ferred to as evidence for xi, which corresponds to the spatial distribution of xi’s
observations.

The term primitive feature instance formally refers to a random draw from
a primitive feature distribution. While a primitive feature instance often corre-
sponds to an observation, observations enter into the graphical model merely
as prior knowledge. Primitive feature instances result from inference; they de-
pend on observations and on all features of the hierarchy. Owing to inference
mechanisms presented in the next paragraph, if an observation is discarded (e.g.
occluded), a primitive feature instance may nevertheless appear at its place.

3 Inference

Model instantiation is the process of detecting instances of an object model in a
scene. It provides pose densities for all features of the model, indicating where the
learned object is likely to be present. Instantiating a model in a scene amounts
to inferring posterior marginal densities for all features of the hierarchy. Thus,
once priors (observation potentials, evidence) have been defined, instantiation
can be achieved by any applicable inference algorithms. We currently use a Belief
Propagation algorithm, which we describe below in detail.

For primitive features, evidence is estimated from feature observations. Ob-
servations are classified according to the primitive feature codebook; for each
primitive feature i, its observation potential φi(xi) is estimated from observa-
tions that are associated to the ith codebook vector. For meta-features, evidence
is uniform.

3.1 Belief Propagation

Graphical models are a convenient substrate of sophisticated inference algo-
rithms, i.e. algorithms for efficient computation of statistical quantities. An ef-
ficient inference algorithm is essential to the hierarchical model, for it provides
the mechanism that will let features communicate and propagate information.

Our inference algorithm of choice is currently the Belief Propagation al-
gorithm (BP) [7,9,3]. Belief Propagation is based on incremental updates of
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marginal probability estimates, referred to as beliefs. The belief at feature i is
denoted by

b(xi) ≈ p(xi|y) =
∫
...

∫
p(x1, ..., xN |y) dx1...dxi−1dxi+1...dxN

where y stands for the set of observations. During the execution of the algorithm,
messages are exchanged between neighboring features (hidden nodes). A message
that feature i sends to feature j is denoted by mij(xj), and contains feature
i’s belief about the state of feature j. In other words, mij(xj) is a real positive
function proportional to feature i’s belief about the plausibility of finding feature
j in pose xj . Messages are exchanged until all beliefs converge, i.e. until all
messages that a node receives predict a similar state.

At any time during the execution of the algorithm, the current pose belief
(or marginal probability estimate) for feature i is the normalized product of the
local evidence and all incoming messages, as

bi(xi) =
1
Z
φi(xi)

∏
j∈neighbors(i)

mji(xi), (1)

where Z is a normalizing constant. To prepare a message for feature j, feature
i starts by computing a “local pose belief estimate”, as the product of the local
evidence and all incoming messages but the one that comes from j. This product
is then multiplied with the compatibility potential of i and j, and marginalized
over xi. The complete message expression is

mij(xj) =
∫
ψij(xi, xj)φi(xi)

∏
k∈neighbors(i)\j

mki(xi)dxi. (2)

As we see, the computation of a message doesn’t directly involve the complete
local belief (1). In general, the explicit belief for each node is computed only
once, after all desirable messages have been exchanged.

When BP is finished, collected evidence has been propagated from primitive
features to the top of the hierarchy, permitting inference of marginal pose den-
sities at top-level features. Furthermore, regardless of the propagation scheme
(message update order), the iterative aspect of the message passing algorithm
ensures that global belief about the object pose – concentrated at the top nodes
– has at some point been propagated back down the hierarchy, reinforcing glob-
ally consistent evidence and permitting the inference of occluded features. While
there is no theoretical proof of BP convergence for loopy graphs, empirical suc-
cess has been demonstrated in many situations.

3.2 Nonparametric Representation

We opted for a nonparametric approach to probability density representation for
all entities of the model, i.e. random variable and functions of random variables,
including potentials, messages, and evidence. A density is simply represented by
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a set of (possibly weighted) particles; the local density of these particles in a
given region is proportional to the actual probabilistic density in that region.
The number of particles supporting a density is fixed, and will be denoted by n.
Whenever a density has to be evaluated, traditional kernel density estimation
methods can be used. Compared to usual parametric approaches that involve a
limited number of parametrized kernels, a nonparametric approach eliminates
problems like fitting of mixtures or the choice of a number of components. Also,
no assumption concerning the shape of the density has to be made.

Particles live in the Special Euclidean Space SE(3). The location/translation
component is parametrized by a 3–vector. For the orientation/rotation compo-
nent it was decided to prefer quaternions over rotation matrices, because they
provide a well-suited formalism for the manipulation of rotations such as com-
position or metric definition [6,4].

3.3 Nonparametric Belief Propagation

For inference, we use a variant of BP, Nonparametric Belief Propagation (NBP),
an algorithm for BP message update (2) in the particular case of continuous,
non-Gaussian potentials [8]. The underlying method is an extension of particle
filtering; the representational approach is thus nonparametric and fits our model
very well.

NBP is easier to explain if we decompose the analytical message expression
(2) into two steps:

1. Computation of the local belief estimate

βts(xt) = φt(xt)
∏

i∈N(t)\s
mit(xt) (3)

2. Combination of βts with the compatibility function ψts, and marginalisation
over xt

mts(xs) =
∫
ψts(xt, xs)βts(xt)dxt (4)

NBP forms a message by first sampling from the product (3) to collect a
non-parametric representation for βts(xt), it then samples from the integral (4)
to collect a non-parametric representation for mts(xs). These two operations
are executed alternately: transform local estimate to form a message, merge
messages to form a local estimate, etc...

Sampling from the product (3) is conceptually straightforward. Using Gaus-
sian kernel density estimation, each factor (messages and evidence) can be rep-
resented by a weighted sum of n Gaussians. The product of a series of Gaussians
is also a Gaussian, and the parameters (mean, variance, weight) of the product
Gaussian can easily be computed from the parameters of the factor Gaussians.
Hence, letting d = (N(t) − 1) + 1 denote the number of factors in the product
(3), βts(xt) can be expressed as a weighted sum of nd Gaussians [8]. A nonpara-
metric representation for βts(xt) can thus be constructed by sampling from a
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mixture of nd Gaussians, which amounts to repetitively selecting one Gaussian
at random and taking a random sample from it. The computational cost of this
exhaustive approach is O(nd). Clearly, exhaustive product implementations will
suffer from overly long computation times.

The second phase of the NBP message construction computes an approx-
imation for the integral (4). This stochastic integration requires the potential
ψts(xt, xs) to be decomposed into its marginal influence on xt and the condi-
tional compatibility it defines between xt and xs. In our case however, potentials
only depend on the difference between their arguments; the marginal influence
is a constant and can be ignored. The stochastic integration is simply completed
by propagating to s a series of samples x̂(i)

t from βts(xt), which can be achieved
by sampling from ψts(x̂

(i)
t , xs) for each x̂(i)

t .
The computation bottleneck of NBP clearly lies in the message product.

Multiple improvements over the exhaustive product have been suggested [2],
one of these being Importance Sampling (IS). Sampling from a product with IS
works by selecting repetitively one of the factors as a proposal distribution, the
rest of the factors providing an importance weight. IS produces n samples from
a product of d factors in O(dn2) time. From here on, we will consider that the
number of neighbors a node may have is bounded and typically low, and ignore
it in complexity statements. IS thus produces n samples from a product of d
factors in O(n2) time.

3.4 Density Resolution

As explained above, A message that feature i sends to feature j – denoted by
mij(xj) – contains feature i’s belief about the state of feature j. Feature i is
likely to posses a rather inaccurate local estimate, at least at the beginning of
propagation. Additionally, transforming the local estimate with ψij introduces
additional noise. As a general observation, messages will often carry a wide
space of possible states. The job of message product is to extract sections that
overlap between incoming messages, and discard sections that do not “agree”.
The portion of a message that will actually represent good prediction is generally
expected to be small. For that reason, one may benefit from using larger particle
sets for messages than for local estimates (and potentials). We will thus denote
by n the number of particles composing a message, and by m the number of
particles for other distributions. Typically, we use m =

√
n.

The previous remark has no incidence on the performance of an exhaustive
product. However, sampling a product with IS would be down to O(mn) time.

3.5 Importance Sampling On Implicit Message Products

Let us now turn to the propagation equation (2), which we analytically decom-
posed into (3) and (4). We explained that NBP implements BP by physically
performing the same decomposition, i.e. computing explicit nonparametric rep-
resentations for messages and local estimates alternately. In this section, we
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propose a somewhat different implementation, in which explicit representations
are only computed for local estimates.

Let us assume we are in the process of sampling from βts(xt), to merge all
incoming information but that from s. We choose one incoming message mut(xt)
at random as IS proposal density and take a sample x̂

(1)
t←u from it. We then

compute an importance weight as

w
(1)
t←u = φt(x̂

(1)
t←u)

∏
i∈N(t)\{s,u}

mit(x̂
(1)
t←u). (5)

This operation is O(n).
One can notice though that both these operations don’t actually need an

explicit expression for incoming messages. Producing x̂
(1)
t←u from βut(xt) and

ψut(xu, xt) is O(1). In turn, Expression (5) can be rewritten

w
(1)
t←u = φt(x̂t←u)

∏
i∈N(t)\{s,u}

∫
ψts(xi, x̂

(1)
t←u)βit(xi)dxi. (6)

Evaluating φt(x̂t←u) is O(m). Evaluating each integral is achieved by sampling
p times x̂

(k)
i from either ψts(xi, x̂

(1)
t←u) or βit(xi) and evaluating βit(x̂

(k)
i ) or

ψts(x̂
(k)
i , x̂

(1)
t←u) respectively, and taking the average result. To achieve the same

resolution as in (5), p should be equal to m. The time complexity of (6) can be
thought of as O(m2), or O(n), i.e. the same as (5). The memory impact is O(m)
instead of O(n) though, at the price of more potential evaluations.

The advantage of implicit messages is twofold. Fist, one can use a priori
knowledge on the shape of potential and node distributions to decide between
sampling from ψts(xi, x̂

(1)
t←u) and evaluating βit(x̂

(k)
i ), or going the other way

around. Second, p can be chosen different than m; this is exploited in the next
paragraph.

One weakness of IS is that it cannot intrinsically concentrate its attention on
the modes of the product [2], which is an issue if, as is often the case, messages
present many irrelevant modes. The previous text allows for a solution to that
issue. One can imagine a two-level IS, in which we first compute an approximate
representation for βts(xt) with a low p, then use it as proposal distribution for
a second IS that will be geared towards relevant modes.

3.6 Practical considerations

Ihler et al. draw a lot of attention towards kd-Trees [2], which provide logarithmic
access to elements enclosed in a given region of Rk. We are less enthusiastic about
them, for several reasons.

1. They are expensive to build.
2. The population size n for which kd-Trees become faster than linear search

grows as k grows. For k = 3, n is at the very least of the order of 1000–10000.
Moreover, our particle space is SE(3), which includes the non-Euclidean
subspace SO(3), making for even more difficult search.
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3. Computational details need to be kept in mind, too. For instance, m ele-
ments may very well fit in processor cache, but m2 will continuously trigger
cache misses. This of course is very dependant on the hardware, but it may
motivate an implementation like (6), instead of (5) with a kd-Tree.

4. Finally, kd-Trees, and in particular the dual trees [2], represent a considerable
implementation effort.

4 Object Pose Estimation

Features at the top of an object model represent the whole object, and they
will present relatively concentrated densities that are unimodal if exactly one
instance of this object is present in the scene. These densities can be used to
estimate the object pose. Let us consider a model for a given object, and a pair
of scenes where the object appears. In the first scene, the object is in a reference
pose. In the second scene, the pose of the object is unknown. The application
of our method to estimate the pose of the object in the second scene goes as
follows:

1. Instantiate the object model in the reference scene. For every top-level fea-
ture i of the instantiated graph, compute a reference aggregate feature pose
πi1 from its unimodal density.
Instantiating the model in a reference scene is necessary because even though
the top-level features all represent the whole object, they come from different
recursive combinations of features of various poses.

2. Instantiate the object model in the unknown scene. For every top feature of
that graph, compute an aggregate feature pose πi2.

3. For all top level features i, the transformations from πi1 to πi2 should be very
similar; let us denote the mean transformation by t. This transformation
corresponds to the rigid body motion between the pose of the object in the
first scene and its pose in the second scene. Since the first scene is a reference
pose, t is the pose of the object in the second scene.

A prominent aspect of this procedure is its ability to recover an object pose
without explicit point-to-point correspondences. The estimated pose emerges
from a negotiation involving all available data.

5 Experiments

We ran pose estimation experiments on two objects, presented in Figure 4(a),
for a series of scenes, presented in Figure 4(b). Input 3D features for the bottom
levels (primitive feature observations) are provided by an early-cognitive-vision
(ECV) system [5], which extracts 3D primitives from stereo views of a scene.
The quality of such ECV representations vary in function of different parameters.
Figure 5 illustrates the ECV primitives for certain scenes. Figure 5(a) is extracted
from the first image of Figure 4(a). Figures 5(b) and 5(c) are extracted from the
two images of the second column of Figure 4(b).
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(a) Training (b) Evaluation

Fig. 4. Input imagery. For each stereo pair, only the left image is presented. Effective
resolution is 1280× 960 pixels.

(a) (b) (c)

Fig. 5. ECV primitives.
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In the next paragraphs, we go through the procedure of a pose estimation
experiment. First, a model is learned from one set of observations of an object
of interest (the reference scene), like those in Figure 5(a). A hierarchy is built
up to n levels, we instantiate the model in the reference scene, and compute a
reference aggregate feature pose πi1 for every top feature i of the model.

We are then ready to estimate the pose of our object in a novel scene. We ini-
tialize primitive-feature evidence of the model with observations from the scene,
e.g. those in Figure 5(b). Evidence is propagated through the hierarchy, and
we can eventually estimate the top-feature poses. Since the object of interest is
present only once in the noisy scene, top level features should, after instantia-
tion, present unimodal densities; we can safely compute a mean pose πi2 for each
of them.

Finally, we compute the transformation ti between πi1 and πi2 for every top
feature i. As noted in Section 4, all ti are very similar. Let us denote the mean
transformation by t, which corresponds to the estimated rigid body motion be-
tween the pose of the object in the reference scene, and its pose in the noisy
scene.

We evaluate the quality of transformation estimates by transforming the
ECV primitives from the training scene with t, and superimposing the result to
the current scene. We then see if shapes match. (Note for PACO review: We will
do quantitative evaluation on t for the final version.) Pose estimation worked
for both traffic signs (dead-end, opening bridge) in all scenes of Figure 4. The
worst estimate, presented at Figure 6(a), corresponds to the dead-end signal pose
estimation in the last image. This is however one of the most difficult scenes:
it has a brown background, thus changing the outside color of ECV primitives
on the traffic sign contours. This induces wrong associations of observations
to primitive features, and makes for harder inference. Estimation is still quite
accurate given the difficulty of the scene. Other typical estimates are presented
at Figure 6. In particular, 6(c) shows a good result despite occlusion.

6 Conclusion
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1 Introduction

In cognitive systems, like we want robots to become, representation of objects plays a
major role. A robot’s local world is built by objects that are ought to be recognized,
classified, interpreted or manipulated. Though also things, as untreated basic sensory
features, might help for some of these tasks, the semantic representation of an object
seems to be more intuitive. Nevertheless, the question arises what makes an object an
object, what makes Peter’s cup being Peter’s cup? There has been plenty of research
on this issue, most of which concentrates on example-based recognition of objects by
learned features, may they be visual or shape-based. In such systems, Peter’s cup has
been shown to the robot and can thus be recognized again. However, this does not make
the robot identify arbitrary cups it has never seen before.

Due to this demerit of model-based recognition, another approach which is focussed
on the functionalities or affordances of objects is motivated. Peter’s cup is solid, it can
stand stable and it is hollow so it can keep coffee, and is mainly used for filling or
drinking. Maybe each other object that holds the same attributes can also be used as
a ’filling device’ or ’drinking device’, which humans might name a cup. However, the
’filling device’ property is alone more general and allows Peter to put in flowers, which
would make one name it a vase instead. This line of argument from objects to actions is
formalized into an upcoming concept, the Object Action Complexes (OACs). We refer
to [10] on the theory of OACs, while we here present a system which is able provide
a variety of attributes from visual sensory input to support OACs. We link to several
fields of research that relate to our work.

1.1 Cognitive Vision Systems

One of the major requirements of a cognitive robot is to continuously acquire perceptual
information to successfully execute mobility and manipulation tasks, [9, 12, 15]. The
most effective way of performing this is if it occurs in the context of a specific task.
This was, for a long time, and still is the major way of thinking in the field of robotics.
Focus is usually put on the on task-specific aspects when processing sensor data which
may reduce the overall computational cost as well as add to the system robustness.
However, in most cases this leads to the development of special-purpose systems that
are neither scalable nor flexible. Thus, even if significant progress has been achieved,
from the view of developing general system able to perform various tasks in domestic
environments, research on autonomous manipulation is still in its embriotic stage.

In this work, we treat the development of active vision paradigms and their relation
of how to exploit both kinematic and dynamic regularities of the environment. Early
work recognized that a robot has the potential to examine its world using causality,
by performing probing actions and learning from the response [11]. Visual cues were
used to determine what parts of the environment were physically coherent through in-
terplay of objects, actions and imitations. Our interest is very similar, but geared to the
development of a more advanced vision system necessary for such an application.

[14] examines the problem of object discovery defined as autonomous acquisition
of object models, using a combination of shape, appearance and motion. The authors
discuss that object discovery is complicated due to the lack of a clear definition of
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what constitutes an object. They state that rather than trying for an all-encompassing
definition of an object that would be difficult or impossible to apply, a robot should
use a definition that identifies objects useful for it. From the perspective of the object-
fetching robot, useful objects would be structures that can be picked up and carried.
Similar line of thinking is pursued in our work, while we go one step forward by also
extracting a set of object attributes that can be used for manipulation purposes or further
learning of object properties later on.

Such a system has been presented in [13] with an objective of learning visual con-
cepts. The main goal is to learn associations between automatically extracted visual
features and words describing the scene in an open-ended, continuous manner. Unfor-
tunately, the vision system is very simple and the experimental evaluation is performed
with homogeneous objects of simple and easy distinguishable shapes.

In relation to representation of object properties, there is a close connection to an-
choring, [8], that connects, inside an artificial system, the symbol-level and signal-level
representations of the same physical object. Although some nice ideas about the repre-
sentations are proposed, there is no attempt of developing the underlying vision system
necessary for extraction of symbols.

2 From Visual Sensors to Attributes

Our original system was purely top-down driven, with top-down information given in
terms of visual search tasks [1]. These tasks were represented as precomputed mod-
els, typically one model for each possible requested object. Given a task the system
scanned the environment for suitable new fixation points and at each visited such point
the attended region was compared to the model corresponding to the task. Due to its
dependence on precomputed models, the original system had a number of key weak-
nesses. It could not generalize beyond the scope of the models and it was unable to
explore the environment so as to learn new models. The aim of the work presented here
is to go beyond these limitations and open up for scenarios in which all objects are not
necessarily known beforehand. The attentional system in Section 2.1 is based on top-
down as well as bottom-up cues and can be tuned towards either exploration or visual
search. With attention driven by generalizable attributes as explained in Section 2.3,
rather than models of known objects, tasks can be expressed in more general terms.

As already stated, our work is oriented towards the idea of Object Action Complexes
(OACs). The theory comes up with the claim that objects and actions are inseparably in-
tertwined. Categories of objects are not built by visual appearance only, as very common
in computer vision, but by the actions an agent can perform, as also by attributes linked
to them. Such attributes can be various in type, e.g. color, shape and mass. While color
might be perceived by visual processes only, interaction greatly supports the recogni-
tion of shape by vision, e.g. in case of hollowness. Mass probably is an attribute that is
preceivable by strong interaction with the object only. On the other hand, attributes can
be a result of higher-level reasoning, e.g. that the cup is full or empty.

The core of the OAC concept is connecting objects from a set of attributes to actions.
Peter’s cup will not only be Peter’s cup, because the color or the texture of the specific
instance has been learned, but because the concept of attributes (e.g. solid, hollow) shall
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be learned to be connected to a set of actions (e.g. pick up, fill, drink). This twofold of
attributes and actions provides the base for categories, where even bins or vases might
be seen as a cup in terms of the actions one can perform with them. Our aim here is the
development of an extensible system for providing and evolving early Object Action
Complexes, beginning with attributes extractable from visual data in Section 2.1. After
this, basic shape primitives are introduced by 3D segmentation in Section 2.2.

2.1 Visual Attributes from Attentional Cues

It has been suggested that objects present in a scene possess a certain intrinsic rank-
ing or “interestingness” with regards to that scene. For a visual observer this means
that a dynamic combination of both top-down (task-dependent) and bottom-up (scene-
dependent) control is available for selecting and attending regions in the scene [1].
Salience-based models in computational attention became largely popular after the
work of Koch and Ullman [2]. A topic of research has been in explaining, with a com-
putational model, how the top-down mechanism works. Recent work in the field include
models where top-down modulations of attention are learnt with an ART-network [3].
Another attempt has been to train a bottom-up attention model towards detection of
particular target objects by displaying these objects in different backgrounds [4].

Our system uses a model similar to the VOCUS-model [5] which has a top-down
tuned saliency map that can be “controlled” through a set of weights. Weights are ap-
plied to each feature and conspicuity map used in the computation of the salience map.
Four broadly tuned color channels (R, G, B and Y) calculated as in Itti’s NVT model [6],
an intensity map, and four orientation maps, computed by Gabor filters, are weighted in-
dividually. Following the original version, we create scale-space pyramids for all these
9 maps and form conventional center-surround differences by across-scale-subtraction,
followed by normalization. This leads to the final conspicuity maps for intensity, color
and orientation. As a final set of weight parameters we introduce one weight for each
of these maps, constructing the final modulated top-down saliency map.

The purpose of the attentional system is twofold. First of all, attention is used to
control the stereo head so that objects of interest are placed in the center of the visual
field. The second purpose is to derive visual attributes to describe objects in scene,
objects that can later be revisited and possibly manipulated. In the current version of
the system, the visual attributes of an object are represented by the weights that make
this object stand out in the top-down salience map (see Fig. 1). From previous searches
for the object, weights are optimized through gradient descent, with the influence of
context modelled using a neural network [1].

2.2 Shape Attribution from 3D Segmentation

3D Segmentation without Table Plane Assumption. Image data needs to be grouped
into regions corresponding to possible objects in the 3d scene, for shape attributes to be
extracted and manipulation performed. The attentional system, as described in Section
2.1, does no such grouping, it only provides hypotheses of where such objects may be
located in image space. However, from binocular disparities the extent of hypotheses
can be detemined also in 3d space. Disparities can be considered as measurements in 3d
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Fig. 1. Top row: Objects in use: car, giraffe, mug, dog, sugar box, peach can and mango can.
Bottom row: Three exemplary visual attribute searches depicted by their saliency maps.

space, clustered around points of likely objects. To find such clusters we apply a kernel-
based density maximization method, known as Mean Shift [7]. Clustering is done in
image and disparity space, using a 3d Gaussian kernel with a size corresponding to the
typical 3d size of objects that can be manipulated. The maximization scheme is iterative
and relies on initial center point estimates. As such estimates we use the hypotheses
from the attentional system. Examples of segmentation results using this approach can
be seen in the second line of Fig. 3.

The above mentioned approach has a number of weaknesses that tend to complicate
the extraction of shape attributes. First of all, the approximate size of objects has to be
known. Elongated objects tend to be broken up into parts, typically on either side of the
object. The most important weakness, however, is the fact that an object can not be reli-
ably segregated from the surface it is placed on, if there is no evidence supporting such
a segregation. Without any additional assumption on surface shape or appearence there
is no way of telling the surface from the object. However, in many practical scenarios it
might be known to the robotic system, that objects of interest can in fact be expected to
be located on flat surfaces, such as table tops.

3D Segmentation with Table Plane Assumption. As an alternative approach we test a
parallel solution, i.e. segmentation is done independently of the attentional system. The
dominant plane in the image is the table top. Using a well-textured surface, it is possible
to find the main plane and cut it with a 3D version of the Hough transform. Since the
Hough transform requires relatively long computation time of a few seconds, we assume
in this scenario that the setup, i.e. camera and table position, does not change. The plane
has therefore only to be computed once and can be re-used afterwards. An additional
advantage of this solution in contrast to online computation of the dominant plane is
that 3D information of objects which greatly occlude the table will not effect the plane
clipping. Following the table assumption the 3D points are mapped onto a 2d grid to
easily find segments and basic attributes.

The result of transformation and clipping on the scenario given in Fig. 2(a) can
be seen in Fig. 2(b). The segmentation of objects is computed on the 2d grid with a
simple region growing algorithm grouping pixels into larger regions by expanding them
bottom up. The recursive algorithm uses an 8-neighborhood on the binary 2d grid. The
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(a) Stereo images (b) 3D points (c) 2d segmentation (d) Reprojection
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Fig. 2. Segmentation under the table plane assumption. Disparity information from the stereo
images (a) produces 3D points (b). Having defined the dominant plane, the points can be projected
onto this plane, where distinctive segments are computed (c) and reprojected to the image (d).

procedure is depicted in Fig. 2(c). Since the grid is thereby segmented, simple shape-
based attributes of each segment can be determined and the segments reprojected to
3D points or to the image plane (see Fig. 2(d)). Note that dilation has been applied
for the reprojected segments for the later application of point-based object hypotheses
verification.

2.3 Attribution of Segments

Each of the produced segments is just a thing according to our definition, as the step
to an object longs for semantics. One way to identify the semantics of a thing in order
to derive an object is to link attributes to it. Attributes can be divided in two different
groups, which are named intrinsic and extrinsic. Intrinsic attributes are object-centered
and thereby theoretically viewpoint-independent (e.g. physical size, color, mass). Ex-
trinsic attributes describe the viewpoint-dependent configuration of an object (e.g. posi-
tion, orientation), which mostly is measured in the quantitative domain. In our system,
the basic intrinsic attributes of covered area, length (along the dominant axis), width
(perpendicular to the dominant axis) and height can be qualitatively determined for
each segment. The discretization, i.e. if an object is small or large in size, is adapted
to our table manipulation scenario at hand. Additionally, the centroid position of a seg-
ment is calculated and its 3D point cloud kept available for further application, e.g.
shape approximation and grasping.

3 Experimental Evaluation

Experiments are performed on a Yorick stereo head with four degrees of freedom: neck
pan and tilt, and an additional tilt for each camera. The cameras used are 1.3 Mpixel
cameras from Allied Vision. The head is controlled so that the cameras are always fix-
ating on something in the center of view. Given commands from the attentional system,
the fixation point can be changed through rapid gaze shifts, a process that takes about
half a second. Since the extrinsic camera parameters are constantly in change, cam-
era calibration is done on-line. The work presented here is integrated into an existing
software system, modularized and containing modules for frame grabbing, camera cal-
ibration, binocular disparities, attention, foveated segmentation, recognition and pose
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estimation. Modules are implemented as CORBA processes that run concurrently, each
module at a different speed. Using a 2.6 GHz dual dual-core Opteron machine, cameras
are calibrated and disparities computed at a rate of 25 Hz, while foveated segmentation
and recognition is done only upon request.

Based on the hypotheses produced by the attentional system from Section 2.1, we
will validate these by introducing the segmentation information. As discussed in Sec-
tion 2.2, segmenting with the table plane assumption can be made in parallel and ini-
tially independent of the attentional system. Results of six different scenarios of the
segmentation are presented in Fig. 3. The plane was previously computed by using a
textured table top in order to apply table clipping throughout the experiments. However,
we removed the textured top to provide a clearer comparison of the two segmentation
techniques we evaluated.

Although distortion and uncertainty in the disparity calculation clearly influence the
results, it can be seen that segmentation in terms of 3D distinction of the objects in the
scene works well in general. The errors arising, like oversegmentation (Fig. 3d), un-
dersegmentation (Fig. 3e) or occlusion in height due to the vertical projection (Fig. 3f),
can partially be solved by the attribution issues shown in Fig. 4. While the segmentation
presented in Fig. 3 (bottom row) depicts segments reprojected to the image plane, the
important step inbetween has been the segmentation in the 2 1

2d table plane space. Here,
also the attribution of segments, as presented in Section 2.3, takes place. As a simple
and neat set, we only use the intrinsic attributes aligned in Tab. 1. The table also shows
the distribution on how segments have been attributed along the sample scenarios. Note
that the identification of a segment as a specific object has been performed manually to
establish the distribution. Though the number of attributes is sparse and the quantifica-
tion into four levels per attribute is coarse, one can detect differences and similarities of
objects. While the car and the dog are mostly attributed almost flat (afl) in height, the
cans and the mug are usually medium high (med) and the giraffe and the sugar box high
(high). Also note that the mango can, the mug and the peach can are attributed almost
alike. This is quite reasonable, as they are very similar in the rough shape domain that
we span with the four attributes.

3.1 Validation

We can now combine results of both visual and shape attribution. One the one hand, this
set gives an extensible base for attribution of things to make them objects. The frame-
work that takes care of the management of attribute sets and connecting them to actions
is an extensible system. On the other hand, we can show in our practical experiment
how an extended set of attributes improves the results of object interpretation. Three
examples of such validations are shown in Fig. 4.

In Fig. 4(a) we focus on the visual attribute “car-like”, i.e. on hypotheses that the
attentional system rates similar to the car model in terms of color and gradients. As it
can be seen, the top-ranked hypotheses are on the car in the image (1st column). How-
ever, combining this result with the segmentation, hypotheses can be grouped and also
neglected (2nd column). Finally, five hypotheses fall in one segment. Comparing the
shape attributes of this segment to the distribution shown in Tab. 1 clearly affirms that
this segment corresponds to a car-like object. The same process results in a negative
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(a) (b) (c) (d) (e) (f)
Fig. 3. Segmentations of sample scenarios (best viewed in color). The original images are shown
in the first row. the second row shows results using the Mean-Shift segmentation, the botton row
those using the table plane assumption (see Section 2.2). In the latter, (a) and (b) seem well
segmented and in (c) there ist just some noise at the table edge. Problems arise for (d)-(f): (d) two
segments for the car, (e) one segment for two cans, and (f) the unnoticed dog below the giraffe.

answer for example Fig. 4(b). We look for a “dog-like” object, though there is no dog
in the image. While the attention returns ten hypotheses for this search, the shape at-
tribute check clearly neglects that the only segmented area is “dog-like”. In Fig. 4(c),
the process returns three selected segments. The first one with the strongest hypothesis
from the visual attributes is declined by shape attributes again. Both the other segments
are very similar and only differ in one shape attribute. However, the interesting result
is that there are two objects, both the mango can and the mug, which are very “mango-
can”-like. If one would aim at distinguishing between those, this might be approached
by new attributes (e.g. more detailed shape and hollowness). On the other hand, both
objects are truely can-like in terms of color and shape and would fall in one category of
actions performable on them.

4 Conclusion

In this work, we presented a subsystem in which we integrated both visual and shape
attributes into the concept of OACs. The overall vision system in which we embed our
attribute determination is more general and supports also other applications, as proposed
in the Chapter 2.1. Here, we focus on the issue of meaningful attributes that constituted
an object as opposed to a thing. The collection of the basic attributes used here is exten-
sible. While finding complex visual attributes like hollowness or emptiness is hard to
do, the attributes used in our experiments are computed by the system. In future work,
we will also include manipulation attributes, e.g. hollowness or weight, by interacting
with a thing.

Besides the buildup of this system, its improvement by combining pure visual at-
tributes with shape attributes has been exemplified. In our experiment visual hypotheses
were checked and tested according to shape attributes. Hereby, it is possible to neglect
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wrong hypotheses, to cluster and affirm the good ones, or even to distinguish between
a car-like object and the plain image of it.

We also compared two types of 3D segmentation techniques for shape attribute gen-
eration. The specificity of our system towards table set scenarios with high camera view
on the objects supports the table plane assumption. In particular, it has the advantages
of a reference system (which is the table) and the hereby introduced spatial arrange-
ment, as most objects are placed next to another than on one another on a table. If this
assumption does not hold, manipulation might help by picking up or moving something
around. Though the system was kept fixed in combination with an a-priori table plane
detection here, our future goal is to dissolve this constraint by a 3D acceleration sensor
on the head, linking the vertical gravity vector to mostly horizontal table planes.
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Table 1. Attribution distributions of our 7 test objects (see Fig. 1). Most meaningful is probably
distribution of color and shape attributes. For the latter, checking the identity of the objects has
been done manually over our 6 scenes (see Fig. 3); in brackets, each object carries the number of
appearance along the sequence.

Object Visual Attributes Shape Attributes
Color Orientation Area Length Width Height

Car (4x) (12,5,40,10)

Dog (3x) (35,22,11,13)

Giraffe (2x) (64,1,24,48)

Mango (6x) (12,60,21,23)

Mug (2x) (57,83,29,113)

Peach (4x) (13,8,15,12)

Sugar (2x) (28,6,2,14)
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(a) “Find the ’car’-like.” (source Fig. 3(a))

5 best ’car-like’ in one segment.
shape: [lrg,med,med,afl]
→ very car-like (Tab. 1)

(b) “Find the ’dog’-like.” (source Fig. 3(a))

3 ’dog-like’ in one segment.
shape: [lrg,med,med,hig]
→ very dog-unlike (Tab. 1)

(c) “Find the ’mango can’-like.” (source Fig. 3(e))

Best ’can-like’ in one segment.
shape: [sml,sht,thn,afl]
→ quite can-unlike (Tab. 1)
3 ’can-like’ in one segment.
shape: [lrg,lng,med,med]
→ length not can-alike (Tab. 1)
3 ’can-like’ in one segment.
shape: [lrg,med,med,med]
→ very can-alike (Tab. 1)

Fig. 4. Top-level tasks corresponding to Fig. 1 (continued). Left: The 10 best hypotheses (star =
best hypothesis, circles = hypotheses ranked 2-5, small squares = hypotheses ranked 6-10). Right:
visual and shape attribute information is merged (connected and colored hypotheses).
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Abstract— In this work, we describe an embodied cognitive
system based on a three level architecture covering a senso-
rimotor layer, a mid-level layer that stores and reasons about
object-action episodes, and a high-level symbolic planner that
creates abstract action plans to be realised and further specified
at lower levels. The system works in two modes, exploration
and execution of plans, that both make use of the very same
architecture. We give results of different sub-processes as well as
their interaction. In particular, we describe the generation and
execution of plans as well as different learning processes taking
place either independently of or in parallel to the execution of
plans.

I. INTRODUCTION

In this paper, we describe a cognitive system that consists
of three hierarchically nested layers: a low-level, sensorimo-
tor layer connecting sensory processors to motor procedures;
a mid-level layer that stores object-action episodes (Object-
Action Complexes or OACs) and reasons about memorised
events; and a high-level symbolic planner that creates ab-
stract action plans to be specified at lower levels. The
cognitive system works in two modes. In the first mode
the system explores its environment and learns object–action
associations. In the second mode, it constructs and performs
plans. In both modes it is able to deal with unexpected events
or errors (i.e., the system can recover from such situations)
and is also able to learn from the different events occurring
either in the exploration or plan performance mode.

We introduce a software architecture and its application
in a concrete embodied system consisting of an industrial 6
degrees of freedom (DoF) robot with a two finger grasper,
haptic sensing by means of a force-torque sensor and a high
resolution stereo system in which a preliminary attention
system is realized (see Fig. 1). The task we want to address is
cleaning up a table, but the proposed architecture allows for
more general tasks. Furthermore, in parallel to the planner’s
performance, the system is provided with a memory of past
experiences that allows for learning processes.

Fig. 1. Embodiment of the Cognitive System

The aim of the architecture is not only to solve the given
tasks with best possible performance but to allow for a set
of cognitively rich processes in which the robot

• derives a plan to solve the given task,
• executes the plan,
• is able to recognise and react on unexpected events

during the exploration or execution of the plan on
– either a rather low level (for example in case of

collisions by withdrawal, see Fig. 2),
– or on the mid–level by reinspecting the scene with a

certain problem statement in mind (e..g., by looking
at a certain aspect with higher resolution (see
Fig. 3) and hence, resolving the situation within
the given plan),

– or on the high-level by a complete replanning.
In parallel, made experiences in terms of Object Action

Complexes (OACs) [1] become stored and transferred to



various learning processes on a mid-level stage.
In its early stages, this work focuses on a limited domain:

objects become represented as 3D circle and grasps become
associated to these (see Fig. 4). This limitation is merely for
development purposes and there is ongoing work toward the
extension of the proposed system to arbitrary objects (see [2]
and [3]) The only fundamental restrictions of the proposed
architecture stem from limitations of the vision (namely, pose
estimation of arbitrary objects [3]) and grasping modules
(the grasping device only allows to grasp a limited range
of objects). We briefly report current progresses on the
extension of the initially limited domain.

(a) (b) (c)

Fig. 2. Withdrawal after the detection of a collision. (a) Approaching the
object, (b) a collision is detected, (c) start of withdrawal action.

It is not possible here to give a full comparison to
other cognitive architectures (for this, see, e.g., [4], [5]).
However, we would like to mention as one particularity of
the introduced architecture, that planning and exploration
are two modes that perform within the same architecture.
In this sense, our work is related to classical planning
approaches (see, e.g, [6]). It goes beyond these by allowing in
parallel for learning on the different levels of the architecture.
Since planning and exploration is very much connected, we
also extend on approaches focusing on the learning and
developping aspect (as done, e.g., in [7]) by realizing also
higher level mechanism such as planning in our cognitive
architecture.

The paper is structured as follows: section II introduces
the system architecture; section III, describes the system’s
embodiment and visual representation; section IV describes
the mid-level and section V the planning level of our
architecture.

II. ARCHITECTURE

The system consists of three levels: The low, sensorimotor
robot-vision level providing multi-sensorial information and
action options, a mid-level on which made experiences
are stored and provided for different learning processes on
various levels as well as a planning level that generates plans
based on the information provided by the robot-vision or the
mid-level and which also monitors the execution of these
plans. This architecture integrates several approaches and
concepts from the computer sciences, artificial intelligence,
and cognitive psychology, and it allows for learning and
adaptation processes at all three levels.

The robot-vision level provides visual and tactile informa-
tion to the higher levels and handle action commands, such
as:
• apply grasp A on object B,

Fig. 3. Circle detection is not successful (left) because of the small number
of feature descriptors extracted from a downsampled version of the high
resolution images. It is successful (right) when the system focuses on the
object at full resolution.

• start an explorative action such as ‘poking’, or
• shift attention to a certain location.

Moreover, it has control mechanisms that allow for the
detection of unexpected events, events that would normally
either lead to emergency stops and/or damaging the objects
or the robot itself. It has pre-programmed behaviours to
overcome such situations (see Fig. 2).

A B C D

Fig. 4. Grasp types available in the example domain. They are defined
object centric and based on the upper circle.

In its current (preliminary) state, the mid-level is respon-
sible for the following tasks:
• the storage of OACs in memory, and their access by

different learning processes,
• the refinement of grasping reflexes and object-action

models based on the stored OACs,
• the stabilisation of transient sensorial input into mes-

sages passed onto the planning level.
The planning level is responsible for constructing high-

level, goal-oriented plans and for feeding these plans to the
lower system levels for execution by the robot. To do so, the
planning system maintains an abstract model of the objects,
properties, and actions available to the robot in the world.
The planner also receives regular updates on the state of the



world from the lower levels, which it uses to monitor the
success of plans being executed, and to control resensing
and replanning activities in the system.

III. EMBODIMENT AND VISUAL REPRESENTATION

This section presents the robot-vision level of the archi-
tecture. The system’s embodiment is described in section
III-A. The visual representation used for object localisation,
learning, and the generation of grasping affordances is briefly
described in section III-B. Grasp part associations used in
planning and exploration are described in section III-C.

A. Embodiment

To enable interactions with the real world, we use a robot-
vision system with the components shown in Fig. 1. The
components are:
• The workspace is observed using a 2024× 2024 pixels

high resolution camera system. In normal working mode
downsampled images of the whole scene are used, but it
is also possible to get a full resolution image of a region
of interest. The camera system is calibrated relatively
to the robot.

• A 6-DoF industrial robot is used, together with a two
fingers grasper. This enables the system to grasp objects
at different locations in the scene.

• A 6-DoF force-torque sensor mounted between robot
and grasper allows for the measurement of forces at the
wrist. It is used to detect collisions and to back off when
a collision is detected (see Fig. 2). To limit the build up
of high forces during the reaction time of the system a
foam layer was placed on the floor of the scene.

B. Representation of visual information

This work uses the hierarchical representation presented in
[8]. An example is presented in Figure 5, which shows what
kind of information is processed on the different representa-
tion levels. At the lowest level of the hierarchy is the image’s
pixel RGB values (Fig. 5(a)). The second level processes the
results of local filtering operations (Fig. 5(b)), that give rise
to the multi-modal 2D primitives at the third level (Fig. 5(c)).
This third level processes not only the 2D primitives, but also
2D contours (Fig. 5(d)) created using perceptual organisation
(see [9]). The last level contains 3D primitives and 3D
contours (Fig. 5(e-f)) created using stereopsis on a pair of the
previous level’s representations. Circles are detected using
the algorithm presented in [10], that is building up on top of
the above mentioned representation.

C. Grasp-Part Association

Objects that share common features (parts) often afford
the same actions (e.g., an object with an handle can be
picked up by grasping it through the handle). We exploit
these common parts to initiate learning by transferring the
previous experience with one object to another.

In [11], coplanar line-segments are used to predict dif-
ferent grasp types — Fig. 6 shows more recent results on
this approach. This can be either seen as a complex reflex

— used for generating ground truth for grasp learning —
or as a basic form of part-action association. The circle-
grasp relation used in the scenario described herein uses
a more complex part (the circle). Currently, the associated
grasps/part associations are predefined. However, we aim at
a learning of these associations from experience. A first step
in this direction is described in section IV-A.

(a)

(b) (c)

Fig. 6. Coplanar primitives can predict a grasp (see [11]). (a) Different
grasp types based on coplanar primitives (marked as red dots). (b) Example
scene. (c) The (automaticly selected) best five grasping hypotheses in the
example scene.

IV. MID-LEVEL

The mid-level is responsible for a number of tasks (from
which some are not yet or only rather naively implemented).
In our system, on the mid-level the storage of information
used for additional learning processes (as well as the learning
as such) is organised (section IV-A and section IV-B).
Also the temporal consistency of the permanently varying
information on the raw signal level which is required by
the planning level is provided (section IV-C). It is partly
motivated by the idea that perceptual events and actions
are cognitively represented and integrated in a common
store [12]. Apart from organising the storage of information
(sections IV-A and IV-B) the mid-level also provides episodic
pointers to perceptually available objects (i.e., a kind of
working memory: section IV-C).

A. Refinement of Grasping Strategy

The grasping affordances associated to the parts (see
section III-C) is initially hardwired and, in case of success,
give rise to an additional object learning process that requires
physical control over the object as achieved after a successful
grasp (this is described in section IV-B). Moreover, the
grasping behaviour linked to these part affordances generates
labelled data that can be used for further learning processes:
Since for each attempted grasp success or failure can be
measured by the distance between the hand’s two fingers
after a lifting operation, a large number of training data
becomes generated.

In case of the “circle-reflex”, it is a priori unclear which
grasp type can be used for which circle radius. Fig. 7(d)
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Fig. 5. The different types of visual information processed by the hierarchy of representations (a) Original image, (b) Filtering results, (c) 2D primitives,
(d) 2D contours, (e) 3D primitives, (f) 3D contours.

shows distribution of successes and failures for grasp type A
generated over a large number of trials. The distributions in
real and artificial scenarios are rather different (as shown in
Fig. 7(a)). This is because grasps in a real scenario might fail,
due to external reasons such as collision before the grasp,
or imprecision in the 3D circle reconstruction. Also, grasps
might be successful by accident, e.g., when a planned grasp
of type A is in reality of another type. Nevertheless, the
experiences give valuable information and can be translated
into likelihoods of success depending on the radius (see
Fig. 7(f)) that can then be used by higher level processes
to decide what grasp type should be selected. Note that
learning can also be applied in the more difficult case of
the coplanarity-based grasping reflex, since success can be
measured in the very same way. This, however, requires a
much more complex learning framework (see [3]).

B. Birth of the Object
In addition to the refinement of pre-wired reflex be-

haviours, the exploration behaviour allows the proposed
system to learn a three-dimensional visual representation of
shape. In [2] we have presented an algorithm that, based
on the initial grasping reflexes and on the knowledge of the
robot’s arm motion, learn models of 3D objects’ shape.

A successful grasp on an object endows the robot with
control over this object. The system will then manipulate
the object to visually inspect it from a variety of viewpoints.
The object’s motion during this inspection phase is known
to be the same as the robot’s arm’s. This knowledge of the
object’s motion allows to infer predictions on the visual rep-
resentation extracted at later stages. Tracking objects visual
representations allows to improve the internal representation
of their shape, in three respects:
• Because only the object moves as predicted by the

robot’s arm motion, tracking of visual primitives allows
to segment the object from the rest of the scene;

• The integration in the same coordinate system of visual
information gathered from multiple viewpoints allows to
generate a representation of the object’s full 3D shape;

Fig. 8. Birth of the Object. On the left hand side, the dots on the
image shows the predicted structures. Spurious primitives and parts of the
background are not confirmed by the image, and are shown in grey. The
confirmed predictions are shown in green. The middle shows the shape
model learned from this object. The right hand side shows the shape model
learned from tow other objects. Note that the gap in the shape models
correspond to where the robot’s hand held the objects.

• Tracking aspect’s of the object representation allows to
reduce inaccuracy in the shape representation.

The result of this process is a full 3D representation of
the object shape, with an associated knowledge of the grasp
that was successful.

Fig. 8 shows the results of object learning. Once the
object’s shape is known to a satisfying level, the planner
(see section V) is informed of the new object discovery and
of the associated grasp.

Current work endeavour to use the acquired representation
for object recognition and pose estimation, therefore extend-
ing the simplified ‘circle scenario’ into a more general object
context.

C. Temporal Consistency

The information provided by the robot-vision layer is
intrinsically noisy. This leads to
• phantom objects appearing (i.e., false positives),
• objects present in the scene not being detected,
• object labels not being consistent over time.

While the first two cases are not frequent, the third case is
a constant problem. The planning layer needs accurate state
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Fig. 7. Grasp experiences and success distributions. (a)-(c) show the results for artificial data, while (d)-(f) show data from real experiences. (a) and (d)
show grasping experiences made for grasp type A for different radiuses while (b) and (e) show the same for grasp type B. In these diagrams the green
crosses (in the upper row) represent a successfull grasp, while the red crosses (lower row) represent failures. (c) and (f) show success probabilities for the
two grasp in discrete radius bins. These can be used as a indicator which grasp to choose for a unknown grasping situation.

information, therefore these problems need to be corrected
before the state information is sent to the planner.

These problems become solved by matching the last know
state with the sensed information. Objects that are detected
in the sensory data that are close in position, orientation, and
radius to one object in the last known state are assumed to
be the same. This solves the object labelling problem. When
no object in the old scene can be matched to a new object,
the new object is considered wrong. Undetected objects are
treated in the same way. This part of the system is still
in a very premature mode, and future work has to address
complex issues such as object permanency [13] under occlu-
sions or accidental displacements of objects under unplanned
contacts of objects and robot.

V. PLANNING

The planning component of the system is responsible for
constructing action plans that direct the behaviour of the
robot in order to achieve a specified set of high-level goals.
(For instance, in our example scenario, a plan might be
constructed to clear all the open objects from the table.)
The planning system consists of three main parts: the high-
level domain model, the planner itself (in this case, the PKS
planner [14], [15]), and the plan execution monitor. Together,
these components control all high-level representations and
reasoning in the system, and are connected to the rest of the
system through a communication architecture which controls
the flow of information to and from the planning level.

A. High-level domain model

The high-level domain model consists of a formal repre-
sentation of the robot’s world, described in a STRIPS-like
[16] language used as input to the planner. In particular,

the domain model specifies the objects and properties in the
world, and the actions available to the robot.

1) Objects: Objects in the high-level domain model are
simply labels (e.g., strings) that denote actual objects in the
real world. (E.g., obj1 may represent a particular red block
on the table in the robot’s workspace.) Object names do not
typically change over time and, thus, always refer to the
same world-level objects. As a result, planning-level objects
also act as indices to the actual real-world object information
stored at the robot and memory levels, and can be used by
all system levels to refer to an object uniquely.

2) Properties: Properties in the domain model are speci-
fied by predicates and functions that denote particular quali-
ties of the world, robot, and objects. High-level properties are
typically quite abstract and can correspond to combinations
of concepts available at the lower levels. For instance, we
define the following properties in our example scenario:
• open(x) - object x is open,
• gripperempty - the robot’s gripper is empty,
• ingripper(x) - the robot is holding x in its gripper,
• ontable(x) - object x is on the table,
• onshelf(x) - object x is on the shelf,
• isin(x, y) - object x is stacked in object y,
• clear(x) - no object is stacked in object x,
• instack(x, y) - object x is in a stack with y at its base,
• radius(x) = y - the radius of object x is y,
• shelfspace = x - there are x empty shelf spaces.

In this case, gripperempty closely corresponds to a sensor
that detects whether the gripper can be closed without
contact, while ontable requires a conjunction of data from
the visual sensors concerning object positions. Parametrized
properties can also be instantiated by specific domain objects.
Thus, ontable(obj1) means “object obj1 is on the table” and



ingripper(obj2) means “object obj2 is in the gripper.”
3) Actions: Actions in the domain model represent high-

level counterparts to some of the motor programs available
at the robot level. Unlike low-level motor programs, how-
ever, high-level actions are modelled with a high degree of
abstraction and incorporate state-specific elements into their
definitions and operation. For instance, the following high-
level actions are defined in our example domain:
• graspA-table(x) - grasp x from the table using grasp A,
• graspA-stack(x) - grasp x from a stack using grasp A,
• graspB-table(x) - grasp x from the table using grasp B,
• graspC-table(x) - grasp x from the table using grasp C,
• graspD-table(x) - grasp x from the table using grasp D,
• putInto-object(x, y) - put x into an object y on the table,
• putInto-stack(x, y) - put x into y at the top of a stack,
• putAway(x) - put object x away on the shelf,
• sense-open(x) - determine whether x is open or not.

These actions do not require 3D coordinates, joint angles, or
similar real-valued parameters. Instead, they are defined in
an object-centric manner, with parameters x and y that can
be instantiated with specific objects.

Two types of actions are available to the planner: physical
actions, that change the state of the world; and sensing
actions, that observe the state of the world. (As we’ll see, an
action’s type can affect the structure of a generated plan.)

The physical actions in our example domain include
actions for manipulating objects in the world. The first five
actions indicate the possible grasping options and correspond
to the four types of grasps available to the robot (see Fig. 4).
Grasp A is divided into two separate actions that account for
different object configurations (i.e., an object on the table
versus an object at the top of a stack). This avoids the need
for conditional action effects in our representation. The two
putInto actions similarly model different object destinations.
The putAway action is a generic operation for moving a
grasped object to a location on the shelf.

The example domain also includes a high-level sensing
action, sense-open. This action provides the planner with
specific information about an object’s state (i.e., its “open-
ness”), without intentionally changing the object’s state. At
the robot/vision level, this action will ultimately be executed
as either a physical test, such as poking an object to check
its concavity; or a visual test, such as focusing on the object
at a higher resolution. The mid-level memory is responsible
for refining sense-open actions into robot/vision operations
that are appropriate for the given object and context.

B. PKS planner

High-level plans are built using PKS (“Planning with
Knowledge and Sensing”) [14], [15], a planner that can op-
erate in the presence of incomplete information and sensing
actions. Unlike traditional approaches, PKS operates at the
“knowledge level” of abstraction, by modelling an agent’s
knowledge state. By doing so, PKS can reason efficiently
about certain types of knowledge, and make effective use of
non-propositional features, like functions, which often arise
in real-world planning scenarios.

TABLE I
EXAMPLES OF PKS ACTIONS IN THE TABLE CLEARING TASK

Action Preconditions Effects
graspA-table(x) K(clear(x)) add(Kf , ingripper(x))

K(gripperempty) add(Kf ,¬gripperempty)
K(ontable(x) add(Kf ,¬ontable(x))
K(radius(x) ≥ minA)
K(radius(x) ≤ maxA)

sense-open(x) ¬Kw(open(x)) add(Kw, open(x))
K(ontable(x))

PKS is based on a generalisation of STRIPS. In STRIPS,
a single database is used to represent the world state. Actions
update this database in a way that corresponds to their effects
on the world. In PKS, the planner’s knowledge state is rep-
resented by five databases, each of which stores a particular
type of knowledge. Actions are described in terms of the
changes they make to the databases and, thus, to the planner’s
knowledge. Table I shows two PKS actions, graspA-table
and sense-open. (Kf is a database that models knowledge of
simple facts, while Kw is a specialised database that stores
the results of sensing actions that return binary information.)

Two different types of plans can be built in PKS: linear
plans, which are sequences of actions; and conditional plans
that contain branches resulting from the inclusion of sensing
actions. For instance, using the example domain model for
the table clearing task, PKS can construct the simple plan:

graspD-table(obj1), putInto-object(obj1, obj2),
graspB-table(obj2), putAway(obj2),

to put an object obj1 into another object obj2 before grasping
the stack of objects and removing them to the shelf. In this
case, the plan is linear since it only contains physical actions.

When a plan contains sensing actions, PKS can reason
about the possible outcomes of the sensing by adding con-
ditional branches to the plan. For instance, if PKS is given
the goal of removing the “open” objects from the table, but
does not know whether an object obj1 is open or not, then
it can construct the conditional plan:

sense-open(obj1),
branch(open(obj1))
K+ : graspA-table(obj1), putAway(obj1)
K− : nil,

This plan first senses the truth value of the predicate
open(obj1) and then branches on the two possible outcomes.
When open(obj1) is true (the K+ branch), obj1 is grasped
and put away; when open(obj1) is false (the K− branch),
no further action is taken.

C. Plan construction, execution, and monitoring

The planning level interacts with the rest of the system
to construct and execute plans. For instance, the initial
world state–forming the planner’s initial knowledge state–is
supplied to the planner from the robot/vision system. Once
the planner has such information it constructs a high-level



(a) (b) (c) (d) (e)

Fig. 9. Performing of a Plan: (a) Initial scene. The small blue cup is obj1, while obj2 stands for the light-blue bowl. The blue rectangle represents the
shelf area. (b) Scene after executing graspD-table(obj1). (c) Scene after executing putInto-object(obj1, obj2). (d) Scene after executing graspB-table(obj2).
(e) Scene after executing the final command putAway(obj2).

plan and feeds it to the robot, one action at a time, upon
request from the lower levels. The planner can also send
complete plan structures to the mid-level memory, to help
it better direct the execution of robot-level actions. Upon
action completion, the lower levels inform the planner as to
any changes made to the world state, allowing the cycle of
plan execution to continue until the end of the plan.

A vital component in this architecture is the plan execution
monitor, which assesses action failure and unexpected state
information in order to control replanning and resensing
activities. In particular, the difference between predicted
and actual state information is used to decide between (i)
continuing the execution of an existing plan, (ii) asking the
vision system to resense a portion of a scene at a higher
resolution in the hope of producing a more detailed state
report, and (iii) replanning from the unexpected state.

The plan execution monitor also has the added task of
managing the execution of plans with conditional branches,
resulting from the inclusion of sensing actions (such as sense-
open)). When a sensing action is executed at the robot level,
the results of the sensing will be passed to the planning level
as part of a state update. Using this information, the plan
execution monitor can then decide which branch of a plan it
should follow, and feed the correct sequence of actions to the
lower levels. If such information is unavailable, resensing or
replanning is triggered as above.

D. Performing of a Plan

Fig. 9 shows the execution of the plan mentioned in section
V-B which is repeated here:

graspD-table(obj1), putInto-object(obj1, obj2),
graspB-table(obj2), putAway(obj2).

This is a linear plan and therefore does not contain any
sensing actions. It is constructed based on the objects in the
initial scene.

VI. DISCUSSION

We have introduced a three level cognitive architecture that
is used in an embodied system to execute plans. Learning at
different levels takes place in parallel. It also allows for fine-
tuning as well as the extension of the application domain
in which planning as well as the execution of plans can
be performed. We are aware that some components of the
introduced system are still in a premature state. However,

we think that the outlined interaction between the different
levels and sub-modules shows the potential of a developping
cognitive system.
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We describe a process in which the segmentation of objects as well as the extraction of

the object shape becomes realized through active exploration of a robot vision system.
In the exploration process, two behavioral modules that link robot actions to the visual

and haptic perception of objects interact. First, by making use of an object independent

grasping mechanism, physical control over potential objects can be gained. Having eval-
uated the initial grasping mechanism as being successful, a second behavior extracts the

object shape by making use of prediction based on the motion induced by the robot.

This also leads to the concept of an ’object’ as a set of features that change predictably
over different frames.

The system is equipped with a certain degree of generic prior knowledge about the

world in terms of a sophisticated visual feature extraction process in an early cognitive vi-
sion system, knowledge about its own embodiment as well as knowledge about geometric

relationships such as rigid body motion. This prior knowledge allows for the extraction

of representations that are semantically richer compared to many other approaches.

Keywords: Early Cognitive Vision, Grasping, Exploration
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1. Introduction

According to Gibson1 an object is characterized by three properties: It

O1 has a certain minimal and maximal size related to the body of an agent,
O2 shows temporal stability, and
O3 is manipulatable by the agent.

Note that all these three properties are defined in relation to the agent (even tem-
poral stability (O2) is relative to the agents lifetime span). Hence, no general agent
independent criterion can be given. For an adult, a sofa certainly fulfills all three
properties but for a fly, a sofa is more a surface than an object.

The detection of ‘objectness’ according to the three properties described above
is not a trivial task. When observing a scene, usually in a visual system, a number
of local features become extracted for which it is unclear whether and to which
object they correspond to. Actually, property O3 can only be tested by acting on
the scene in case that no prior object knowledge is available.

In many artificial systems, in particular in the context of robotics, the object
shape is given by a CAD representation a priori and is then used for object identifi-
cation and pose estimation (see, e.g., Lowe2). However, CAD representations are not
available in a general context and hence for any cognitive system, it is an important
prerequisite that it is able to learn object representations from experience.

In this paper, we address both problems: We introduce a procedure in which the
objectness becomes detected based on the three Gibsonian criteria mentioned above.
In addition, the object shape becomes extracted by making use of the coherence of
motion induced by the agent after having achieved physical control over something
that might turn out to become an object.

Our approach is making use of the concept of Object Action Complexes (OACs)
where we assume that objects and actions (here the ‘grasping action’ and controlled
object movement) are inseparably intertwined. Hence, the intention of performing
a grasp, the actual attempt to grasp and the evaluation of its success as well as a
controlled movement of the object in case of a successful grasp will let the ‘object-
ness’ as well as a representation of the object’s shape emerge as the consequence of
the actions of the cognitive agenta.

It is worth noting that both aspects, achieving physical control over a thingb

as well as the extraction of object shape is based on a significant amount of prior
knowledge, which however is much more generic than a CAD model of an object.
More specifically, this prior consists of the system’s knowledge about

aWe note that this extends the notion of ‘affordances’ by Gibson. According to Gibson: Objects

afford actions. While this remains true, it is also — in our hands — the case that an action defines

an object. For example the action of drinking defines a cup, where the action of ‘placing on top’
makes the same (!) thing a pedestal (an upside down cup).
bWe denote with ‘thing’ something that causes the extraction of a visual feature but which is not

yet characterized as an object since it could be for example also something fixed in the workspace
of the robot and hence does not fulfill condition O3.
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1) its own body in terms of the shape, the degrees of freedom and the current
joint configuration of the robot arm as well as the relative position of the stereo
camera system and the robot co-ordinate system,

2) a developed early cognitive system3,4 that extracts local multi-modal symbolic
descriptors (see Fig. 1(a–e)), in the following called primitives, and relations
defined upon these primitives expressing statistical and deterministic properties
of visual information (see Fig. 2).

3) two behavior modules in terms of two OACs:

B1 An object independent ‘grasping reflex’ leads in some cases to successful
grasping of potential objects (Fig. 1e shows the end-effector’s pose for
one successful grasp). Note that here it is less important to have a high
success-rate of grasping attempts but that is is more important that a
success is actually measurable and that it then triggers a second exploration
mechanism (see B2).
The ‘grasping reflex’ is based on three semantic relations defined within
the early cognitive vision system: First, co-planarity of descriptors indicate
surfaces and by that possible grasping options. The co-planarity relation
is enhanced by a co-linearity and co-colority relation to further enhance
the success rate of the ‘grasping reflex’.

B2 After a successful grasp an accumulation module explores the object by
looking at different views of the object (see Fig. 1(f,g)) and accumulating
this information to determine the objectness of the thing as well as to
extract the shape of the object (Fig. 1(h)). This accumulation module
is based on prediction based on a rigid body motion relation between
primitives. Having gained physical control over an object by the grasping
reflex allows for inducing a rigid body motion on the object and by that
the object (its objectness as well as its shape) can be characterized by the
set of visual descriptors changing according to the induced motion.

The idea of taking advantage of active components for vision is in the spirit
of active vision research5,6. The grounding of vision in cognitive agents has been
addressed for example by a number of groups in the context of grasping7,8 as well
as robot navigation9.

The work of Fitzpatrick and Metta7 is the most related one to our approach
since the overall goal as well as the hardware set up is similar: Finding out about
the relations of actions and objects by exploration using a stereo system combined
with a grasping device. We see the main distinguishing feature of this work to our
approach in the amount of pre-structure we use. For example, we assume a much
more sophisticated vision system that covers multiple visual modalities in a con-
densed form as well as visual relations defined upon them. This allows us to operate
in a highly structured feature space where, instead of pixel-wise representations, we
can operate on local symbols for which we can predict changes not only of position
but also other feature attributes such as orientation and color. Furthermore, the use
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(a)

(2)

(3)

(4)

(1)

(b) (c)

(d) (e)

(f) (g) (h)

Fig. 1. Overview of the system. (a) Image of the scene as viewed by the left camera at the first

frame. (b) Symbolic representation of a primitive wherein (1) shows the orientation, (2) the phase,

(3) the color, (4) the optic flow of the primitive. (c) 2D primitives extracted at one object in the
scene from (a). (d) Illustration of the reconstruction of a 3D primitive from a stereo pair of 2D

primitives. (e) 3D primitives reconstructed from the scene and one grasping hypothesis. (f–g) Two
views of robot rotating the grasped object to build its 3D representation. (h) The learned 3D

representation of the object.

of a very precise industrial robot allows for a precise generation of changes exploited
for the extraction of the 3D shape of the object.

It is not clear what exact prior knowledge can be assumed in the human sys-
tem. However, there exist strong indications for an innate concept of 3D space as
well as for sophisticated feature extraction mechanisms being in place very early



January 18, 2008 15:50 WSPC/INSTRUCTION FILE KraftEtAlHu-
manoidRobotics2007

Birth of an Object: Detection of Objectness and Extraction of Object Shape through OACs 5

in visual experience. For a discussion of this issue see for example Kellmann and
Arterberry10. The question of prior knowledge in the context of depth perception
and possible consequences for the design of artificial systems is described in Krüger
and Wörgötter11.

Similar to Fitzpatrick and Metta7, we assume first ‘reflex-like’ actions that trig-
ger exploration. However, since in our system the robot knows about its body and
the 3D geometry of the world and since the arm can be controlled more precisely,
these reflexes can make use of more complex visual events. As a consequence we
can make use of having physical control over the object and therefore extract rather
precise 3D information (in addition to the appearance based information coded in
the primitives).

Modayil and Kuipers9 addressed the problem of detection of objectness and the
extraction of object shape in the context of a mobile robot using laser information.
Here also motion information (in terms of the odometry of the mobile robot) is used
to formulate predictions. In this way, they were able to extract a top-view of the
3D shape of the object however only in terms of geometric information and only in
terms of a 2D projection to the ground floor.

The paper is organized as following: In Section 2 the early cognitive vision system
is briefly described. In Section 3 and 4 we give a description of the two sub-modules,
i.e., the grasping reflex and the accumulation scheme. Sub-aspects of the work have
been presented at two workshops12,13.

2. An Early Cognitive Vision System

In this section, we introduce the visual system in which the detection of ‘objectness’
as well as the acquisition of the object representation is taking place. The system is
characterized by rather structured prior knowledge: First, a scene representation is
computed in terms of local symbolic descriptors (in the following called primitives)
covering different visual modalities as well as 2D and 3D aspects of visual data
(Section 2.1). Second, there are relations defined upon the symbolic descriptors
that cover spatial and temporal dependencies as briefly described in Section 2.2. It
is only the use of this prior knowledge that allows for the formulation of the two
OACs described in Sections 3 and 4.

2.1. Multi-modal primitives as local scene descriptors

In this work we use local, multi-modal contour descriptors hereafter called
primitives3,4 (see Fig. 1). These primitives give a semantically meaningful descrip-
tion of a local image patch in terms of position as well as the visual modalities
orientation, color and phase. The importance of such a semantic grounding of fea-
tures for a general purpose vision front-end, and the relevance of edge-like structures
for this purposes was discussed, e.g., by Elder14.

The primitives are extracted sparsely at locations in the image which are most
likely to contain edges. The sparseness is assured using a classical winner-take-all
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operation, ensuring that the generative patches of the primitives do not overlap.
Each primitive encodes the image information contained by a local image patch.
Multi-modal information is gathered from this image patch, including the position
x of the center of the patch, the orientation θ of the edge, the phase ω of the signal
at this point, the color c sampled over the image patch on both sides of the edge,
the local optical flow f and the size of the patch ρ. Consequently a local image
patch is described by the following multi-modal vector:

π = (x, θ, ω, c,f , ρ)T , (1)

that we will name 2D primitive in the following. The primitive extraction process
is illustrated in Fig. 1.

In a stereo scenario, 3D primitives can be computed from correspondences of
2D primitives (Fig. 1)

Π = (X,Θ,Ω,C)T , (2)

where X is the position in space, Θ is the 3D orientation, Ω is the phase of the
contour, and C is the color on both sides of the contour. For details see Pugeault15.

2.2. Perceptual relations between primitives

The sparseness of the primitives allows for the formulation of four structural re-
lations between primitives that are crucial in our context since they allow us to
relate feature constellations to grasping actions (in the first OAC in Section 3) or
visual percepts in consecutive frames (in the second OAC described in Section 4).
See Kalkan et al.16 for more details.
Co-planarity: Two spatial primitives Πi and Πj are co-planar iff their orientation
vectors lie on the same plane. The co-planarity relation is illustrated in Fig. 2(b). In
the context of the grasping reflex described in Section 3, grasping actions become
associated to the plane spanned by co-planar primitives.
Collinear grouping (i.e., collinearity): Two 3D primitives Πi and Πj are
collinear (i.e., part of the same group) iff they are part of the same contour. Due
to uncertainty in the 3D reconstruction process, in this work, the collinearity of
two spatial primitives Πi and Πj is computed using their 2D projections πi and πj .
Collinearity of two primitives is illustrated in Fig. 2(a).
Co-colority: Two spatial primitives Πi and Πj are co-color iff their parts that
face each other have the same color. In the same way as collinearity, co-colority of
two spatial primitives Πi and Πj is computed using their 2D projections πi and
πj . In Fig. 2(c) a pair of co-color and non co-color primitives are shown. Testing
for collinearity and co-colority help to reduce the number of generated grasping
hypotheses (see Section 3.2).
Rigid body motion: The change of position and orientation induced by a rigid
body motion between two frames at time t and t + 1 (Πt+1 = RBM(Πt)) can be
computed analytically17, phase and color can be approximated to be constant.



January 18, 2008 15:50 WSPC/INSTRUCTION FILE KraftEtAlHu-
manoidRobotics2007

Birth of an Object: Detection of Objectness and Extraction of Object Shape through OACs 7

b)a)

c)

P

πi

ti

tjπj

αjvij

αi

ρ

πi πj πk

tj
nj

Πj

vij

ni

ti

Πi

Fig. 2. Illustration of the relations between a pair of primitives. (a) Collinearity of two 2D primitives
πi and πj . (b) Co-planarity of two 3D primitives Πi and Πj . (c) Co-colority of three 2D primitives

πi, πj and πk. In this case, πi and πj are co-color, so are πi and πk; however, πj and πk are not

co-color.

3. Grasping Reflex

In this section, we describe the first OAC that leads to a physical control over
objects. Note that a high success rate is not important in this context, but more
that the success can be evaluated by haptic feedback which then gives indications
to proceed with another OAC described in Section 4.

3.1. Elementary grasping actions associated to co-planar

primitives

Coplanar relationships between visual primitives suggest different graspable planes.
Fig. 3(a) shows a set of spatial primitives on two different contours li and lj with
co-planarity, co-colority and collinearity relations.

Four elementary grasping action (EGA) types will be considered as shown in
Fig. 3(b-e). EGA type 1 (EGA1) is a ‘pinch’ grasp on a thin edge like structure
with approach direction along the surface normal of the plane spanned by the
primitives. EGA type 2 (EGA2) is an ‘inverted’ grasp using the inside of two edges
with approach along the surface normal. EGA type 3 (EGA3) is a ‘pinch’ grasp on a
single edge with approach direction perpendicular to the surface normal. EGA type
4 (EGA4) is a wide grasp making contact on two separate edges with approach
direction along the surface normal.

EGAs are parameterized by their final pose (position and orientation) and the
initial gripper configuration. For the simple parallel jaw gripper, an EGA will thus
be defined by seven parameters: EGA(x, y, z, k, l,m, δ) where p = [x, y, z] is the
position of the gripper ‘center’ according to Fig. 3(f); k, l,m are the roll, pitch and
yaw angles of the vector n; and δ is the gripper opening, see Fig. 3(f). Note that
the gripper ‘center’ is placed in the ‘middle’ of the gripper.
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a) b) EGA1 c) EGA2 f)

d) EGA3 e) EGA4

P

z

x

p

n

y

δ

a

lj

li

Fig. 3. (a) A set of spatial primitives on two different contours li and lj that have co-planarity, co-
colority and collinearity relations; a plane P defined by the co-planarity of the spatial primitives

and an example grasp suggested by the plane. (b–e) Elementary grasping action types, EGA1,

EGA2, EGA3 and EGA4 respectively. Please note, besides the two primitives (marked as spheres)
defining the concrete EGA only the surfaces touched by the gripper are needed for the grasp to be

successful. The cube form given here is used to illustrate the differences in the different EGA types

and their applicability. (f) Parameterization of EGAs.

These grasp parameters are computed from coplanar pairs of 3D-primitives. Let
Γ = {Π1,Π2} be a primitive pair for which the coplanar relationship is fulfilled.
Let Γi be the i-th pair and p the plane defined by the coplanar relationship of the
primitives of Γi. Let Λ(Π) be the position of Π and Θ(Π) be the orientation of
Π. The parameterization of the EGAs is given with the gripper normal n and the
normal a of the surface between the two fingers as illustrated in Fig. 3(f). From
this, the yaw, pitch and roll angles can be easily computed. For example for EGA1,
there will be two possible parameter sets given the primitive pair Γ = {Π1,Π2}.
The parameterization is as follows:

pgripper = Λ(Πi),

n = ∇(p),

a = perpn(Θ(Πi))/ ‖ perpn(Θ(Πi)) ‖ for i = 1, 2, (3)

where ∇(p) is the normal of the plane p and perpu(a) is the projection of a
perpendicular to u. The details of how the other EGAs are computed can be found
in Aarno et al.12.

The main motivation for choosing these grasps is that they represent the simplest
possible two fingered grasps humans commonly use which can also be simulated
on our robot system. The result of applying the EGAs can be evaluated by the
information given by the gripper (Schunk, PT-AP 70) which gives the distance
between the two jaws at each instance of time.

For EGA1, EGA3 and EGA4, a failed grasp can be detected by the fact that the
gripper is completely closed. For EGA1 and EGA3, the expected grasp is a pinch
type grasp, i.e. narrow. Therefore, they can also ‘fail’ if the gripper comes to a halt
too early. EGA2 fails if the gripper is fully opened, meaning that no contact was
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made with the object. If none of the above situations is encountered the EGA is
considered to be successful.

3.2. Limiting the number of actions

For a typical scene, the number of coplanar pairs of primitives is in the order of
103−104. Given that each coplanar relationship gives rise to six different grasps from
the four different categories, it is obvious that the number of suggested actions must
be further constrained. In addition, there exist many coplanar pairs of primitives
affording similar grasps.

To overcome some of the above problems, we make use of the structural richness
of the primitives. First, their embedding into collinear groups naturally clusters the
grasping hypotheses into sets of redundant grasps from which only one needs to
be tested. Furthermore, co-colority, gives an additional hypothesis for a potential
grasp. Aarno et al.12 quantified the reduction in EGA hypotheses using collinearity
and co-colority in a simulation environment, showing that the number of EGAs can
be reduced systematically.

3.3. Experimental evaluation

To evaluate the grasping reflex we made experiments within the simulation envi-
ronment GraspIt18 and with a real scene. In the GraspIt environment, we evaluated
success rates in scenes of different complexity (see Fig. 4(a–d) for a number of
successful grasps on two scenes). The success rate was dependent on the scene com-
plexity, ranging from appr. 90%c in the case of a simple plane (see Fig. 4(a,b)), to
around 25% for scenes of larger complexity (Fig. 4(c,d)).

We then evaluated the exploration strategy on a real scene (see Fig. 4(e)). After
reconstructing 3D-primitives from stereo images (Fig. 4(h)), 912 EGAs were gener-
ated. However, in a real set-up there are additional constraints such as the definition
of a region of interestd and the fact that not all EGAs are actually performable due
to limited workspacee. In addition, grasps leading to collisions with the floor or the
wall need to be eliminated. Table 1 shows the effects of the reductions.

In a full exploration sequence, the system attempts to perform one of the 50
remaining EGAs. A failure to grasp an object generally causes changes in the scene,
and the whole sequence of capturing images, generating and reducing EGAs would

cA success is counted when one of the six EGAs (two instantiations of each EGA1 and EGA3, one

of EGA2 and EGA4) generated by a primitive pair has been performed successfully
dThe region of interest serves two purposes: 1. It represents a computationally cheap way to
remove EGAs that would be reduced by the later, more expensive reachability check. 2. It prevents

grasping attempts in regions in which no objects should be placed. In our concrete setup, the region

of interest is defined as a cube in front of the robot.
eNote that the workspace needs to be defined in terms of a 6D pose and that even when a 3D

point is reachable, it is not certain that the desired end-effector orientation can be achieved at this
point.
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Fig. 4. Evaluation of the grasping reflex in simulation (a–d) and in a real robot environment (e–j).

(a,c) Artificial grasping scenes. (b,d) Selected grasping hypotheses generated for the scenes shown
in (a,c). (e) The view from the left camera for the real environment. Origin and orientation of the

world coordinate frame are illustrated in top left corner. (h) Extracted 3D primitives for the whole
scene (see (e)) displayed in the visualization environment. (f,g) The robot arm executing successful

grasps. (i,j) The grasps from (f,g) shown in the 3D visualization environment (enlarged).

Table 1. The results of applying reductions to the initial set of EGAs.

Reductions: Initial number of EGAs remaining relative reduction

to region of interest 912 228 75.0%

to reachable configurations 123 105 53.9%
collision free (floor) 105 50 52.4%
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be repeated. However, for the purpose of evaluating the whole set of proposed
EGAs for a single scene, the objects in this experiment were placed at their original
position after each attempted grasp.

In the specific scenario shown in Fig. 4(e), three out of the four objects could
be grasped by the reflex. Out of 50 grasps, 7 lead to physical control over objects.
In one case, the contact area was too small, leading to an unstable grip, and the
accumulation module (see Section 4.1) could not be applied.

4. Detection of Objectness and Object Shape

Having achieved physical control over an object, measured by the distance between
the gripper’s jaws after closing or opening (in case of EGA2), a second OAC is trig-
gered that makes use of the additional capability of the agent: actively manipulating
the object.

If the object’s motion within the scene is known, then the relation between
this object’s features in two subsequent frames becomes deterministic (excluding
the usual problems of occlusion, sampling, etc.). This means that a 3D-primitive
that is present in one frame is subject to a transformation that is fully determined
by the object’s motion: generally a change of 3D position and 3D orientation.f If
we assume that the motion between consecutive frames is reasonably small then
a contour will not appear or disappear unpredictably, but will have a life-span in
the representation, between the moment it enters the field of view and the moment
it leaves it. Assuming having a fully calibrated system and having physical control
over the object (as gained by the first OAC described in Section 3), we can compute
the 3D-primitives’ change in camera coordinates.

These predictions are relevant in different contexts:

Establishment of objectness: The objectness of a set of features is charac-
terized by the fact that they all move according to the robot’s motion. This
property is discussed in the context of a grounded AI planning system in Geib
et al.19.
Segmentation: The system segments the object from the rest of the scene
using its predicted motion.
Disambiguation: Erroneous 3D-primitives can be characterized (and elimi-
nated) by inconsistent motion according to the predictions (see also Krüger et
al.20).
Learning the object model: A full 3D model of the object can be extracted
by merging different 2 1

2D views created by the motion of the end effector.

fWe neglect the effects of lighting and reflection, and assume that phase and color stay constant.
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Fig. 5. Example of the accumulation of a primitive (see text).

4.1. Making predictions from the robot motion

If we consider a 3D-primitive Πt
i ∈ St describing an object’s contour at time instant

t, and assume that the object’s motion is known between the two instants t and
t+ ∆t, then we can predict this primitive’s position at time t+ ∆t.

The projection of 3D-primitives to the image domain predicts where 2D-
primitives should be extracted from each camera’s image at time t+ ∆t. It is then
possible to assess the correctness of a reconstructed 3D-primitive by how reliably it
is confirmed by subsequently extracted 2D-primitives.

This prediction/verification process is illustrated in Fig. 5. The left image is
taken from a scene at time t; the right image is taken from the same scene, at
a later time t + δt. Assuming that a primitive π is extracted at time t, and lead
to two distinct, mutually exclusive, putative 3D reconstructions Π′ and Π′′. If the
object that π describes is subjected to a known motion Mt→t+δt, then this motion
knowledge allows for making predictions on where in the image this primitive should
manifest itself at time t+δt. Mutually exclusive putative 3D-primitives (Π′ and Π′′)
will lead to distinct predictions (π′ and π′′). When confronting these predictions
with the new image at time t+ δt, and the primitives extracted from it, it becomes
apparent that π′ is confirmed by the newly available information whereas π′′ is
contradicted, thereby revealing the erroneousness of the hypothesis Π′′. Therefore,
Π′′ is discarded from the representation and thus the ambiguity is reduced.

We then propose to use these predictions to re-evaluate 3D-primitives’ confi-
dence depending on their resilience over time. This is justified by the continuity
assumption, which states that 1) scene’s objects or contours should not appear and
disappear abruptly from the field of view (FoV) but move in and out gracefully ac-
cording to the estimated ego-motion; and 2) a contour’s position and orientation at
any point in time is fully determined by the knowledge of its position at a previous
instant in time and of its motion since.

Consider a primitive Πi, predicting a primitive Π̂t
i at time t. We write the fact
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that this prediction is confirmed by the images at time time t as µt(Π̂i) = 1; and the
fact that it is not confirmed (i.e., there is no 2D-primitive extracted at time t that
is similar to the projection of Π̂t

i on the image plane) as µt(Π̂i) = 0. By extension,
we code the resilience a primitive Πi, from its apparition at time 0 until time t as
the binary vector:

µ(Πi) =
(
µt(Π̂i), µt−1(Π̂i), · · · , µ0(Π̂i)

)T
. (4)

We then apply Bayes formula to evaluate the posterior likelihood that a 3D-
primitive is correct knowing its resilience vector:

p (Πi|µ(Πi)) =
p (µ(Πi)|Π) p (Π)

p (µ(Πi)|Π) p (Π) + p
(
µ(Πi)|Π̄

)
p
(
Π̄
) . (5)

In this formula, Π and Π̄ are correct and erroneous primitives, respectively. The
quantities p (Π) and p

(
Π̄
)

are the prior likelihoods for a 3D-primitive to be cor-

rect and erroneous. The quantity p
(
µ(Π̂i)|Π

)
(resp. p

(
µ(Πi)|Π̄

)
) expresses the

probability of occurrence of a resilience vector µ(Πi) for a correct (resp. erroneous)
primitive Πi.

Furthermore, if we assume independence between the matches µt(Π̂i), then for
a primitive Πi that exists since n iterations and has been matched successfully m

times, we have the following relation:

p
(
µ(Π̂i)|Π

)
=
∏
t p
(
µt(Π̂i)|Π

)
= p

(
µt(Π̂i) = 1|Π

)m
p
(
µt(Π̂i) = 0|Π

)n−m
.

(6)

In this case the probabilities for µt are equiprobable for all t, and therefore if we
define the quantities α = p (Π), β = p

(
µt(Π̂) = 1|Π

)
and γ = p

(
µt(Π̂) = 1|Π̄

)
then we can rewrite Eq. (5) as follows:

p
(

Πi|µ̄(Π̂i)
)

=
βm(1− β)n−mα

βm(1− β)n−mα+ γm(1− γ)n−m(1− α)
. (7)

We measured these prior and conditional probabilities using a video sequence
with known motion and depth ground truth obtained via range scanner. We found
values of α = 0.46, β = 0.83 and γ = 0.41. This means that, in these examples,
the prior likelihood for a stereo hypothesis to be correct is 46%, the likelihood for
a correct hypothesis to be confirmed is 83% whereas for an erroneous hypothesis it
is of 41%. These probabilities show that Bayesian inference can be used to identify
correct correspondences from erroneous ones. To stabilize the process, we will only
consider the n first frames after the appearance of a new 3D-primitive. After n
frames, the confidence is fixed for good. If the confidence is deemed too low at this
stage, the primitive is forgotten. During our experiments n = 5 proved to be a
suitable value.

The end-effector of the robot follows the same motion as the object. Therefore,
this end-effector becomes extracted as well. Since we know the geometry of this



January 18, 2008 15:50 WSPC/INSTRUCTION FILE KraftEtAlHu-
manoidRobotics2007

14 Kraft et al.

(a) (b) (c) (d)

Fig. 6. Birth of an object. (a) top: bounding boxes of grasper body and its fingers used to eliminate
grasper features and grasper coordinate system, bottom: image with eliminated grasper features.

(b)–(c) two steps in the accumulation process. Top: 2D projection of the accumulated 3D rep-

resentation and newly introduced primitives, bottom: accumulated 3D representation. (d) newly
introduced and accumulated primitives in detail. Note that, the primitives that are not updated

are red (dominant in the area with the vertical stripes (left side of the image)), the ones that have
low confidence are grey and the high confidence ones are green (dominant in the areas with the

horizontal stripes (the cable, the gripper and the object)).

Fig. 7. Objects and their related accumulated representation.

end-effector (Fig. 6(a)top), we can however easily subtract it by eliminating the
3D primitives that are inside the bounding boxes that bounds the body of the
gripper and its fingers. For this operation, three bounding boxes are defined in
the grasper coordinate system. Fig. 6(a)bottom shows the 2D projection of the
remaining primitives after the ones produced by the gripper have been eliminated.
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4.2. Experiments

We applied the accumulation scheme to a variety of scenes where the robot arm
manipulated several objects. The motion was a rotation of 5 degrees per frame.
The accumulation process on one such object is illustrated in Fig. 6. The top im-
ages of Fig. 6(b,c) show the predictions at two frames. The bottom images show
the 3D-primitives that were accumulated. The object representation becomes fuller
over time, whereas the primitives reconstructed from other parts of the scene are
discarded. Fig. 7 shows the accumulated representation for various objects. The
hole in the model corresponds to the part of the object occluded by the gripper.
Accumulating the representation over several distinct grasps of the objects would
yield a complete representation.

5. Conclusion

We introduced a scheme in which two modules in terms of Object Action Complexes
(OACs) become combined to extract world knowledge in terms of the objectness
of a set of local features as well as the object shape. Although this exploration
scheme is completely autonomous, we argued that there is a significant amount of
prior knowledge in terms of generic properties of the world built into the system.
Starting with a rather sophisticated feature extraction process covering common
visual modalities, functional relations defined on those features such as co-planarity,
co-linearity, basic laws about Euclidean geometry and the motion of rigid object has
been exploited. Furthermore and at least of equal importance was the capability to
act on the world that made this process possible. Here the embodiment of the agent
is of high importance. The option to grasp and move the objects in a controlled way
is rather unique to few species and with high likelihood linked to develop higher
cognitive capabilities.

The work described in this paper is part of the EU project PACO-PLUS21

which aims at a system covering different levels of cognitive processing from low-
level processes as described here up to a planning AI level (see Geib et al.19). This
work introduced describes an important module of such a cognitive system which
gives information that higher levels require to start operating. First, it segments the
world in objects which are the basic entities that higher level reasoning is based on.
Moreover, it generates 3D object representations in a procedural way which then
can be used for object identification and pose estimation (see, e.g., Lowe2 for the
use of 3D models for object recognition and Detry and Piater22 for first steps in
directly making use of the extracted representations described in this paper). By
the described exploratory procedure, a natural mechanism is given that enlarges
the internal world model that then can be used by higher levels for reasoning and
planning.
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A Scenario for Integrating Low-Level Robot/Vision, Mid-Level
Memory, and High-Level Planning with Sensing

Ronald Petrick, Christopher Geib, Mark Steedman

30 November 2007

In this document we provide an overview of a proposed scenario for integrating SDU’s robot/vision system,
Leiden’s mid-level memory/reasoning component, and Edinburgh’s high-level planner and plan execution
monitor.1 This document is primarily based on discussions between SDU, Leiden, Liège, and Edinburgh
at the September 2007 meeting in Leiden, and captures some of our thinking from the point of view of
the planning task and required high-level representation. Since our integration discussions are ongoing this
document should be viewed as a snapshot of our current thinking and subject to change.

1 Object stacking with sensing

The domain we have chosen for our integration task is a simple object manipulation scenario that builds
on the integration scenario involving SDU and Edinburgh (see the Edinburgh document A Scenario for
Integrating Low-Level Robot/Vision and High-Level Planning for details). We assume a table with a number
of objects that are graspable by the robot. We consider situations with no more than 5 objects and, initially,
only 1-2 objects. For simplicity we assume that objects are generally cylindrical in shape but not necessarily
identical. In particular, each object can have a different radius which determines its size. Objects may or
may not be open containers, which determines whether or not we can stack objects inside other objects,
provided the object sizes permit such stacking.

The goal of the scenario is to clear all open objects from the table, by removing them to some designated
location (e.g., a box, a shelf, a hole, a corner of the table, etc.). The location may furthermore be restricted
in such a way as to force object stacking in order to successfully complete the task. For instance, there
might only be room for 2 objects to sit side by side on a shelf, meaning all other objects would have to
be appropriately stacked. The high-level planning system will typically have only incomplete information
concerning the openness of objects and must therefore plan explicit sensing actions to determine whether
a particular object is open or not. Object openness plays two important roles in this scenario: (i) as a goal
condition that determines which objects should be removed from the table, and (ii) as a prerequisite for
stacking operations.

This scenario is meant to provide a basis for integrating the robot/vision, mid-level memory, and high-
level planning components of the system. The planner is responsible for constructing a plan that achieves
the goal of clearing open objects from the table, by working with a high-level representation of the scenario.
The job of the mid-level component in this case is to refine such plans with regard to the sensing actions
contained in these plans. In particular, the robot/vision system will be able to ascertain whether an object is
open or not by one of two means: (i) it can poke an object in order to verify its concavity, or (ii) it can focus
the vision system on the object at a higher level of resolution. The mid-level memory system must make
an informed choice between poking and focusing operations, update the plan as appropriate, and pass the
augmented plan on to the robot/vision system. Ultimately, the robot/vision system must be able to interpret,
understand, and execute the plans generated and refined by the upper levels.

For the remainder of this document we will mainly focus on the top-down task, in particular, describing
the high-level planning representation that is passed to the mid-level memory system, and the message
passing protocol that supports the exchange of messages between the levels.

1For the purposes of distinguishing between the three levels in this document we will use the tags “robot”, “memory”, and
“planner” to denote the SDU, Leiden, and Edinburgh components, respectively.
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(a) Grasp Type A (b) Grasp Type B (c) Grasp Type C (d) Grasp Type D

Figure 1: Robot grasp types available to the planner

2 High-level planning representation

Given the above scenario description, we define a set of high-level actions and properties that allows the
planner to operate in this domain, and provide some insights as to how these actions/properties relate to the
memory and robot/vision levels.

2.1 Physical actions

In discussions with SDU we have agreed to model four types of grasping actions at the planning level, as
illustrated in Figure 1. These actions correspond to a subset of the possible grasping options the robot is
capable of performing. In general, these actions exhibit the following behaviour:

Grasp Type A - This action can only be used to grasp objects at the top of a stack, or an empty object on
the table. Objects must also satisfy a minimum and maximum radius restriction.

Grasp Type B - This action can only be used to grasp objects on the table that are not part of a stack.
Objects must also satisfy a minimum radius restriction.

Grasp Type C - This action can only be used to grasp objects that aren’t contained in other objects, i.e.,
the “outermost” object which must be on the table. Objects must also satisfy a maximum radius
restriction.

Grasp Type D - This action can only be used to grasp objects that aren’t contained in other objects, i.e.,
objects that are on the table. Objects must also satisfy a maximum radius restriction. For simplicity,
we will assume that objects stacked within the object being grasped will not affect the grasp.

For the planner’s domain encoding it is necessary to subdivide Grasp Type A into two separate actions,
to avoid reasoning about conditional effects. The planner therefore has five grasp actions available to it,
corresponding to the four types of grasps available to the robot. (For the purposes of the sample plans in
this document we only require Grasp Types A and D.) Each grasping action takes a single argument, ?x,
denoting the label of an object. We have agreed that each object in the world will be designated by a string
of the form objN, where N is a non-negative integer, e.g., obj42.

graspA-fromTable(?x) - Grasp object ?x from the table using Grasp Type A.

graspA-fromTopOfStack(?x) - Grasp object ?x from the top of a stack using Grasp Type A.

graspB-fromTable(?x) - Grasp object ?x from the table using Grasp Type B.

graspC-fromTable(?x) - Grasp object ?x from the table using Grasp Type C.
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graspD-fromTable(?x) - Grasp object ?x from the table using Grasp Type D.

We have also encoded four actions for moving and manipulating objects when successfully grasped:

putInto-objectOnTable(?x,?y) - Put object ?x into object ?y, which is on the table.

putInto-stack(?x,?y) - Put object ?x into object ?y, which is at the top of a stack on the table.

putOnTable(?x) - Put object ?x onto the table.

putAway(?x) - Put object ?x away.

Each manipulation action is object centric and modelled with a high degree of abstraction. For instance,
we do not provide plan-level actions that specify 3D spatial coordinates, joint angles, or similar real-valued
parameters. The putAway action is particularly generic and should be considered a placeholder for a more
complex (possibly, predefined) operation that clears an object from the table to its final destination location.
For the purpose of this document we will assume that objects are being put away onto a shelf. We also note
that both putInto-objectOnTable and putInto-stack actions denote stacking operations which will
have as a prerequisite the property that objects can only be stacked into open objects.

2.2 Sensing actions

The high-level planning representation also consists of a single sensing action:

sense-open(?x) - Determine whether object ?x is open or not.

At the planning level, this action is modelled an information gathering or knowledge-producing action
that provides the planner with additional information about an object’s state. At the robot/vision level,
sense-open will ultimately be executed as either a poke operation which tests the object’s concavity, or
a focus operation which directs the vision system to study the object at a higher resolution. The mid-level
memory system is responsible for refining high-level sense-open actions into robot/vision operations that
are appropriate, given the context, and that can be understood by the lower level.

2.3 Properties

Our planning-level domain encoding makes use of a set of predicates and functions which we have agreed
could reasonably be provided to the planner as a result of sensor information from the robot/vision level.
These properties are subject to change as the domain model is refined through further discussions.

open(?x) - A predicate indicating that object ?x is open.

gripperempty - A predicate describing whether the robot’s gripper is empty or not.

ingripper(?x) - A predicate indicating that the robot is holding object ?x in its gripper.

ontable(?x) - A predicate indicating that object ?x is on the table.

onshelf(?x) - A predicate indicating that object ?x is on the shelf.

isin(?x,?y) - A predicate indicating that object ?x is stacked in object ?y.

clear(?x) - A predicate indicating that no object is stacked in ?x.
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instack(?x,?y) - A predicate indicating that object ?x is in a stack with object ?y at its base.

radius(?x) = ?y - A function indicating that the radius of object ?x is ?y.

shelfspace = ?x - A function indicating that there are ?x empty shelf spaces.

reachableA(?x)
reachableB(?x)
reachableC(?x)
reachableD(?x) - Predicates indicating that object ?x is reachable by the gripper using a particular grasp.

graspAMinRadius = ?x
graspAMaxRadius = ?x
graspBMinRadius = ?x
graspCMaxRadius = ?x
graspDMaxRadius = ?x - Functions indicating the min./max. radius restrictions for each grasp type.

2.4 Domain encoding

Using the above properties we can write PKS operators for the actions we require. For simplicity, we have
made the following restrictions in our domain encodings: (i) all objects are initially assumed to be on the
table, (ii) grasp type C will initially be omitted (grasp type B is not required for our initial examples), and
(iii) the putOnTable action will initially be omitted (since there are no initial stacks).

Our current domain encoding is given in Table 1. These actions are formalized for use with the PKS
planner, however, we have simplified the syntax here. Although most of the details of the actual action
encodings can be ignored, we mention two important points. First, each action operator is parametrized with
a set of arguments that can denote any object in the world. Thus, all of our actions are object centric. Second,
our encoding takes advantage of PKS’s ability to work with functions and simple numerical expressions,
which we include as part of the action preconditions and effects. For instance, the radius of an object plays
a role in determining whether or not it can be stacked inside another object, and the minimum/maximum
grasp values help determine whether or not a particular grasp action can be applied. Our domain encoding
can be extended as needed to accommodate new actions or properties that may arise from future discussions.

PKS action description notation: the domain encoding in Table 1 is very much like a standard STRIPS
encoding except that PKS, unlike STRIPS, uses multiple databases as the basis for its representation. Thus,
references to Kf and Kw in the “effects” section of an action denote two of PKS’s databases. (Kf is very
much like a standard STRIPS databases that stores the planner’s knowledge of facts, and Kw is a spe-
cialized database for storing the effects of sensing actions.) As well, ¬Kwopen(?x) in the description
of sense-open is a knowledge precondition that ensures the planner does not include a sensing action in a
plan if it already knows the outcome of the sensing (i.e., if the planner already knows whether an object is
open or not then it shouldn’t sense the object).
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Action Preconditions Effects
sense-open(?x) ¬Kw(open(?x)) add(Kw,open(?x))

ontable(?x)

graspA-fromTable(?x) reachableA(?x) add(Kf,ingripper(?x))

clear(?x) add(Kf,¬gripperempty)
gripperempty add(Kf,¬ontable(?x))
ontable(?x)

radius(?x) ≥ graspAMinRadius
graspAMaxRadius ≥ radius(?x)

graspA-fromTopOfStack(?x) reachableA(?x) add(Kf,ingripper(?x))

clear(?x) add(Kf,¬gripperempty)
gripperempty (∀ ?y). isin(?x,?y) ⇒
radius(?x) ≥ graspAMinRadius del(Kf,isin(?x,?y))

graspAMaxRadius ≥ radius(?x) add(Kf,clear(?y))

(∃ ?z). (∀ ?z). instack(?x,?y) ⇒
instack(?x,?z) del(Kf,instack(?x,?z))

ontable(?z)

graspB-fromTable(?x) reachableB(?x) add(Kf,ingripper(?x))

clear(?x) add(Kf,¬gripperempty)
gripperempty add(Kf,¬ontable(?x))
ontable(?x)

radius(?x) ≥ graspBMinRadius
graspD-fromTable(?x) reachableD(?x) add(Kf,ingripper(?x))

gripperempty add(Kf,¬gripperempty)
ontable(?x) add(Kf,¬ontable(?x))
graspDMaxRadius ≥ radius(?x)

putInto-objectOnTable(?x,?y) ?x , ?y add(Kf,gripperempty)

ingripper(?x) add(Kf,isin(?x,?y))

open(?y) add(Kf,instack(?x,?y))

clear(?y) del(Kf,clear(?y))

ontable(?y) del(Kf,ingripper(?x))

radius(?y) > radius(?x) (∀ ?w). instack(?w,?x) ⇒
del(Kf,instack(?w,?x))

add(Kf,instack(?w,?y))

putInto-stack(?x,?y) ?x , ?y add(Kf,gripperempty)

ingripper(?x) add(Kf,isin(?x,?y))

open(?y) del(Kf,clear(?y))

clear(?y) del(Kf,ingripper(?x))

radius(?y) > radius(?x) (∀ ?z). instack(?y,?z) ⇒
(∃ ?z). add(Kf, instack(?x,?z))

instack(?y,?z) (∀ ?w). instack(?w,?x) ⇒
ontable(?z) del(Kf,instack(?w,?x))

add(Kf,instack(?w,?z))

putAway(?x) ingripper(?x) add(Kf,onshelf(?x))

shelfspace > 0 add(Kf,gripperempty)

del(Kf,ingripper(?x))

shelfspace = shelfspace - 1

Table 1: PKS-style action descriptions
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3 Example plans

In this section we give three examples of planning problems we can solve using PKS and the above action
descriptions. In each example we consider a scenario with 2 objects initially on the table. Each object also
has a size as indicated by its radius. We also assume certain minimum/maximum values for the grasps but
these values don’t play a large role in these examples. (For simplicity we use integer values in our examples
however we also permit real-valued quantities.) In each example we assume the following initial conditions:

• Objects: obj1, obj2

• radius(obj1) = 1, radius(obj2) = 4
• shelfspace = 1
• All objects are on the table (no initial stacks)

The goal in each example is to clear the open objects from the table by placing the objects on a shelf which
has limited space. In Example 1, the planner initially knows that both objects are open and, thus, does not
need to include sensing actions in the plan. In Examples 2 and 3, sensing actions are required: in the second
example, the planner knows that one object is not open but does not know whether the second object is open
or not; in the third example, the planner does not know whether either object is open or not.

When PKS constructs a plan that includes sensing actions, it can build into the plan a set of conditional
branches for reasoning about the possible outcomes of a sensing operation. In particular, one branch is
constructed for each possible value the sensed property might have. The resulting plans in this case are
structured as trees rather than simple linear sequence of actions. In our examples, branch points are denoted
by expressions like “branch(open(objX)),” meaning “branch on the truth value of open(objX).” In this
scenario, we will only consider branches on binary properties, i.e., properties that can be either true or false.
A branch point is followed by two plan sections, labelled as “K+” and “K-,” denoting two disjoint plan
branches. The K+ branch indicates the “knowledge positive” branch where open(objX) is assumed to be
true. The K- branch indicates the “knowledge negative” branch where open(objX) is assumed to be false
(i.e., ¬open(objX) is assumed to be true). Each branch can contain a sequence of actions and possibly other
branch points. A nil tag along a branch indicates that no further operation takes place along that branch.
At execution time, the information returned from a sensing action will let the plan execution monitor decide
which branch of the plan it should follow at a branch point. The planner ensures that when conditional plans
are constructed, the goals are achieved along every branch of the plan.

3.1 Example 1

The planner initially knows that open(obj1) and open(obj2) are true.

Plan:

graspA-fromTable(obj1)

putInto-objectOnTable(obj1,obj2)

graspD-fromTable(obj2)

putAway(obj2)

Since obj1 and obj2 are both initially known to be open the planner does not need to include any sensing
actions in the plan. The two objects can simply be stacked and removed from the table.
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3.2 Example 2

The planner initially knows that ¬open(obj1) is true but does not know the state of open(obj2).

Plan:

sense-open(obj2)

branch(open(obj2))

K+:

graspA-fromTable(obj2)

putAway(obj2)

K-:

nil

Since the planner does not initially know whether obj2 is open or not it includes a sense-open action in
the plan. The plan then branches on the two possible outcomes of open(obj2). If open(obj2) is true (the
K+ branch) then obj2 is grasped and removed from the table; if open(obj2) is false (the K- branch) then
no further action is taken. Since the planner initially knows that obj1 is not open, this object does not need
to be removed from the table.

3.3 Example 3

The planner does not initially know the state of open(obj1) and open(obj2).

Plan:

sense-open(obj1)

sense-open(obj2)

branch(open(obj2))

K+:

branch(open(obj1))

K+:

graspA-fromTable(obj1)

putInto-objectOnTable(obj1,obj2)

graspD-fromTable(obj2)

putAway(obj2)

K-:

graspA-fromTable(obj2)

putAway(obj2)

K-:

branch(open(obj1))

K+:

graspA-fromTable(obj1)

putAway(obj1)

K-:

nil

Since the planner does not initially know whether obj1 or obj2 is open, it includes two sense-open
actions in the plan. It then considers each possible outcome of these actions by constructing a plan with four
branches (an initial branch point, followed by a second branch point along each of the top-level branches):
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(i) Along the K+/K+ branch where open(obj2) and open(obj1) are true, both objects are grasped and
put away as in Example 1.

(ii) Along the K+/K- branch where open(obj2) and ¬open(obj1) are true, object obj2 is grasped and
put away.

(iii) Along the K-/K+ branch where ¬open(obj2) and open(obj1) are true, object obj1 is grasped and
put away.

(iv) Along the K-/K- branch where ¬open(obj2) and ¬open(obj1) are true, no further action is taken.

4 Message passing protocol

In this section we describe a simple message passing protocol for exchanging information between the
robot/vision, memory, and planning levels. We begin by defining the kinds of messages that can be passed
between the system levels. We then describe a simple control architecture that is sufficient for our pro-
posed integration task, and provide some details of a communication library (supplied by Edinburgh) that
implements this protocol.

4.1 Message definitions

We define a set of 10 messages that capture the interactions between the three levels of the system. Each
message is defined by its type and its content. A message’s type is simply its name or label. Depending
on the message type, a message may also contain specific content or data to be sent. The message passing
protocol we have defined is currently based on a point-to-point model, where each message is sent by a
particular system component to another component. Moreover, the message set is designed in such a way
that messages are (generally) defined in send/receive pairs so that only certain messages can be initiated by
a “sending” level, with an appropriate response being sent by the “receiving” level. The complete set of
messages is given in Table 2 and the send/receive message pairs are given in Table 3.2

4.2 Message passing control loop

The message passing protocol is initially driven by the robot/vision level of the system. Because of the
paired send/receive nature of our message set, the upper system levels are forced to coordinate their op-
erations in order to respond appropriately to lower-level messages. Currently, communication only takes
place between two “adjacent” levels of the system, i.e., the robot and memory, or the memory and planner
(see Figure 4). This means that all communication between the robot and planner must flow through the
memory level, which typically acts as a forwarding service, but may also observe or refine the flow of mes-
sages (see below). Because the message passing protocol is mainly driven by the robot level, the memory
and planning levels operate as message servers that respond to message queries. This protocol also permits
certain message exchanges between the planner and memory levels, however, that can interrupt the standard
robot-driven process. It is also worth noting that nothing in the implementation of the communication archi-
tecture prevents us from expanding this protocol in the future to permit direct point-to-point communication
between any two components of the system.

4.2.1 Robot-level control loop

At the robot level, the message-processing control loop follows a relatively simple repeating pattern where
the robot essentially drives the message-passing process and the upper levels of the system respond to

2The message set is still subject to change and may be expanded or streamlined in the future.
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MSG STATE UPDATE – Provide updated state information

Sender/Destination: Robot to Memory, or Memory to Planner

Content: World state specification

ACK STATE UPDATE – Acknowledge state update message

Sender/Destination: Planner to Memory, or Memory to Robot

Content: NONE

MSG ACTION REQUEST – Request a new action

Sender/Destination: Robot to Memory, or Memory to Planner

Content: NONE

ACK ACTION REQUEST – Acknowledge new action request for execution

Sender/Destination: Planner to Memory, or Memory to Robot

Content: NONE

MSG ACTION SUBMIT – Submit a new action for execution

Sender/Destination: Planner to Memory, or Memory to Robot

Content: Action specification

ACK ACTION SUBMIT – Acknowledge receipt of new action and start of action execution

Sender/Destination: Robot to Memory, or Memory to Planner

Content: NONE

MSG ACTION STOPPED – Provide alert that execution of last submitted action has stopped

Sender/Destination: Robot to Memory, or Memory to Planner

Content: Action execution return value (1 = success or 0 = failure).

ACK ACTION STOPPED – Acknowledge termination of last submitted action

Sender/Destination: Planner to Memory, or Memory to Robot

Content: NONE

MSG PLAN REQUEST – Request entire plan from planner

Sender/Destination: Memory to Planner

Content: NONE

MSG PLAN SUBMIT – Submit a complete plan

Sender/Destination: Planner to Memory

Content: Plan specification

Table 2: Available message types in the message passing protocol
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Message type sent Expected response
MSG STATE UPDATE ACK STATE UPDATE

MSG ACTION REQUEST ACK ACTION REQUEST

MSG ACTION SUBMIT ACK ACTION SUBMIT

MSG ACTION STOPPED ACK ACTION STOPPED

MSG PLAN REQUEST MSG PLAN SUBMIT

Table 3: Send/receive message pairs

Memory PlannerVision
Robot/

Table 4: Flow of messages between the three system levels

queries. The robot-level control loop defines a very simple synchronous cycle wherein a message is sent and
its acknowledgement is received before the next message can be sent. As a result, the robot only executes
one action at a time and provides updates on the state of the world before the next action begins.

At an abstract level, we see the interaction between the robot and the higher levels follow the RobotLevel-
ControlLoop pseudo code given in Figure 2(a). After an initial report on the world state, the main commu-
nication cycle consists of an action request by the robot, which is fulfilled by the upper levels (ultimately
the planner), an indication from the robot when the action has finished executing, followed by an update on
the new state of the world. Messages to and from the robot level all pass through the memory level. Thus, a
request made by the robot for a planning-level service (e.g., requesting a new action) will ultimately reach
the planner after being forwarded through the memory.

4.2.2 Memory-level control loop

Unlike the more tightly-regulated control loop of the robot level, communication at the memory level is
more loosely structured using a client-server architecture. In particular, the memory is able to respond to
requests from both the robot and the planner, as well as initiate certain messages of its own.

In most cases, the memory will initially act as a forwarding service that delivers messages from the
robot to the planner, and messages from the planner to the robot. One notable exception is the receipt
of MSG ACTION SUBMIT messages from the planner. Before forwarding such messages, the memory must
inspect the message contents to check for sensing actions, which may need to be refined. In the context
of the simple integration scenario described in this document, the memory must transform all sense-open
actions into poke or focus operations before passing them on to the robot. (In the future, the memory may
also be responsible for refining grasp operations specified by the planner. This protocol also supports a future
bottom-up role for the memory, where the middle level “abstracts” subsymbolic robot-level information into
a symbolic form understandable by the planner.)

The memory is also able to directly request information about the structure of a plan from the planner.
The planner will respond with a complete description of the current plan, which may be a conditional plan
with branches. The memory can then use this information as needed, for instance to help in its decision
making concerning refinement activities.

The pseudo code for the memory-level control algorithm is given in Figure 2(b).
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4.2.3 Planning-level control loop

The planning level control loop also operates in a client-server fashion, responding to messages sent from
the memory level (but typically originating from the robot level). The planning level is responsible for
constructing high-level plans and feeding the actions, one at a time, to the robot level through the memory
level. The planner also receives world state updates from the robot (again, through the memory) as well as
status reports as to the success or failure of performed actions.

The memory level is also able to interact with the planner to request a complete description of the
current plan. This part of the protocol provides the memory level with greater information about a plan’s
structure, which could be analysed in order to help direct future operations of the memory level, or refine
future actions sent to the robot. Future versions of the communication protocol may also allow the planner
to directly “push” such plan information to the memory, for instance as a result of replanning operations.
The general planning-level control algorithm is given in Figure 2(c).

The message passing architecture we have outlined has a number of advantages. First, the protocol
clearly separates the operations of the three system levels and the interactions between the levels, with the
memory level acting as a form of mediator or interpreter. For instance, this protocol allows for the possi-
bility of different content formats for messages flowing between the lower and upper levels of the system
(e.g., messages with subsymbolic information between the robot and memory, and messages with symbolic
information between the memory and planner). Also, future changes to the communication protocol involv-
ing one pair of levels need not force changes to the interaction of another pair of levels. Finally, we have
designed our message set to support much more complex and flexible control architectures, which might
arise in the future. For our initial integration tasks, however, the existing process we have outlined is more
than sufficient.

Direct link between SDU and Edinburgh: In terms of the initial integration efforts between SDU and
Edinburgh, the above protocol does not specify any major changes to existing work. Instead, the memory
level can be viewed as a message-forwarding module that holds the place of the full mid-level memory
component, in order to bring the existing SDU/Edinburgh architecture in line with the protocol described
here. Although this module will simply pass messages to the other system levels, its addition should facilitate
the inclusion of a more fully-featured module into current integration efforts at a later date when a memory
system is made available. The necessary code for the message-forwarding module is provided as part of
Edinburgh’s supplied communication library.

4.3 Socket communication library and sample code

For ease of implementation we have defined a set of C++ classes for manipulating message types and
message contents. These classes work in conjunction with a lightweight socket library (also written in C++)
that we have developed for Linux, to facilitate communication between system components.

At the code level, message types are chosen from a list of predefined enum types, and message contents
are simple C++ strings.3 Currently, the content of the MSG STATE UPDATE message must be a list of instan-
tiated properties from Section 2.3 that form the world state. Similarly, the action specification content of the
MSG ACTION SUBMIT message is a single instantiated action from Sections 2.1 or 2.2. The content of the
MSG PLAN SUBMIT message will be a plan similar to those in Section 3, but encoded as a Prolog-style list

3The current version of the communication library also defines messages for introducing new objects, new properties, and new
actions into the planning-level domain description. We are still in the process of extending the message passing protocol to include
these new message types and, thus, we have not included a discussion of these messages here. Such additions will appear in a future
version of this document.
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Proc RobotLevelControlLoop
Send: MSG STATE UPDATE; Receive: ACK STATE UPDATE;
while !termination loop

Send: MSG ACTION REQUEST; Receive: ACK ACTION REQUEST;
Receive: MSG ACTION SUBMIT; Send: ACK ACTION SUBMIT;
Send: MSG ACTION STOPPED; Receive: ACK ACTION STOPPED;
Send: MSG STATE UPDATE; Receive: ACK STATE UPDATE;

endLoop
endProc

(a)

Proc MemoryLevelControlLoop
while !termination loop

choose
Send: MSG PLAN REQUEST;

or
Wait for message receive;
case MSG ACTION SUBMIT:

if action is sense-open then
Replace sense-open with poke or focus operation;

endIf
Forward message;

case MSG PLAN SUBMIT:
Update memory with received plan;

case all other message types:
Forward message;

endChoose
endLoop

endProc
(b)

Proc PlannerLevelControlLoop
while !termination loop

Wait for message receive;
case MSG STATE UPDATE:

Update world model;
Send: ACK STATE UPDATE;

case MSG ACTION UPDATE:
Send: ACK ACTION REQUEST
Construct plan/get next action in plan;
Send: MSG ACTION SUBMIT; Receive: ACK ACTION SUBMIT;

case MSG ACTION STOPPED:
Process action success/failure;
Send: MSG ACTION SUBMIT;

case MSG PLAN REQUEST:
Construct plan/get entire plan;
Send: MSG PLAN SUBMIT;

endLoop
endProc

(c)

Figure 2: Message passing control algorithms
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(see Section 5 for an example). A plan iterator class is provided for inspecting the structure of conditional
plans in this format. (For more details, refer to the sample code provided with the socket library.)

For initial testing purposes we terminate a plan by having the planner send a MSG ACTION SUBMIT
message to the memory level in response to an action request, with the string "EOP" as its content. The
memory level will then pass this message on to the robot. Both the memory and robot levels must then send
a final ACK ACTION SUBMITmessage to the level above, at which point all system levels are free to terminate
communication. In the future, plan termination will force the suspension of the main control loop (i.e., the
planner will not send an action) until a new goal is given to the planner and a new plan is constructed.

The communication library is distributed with a set of sample programs that implement the basic mes-
sage passing protocol described in this document for the robot, memory, and planner components. These
programs focus solely on the communication interface, with little additional functionality. (For instance, the
memory level program simply forwards messages without “refining” sensing actions and always requests a
complete plan after the first robot level request for an action.) It is hoped that these programs can serve as
the basis for the development of more sophisticated modules that can simply be “plugged” into the commu-
nication architecture. A series of pregenerated plans are included with this software, however, to test the
message exchanges between the three levels.

5 Message passing example

To better understand the flow of messages between the three system levels, we consider the scenario in
Example 2, where the robot is tasked with the goal of clearing the open objects from a table. Figure 3 shows
the messages sent by the three levels during the execution of the first action, sense-open(obj2), in the
conditional plan constructed for Example 2 (i.e., one complete cycle of the robot-level control loop).

We note that the first message sent by the robot, MSG STATE UPDATE, provides the planner with its
initial description of the world. We assume that on initialization the robot/vision system will send such an
“unusually complete” world description, as a bootstrapping action. From the perspective of the planning
system such a message is no more than a particularly large state update, and requires no extra machinery.

Given an initial state description, the planner can construct a plan to achieve a given high-level goal.
The planner sends the actions in this plan to the robot/vision system one step at a time, through the memory,
in response to action requests. After the execution of each action the robot/vision system reports an update
of the world state back to the planner, again, through the memory. In Figure 3 these updates are described
in terms of state changes, however, we have agreed that state updates will initially include a complete (or as
near as possible to complete) description of the new world state.

For many of the messages sent in the system, the memory level acts as a forwarding service between
the robot and the planner. (In the future the memory may take on a more active role as a mediator or trans-
lator between the robot and planner.) One notable exception is the occurrence of the MSG ACTION SUBMIT
message. Since the action specified in this message is a sensing action, sense-open(obj2), the memory
refines this action by choosing between a poke and a focus operation. In this case, focus(obj2) is chosen
as the refined action and the modified message is forwarded to the robot.

Figure 3 also illustrates the results of a MSG PLAN REQUEST message from the memory to the planner.
In this case, the planner responds with a plan of the form:

[sense-open(obj2),branch(open(obj2),[graspA-fromTable(obj2),putAway(obj2)],[])].

This plan corresponds to the complete conditional plan given in Example 2, encoded in a Prolog-style list
format for transmission using the communication library.4

4The communication library provides a helper class for processing plans in the compact list format.
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We note that according to the message passing protocol, MSG PLAN REQUEST messages could be sent by
the memory at other times during its control loop, or not at all, producing slightly different message orderings
than those shown in Figure 3. (In the sample code the memory sends a MSG PLAN REQUEST after receipt of
the first MSG ACTION SUBMITmessage from the planner.) Similarly, alternate message orderings—including
messages sent in parallel from different levels—could also arise since the robot, memory, and planner all
run as independent processes (e.g., message 13 could be sent at the same time as message 11, or even before
it). The implementation of our message passing protocol ensures that such ordering differences do not lead
to problems like deadlock, however.

6 Plan execution and monitoring

Although we are able to construct plans for the proposed object manipulation scenario, and communicate
those plans to the other system levels using the message passing protocol, we must still be concerned with
how plan failure information should be exchanged between the planner and the other system levels.

In discussions with SDU we have identified the need for a high-level mechanism that would operate
closely with the planner in order to monitor plan execution and control replanning/resensing activities. A
plan execution monitor, currently being built by Edinburgh, will be responsible for assessing both action
failure and unexpected state information that result from feedback provided to the planner from the execution
of planned actions at the robot level. The difference between predicted and actual state information will be
used to decide between (i) continuing the execution of an existing plan, (ii) resensing activities that target
a portion of a scene at a higher resolution to produce a more detailed state report, and (iii) replanning from
new/unexpected states.

In support of the resensing activities described in (ii), we have agreed in discussion with SDU that the
plan monitor could initially provide the vision system (possibly through the memory level) with a list of the
objects that were “relevant” to the execution of the action that is reported to have failed, as based on the
high-level action description. Using this information, the vision system could then target particular parts
of the scene with greater resolution in order to reevaluate the sensors that provide information about these
objects. This operation may lead to new information about the world state and, possibly (as future work),
an updated high-level action model.

In terms of the integration scenario described in this document, the plan execution monitor will have
the added task of managing the execution of plans with conditional branches. Plan branches result from the
inclusion of explicit sensing operations (like sense-open) into a plan. When a sensing action is ultimately
executed at the robot level, the result of the sensing will be returned to the planner through the memory level,
as part of the standard state update cycle. When faced with a conditional branch point in a plan, the plan
execution monitor will then make a decision as to the correct plan branch it should execute, based on the
current state information. If such information is unavailable, for instance due to a failure at the robot/vision
level, resensing or replanning activities will be triggered as above. It is important to note that the robot/vision
system will never be aware of the conditional nature of a plan, and will never receive a “branch” operation
like those shown in the example plans above. From the point of view of the robot, it will only receive a
sequential stream of actions. This will also be the case for the memory level, except when a complete plan
is requested. In such situations a fully-specified conditional plan will be transmitted to the memory level.

Initially, we expect that most plans will fail early, and often, and that most monitoring operations will
trigger replanning activities. Our goal is to implement the basic framework for the plan monitor in the short
term, in order to evaluate its effectiveness on plans being executed in the actual robot environment.
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ROBOT MEMORY PLANNER
1. MSG STATE UPDATE:

"ontable(obj1),...,!clear(obj1)"

2. (Forward to planner) MSG STATE UPDATE:
"ontable(obj1),...,!clear(obj1)"

3. ACK STATE UPDATE
4. (Forward to robot) ACK STATE UPDATE
5. MSG ACTION REQUEST
6. (Forward to planner) MSG ACTION REQUEST
7. ACK ACTION REQUEST
8. (Forward to robot) ACK ACTION REQUEST
9. MSG ACTION SUBMIT:

"sense-open(obj2)"

10. Refine sense-open(obj2) to focus(obj2)
(Forward to robot) MSG ACTION SUBMIT:
"focus(obj2)"

11. (Send to planner) MSG PLAN REQUEST
12. MSG PLAN SUBMIT:

"[sense-open(obj2),

branch(open(obj2),

[graspA-fromTable(obj2),

putAway(obj2)], [])]"

13. ACK ACTION SUBMIT
14. (Forward to planner) ACK ACTION SUBMIT
15. MSG ACTION STOPPED:

"1"

16. (Forward to planner) MSG ACTION STOPPED:
"1"

17. ACK ACTION STOPPED
18. (Forward to robot) ACK ACTION STOPPED
19. MSG STATE UPDATE:

"open(obj2)"

20. (Forward to planner) MSG STATE UPDATE:
"open(obj2)"

21. ACK STATE UPDATE
22. (Forward to robot) ACK STATE UPDATE
23. ... ... ...

Figure 3: Example of messages sent during the execution of the sense-open(obj2) action in Example 2
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7 Discussion

• All high-level grasp operators abstract the task of grasping into single action steps. We may extend the
planner’s representation to provide “finer-grained” actions that split the act of grasping into a sequence
of steps like positionForGraspA(obj1), graspA-fromTable(obj1), lift(obj1). Such actions
would provide more detailed execution instructions to the robot system and, on failure, the robot
system could more accurately indicate to the planner the specific components of the grasp that failed.

• In this document we only consider the refinement of sense-open actions at the memory level. In the
future, we could also accommodate the refinement of grasp actions. For instance, the planner could
generate plans with abstract actions like grasp(obj1). It would then be the task of the memory level
to make a decision as to the choice of grasping option and transform such actions into more specific
robot-level actions like graspA(obj1) or graspD(obj1).

• As future work, we believe that a more complex interaction between the robot, memory, and planning
levels might be desirable. For instance, we may want the planning level to have the ability to terminate
an action during its execution if it is having an undesirable outcome, or alert the memory about a
replanning operation. This would require a more asynchronous (“push”) architecture, including state
update messages from the robot during action execution, as well as the ability to issue halt commands
from the planning level. Moreover, we also see the possibility of a more comprehensive “bottom-up”
role for the memory level, as an abstraction component that mediates between the robot/vision level
and the high-level planner. We believe that such extensions will not require a significant reworking of
the message passing protocol, but only slight extensions to the message set and control algorithm.

• We also envision a more significant extension to the message passing protocol to support the addition
of new objects, new properties, and new actions (i.e., “the birth of an object/property/action”) into
the high-level planning representation as a result of memory-level reasoning. Partial support for such
messages already exists at the code level of the socket library, however, future versions of the message
passing protocol will more fully specify the operation of these message types.

• There are a number of places where incompleteness of information in the world state update can come
into the system. Some of these are endemic to the interaction of a resource bounded agent working
in a real world setting. As a result, we believe that we must seriously examine the limitations of
the system’s capability for providing complete state updates, as well as the traditional AI assumption
that we have a complete model of the state changes that result from executed actions. This is a very
interesting area for future work and something we are committed to looking at in detail. Initially,
however, we will simply ensure that our action models and state updates are complete and correct.

• More issues to come as discussions progress...
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Abstract

In this paper we present an active system that learns ob-
jects models by manipulating them. Information about the
object’s 3D shape is provided by reconstructing local con-
tour descriptors. This shape information is accumulated
over time in three ways: 1) disambiguation: erroneous
stereo correspondences that are unsuccessfully tracked are
discarded. We make use of aspect cues to increase the data
association selectivity. 2) correction: the full pose of the
reconstructed features is corrected over time using an Ex-
tended Kalman Filter approach; 3) completeness: multiple
2 1

2D representations become merged, constructing a full
3D representation of the object. Combined with a grasping
reflex, the system presented herein is intended to endow an
active system with the capability to discover autonomously
its environment. The described system is evaluated quan-
titatively on artificial scenario and qualitatively on a real
scenario.

1. Introduction
In order to be really autonomous, a system need to be

able to adapt to new, unplanned situations. It has been ar-
gued that a cognitive robot system need to

World knowledge, and more specifically the knowledge
of the objects that inhabit it, their shape and their affor-
dances, is of critical importance for an autonomous system.
Given an appropriate model, robust methods exist for ob-
ject recognition and pose estimation (see, e.g., [8]), and for
grasping and manipulation (e.g. [3], [10]). This informa-
tion is generally provided by the system’s designer, e.g., as
CAD model or collections of 2D views of the object span-
ning all perspectives,. However, extracting such representa-
tions from unknown objects is a difficult task. A quality of
a cognitive system is the ability enrich its world knowledge
by exploration, thus increasing its cognitive abilities (see,
e.g., [5]).

This paper introduce a system that generates an internal
representation of unknown objects by manipulation. First,
a set of local contour descriptors are extracted from the im-

age, providing a first representation of the 2D shapes. Two
such representations are matched across two views using
stereopsis, and the matches are used to reconstruct a first
representation of the 3D shapes in the scene. At this stage,
the representation is merely a collection of 3D primitives,
objects and background are not segmented in any way. As-
suming that nothing is known about the objects in the scene,
the system will learn its representation by attempting to
grasp and manipulate parts of the scene. Such a represen-
tation has been shown to be sufficient to generate simple
grasping reflexes [1]. This will create a simple behavior
where the system will attempt to randomly grasp parts of
the scene, until it succeed. A successful grasp allows the
system to take control over the object and to manipulate
it to learn its shape. By using the motion knowledge pro-
vided by the robot, we segment the object from the scene
(by selecting primitives that move according to the robot’s
arm motion) and accumulate the representation. Such an
exploratory mechanism enable the system to explore its en-
vironment and learn the shape of the objects that inhabit it.

This paper presents the mechanism used for accumulat-
ing the visual representation over time. Having control over
the object provides a very accurate knowledge of its mo-
tion that can be used to track individual 3D primitives. At
each frame, new observations are used to correct the 3D
primitives’ full pose and to enrich the representation with
new aspects of the object (e.g., parts that were previously
occluded). The mechanism presented herein improves the
representation in three respects:

• Accuracy: the representation is corrected over time us-
ing new observations.

• Reliability: tracking primitives allows to discard erro-
neous ones. Because we track 3D primitives, the like-
lihood for erroneous primitives to be tracked success-
fully is vanishingly small.

• Completeness: by manipulating the object, the system
can witness it under a wide range of viewpoints, and
accumulate 2 1

2D representations into a full 3D repre-
sentation.

1



Solutions to this problem belongs to two groups:
The first groups consists of the geometric analytic so-

lutions, including multifocal tensors [6] and bundle adjust-
ment [12]. These techniques are ideal solutions to the prob-
lem (“Gold Standard”, cf. [6]) and are prominent in the
strict batch–SFM scenario. They can be designed to be ro-
bust to erroneous data association (see [12] for a discus-
sion). One major flaw with these solutions stems from
the fact that they are batch processes: all views need to
be available. This can make the problem intractable for
large sequences, and implies a delay in any active system.
It has been proposed to split the problem into groups of,
e.g., 3 frames, reducing both delay and computational cost.
Nonetheless, these approaches face the dead–reckoning
problem and need an additional global integration stage.

The second group uses various flavors of the Bayesian
filtering theory. This provides an on–line solution by for-
malizing the problem as a Markov process where a state
vector combining the current pose and the landmarks’ bear-
ing can be formalized as the general Bayesian Tracking
problem — see [2] for a review. This theoretical formu-
lation allows for an optimal solution called Kalman filter if
the state vector as a multivariate normal distribution and if
the prediction and observation processes are linear.

Because of the on–line constraint, the approach pre-
sented in this paper belongs to the second category. Kalman
filters and its non–linear brothers (e.g., Extended or Un-
scented Kalman filters) have been used extensively to solve
the simultaneous localization and map–building problem
(see, e.g., [4, 13, 11]) The present scenario is quite different,
because the motion prediction is very accurate, the framer-
ate is high, and a large proportion of the primitives is visible
at any time. On the other hand, because they only encode lo-
cal contour information, primitives are not very distinctive.
SLAM, on the other hand, focuses on scenario where the
motion is very inaccurate, successive frames are generally
far apart and landmarks are very distinctive (e.g., SIFT [9])
The differences of the approach presented herein are:

• tracking in 3D space: the tracking of the primitives
is done in 3D space, allowing to represent the rigid
motion of the robot’s arm as a linear operation using
homogeneous coordinates.

• data association in stereo 2D space: 3D primitives are
re–projected in both image planes to be compared with
extracted primitives. This allows to reduce the uncer-
tainty generated by stereopsis.

• full pose tracking: because the primitives are local
contour descriptors, they encode local position and ori-
entation. Therefore we use a pair of Kalman filters to
filter the full pose.

The system is presented in section 2 and results on arti-
ficial and real scenarios are shown in section 3.

2. Framework presentation
This paper presents a framework that extracts 3D rep-

resentations of object’s shape from stereopsis, then accu-
mulates and refine them using robot’s arm motion knowl-
edge. In a first stage, local contour descriptors are extracted
from both images (section 2.1), then matched and recon-
structed (section 2.1.1). The resulting 3D–primitives are
tracked over time using the robot’s arm motion knowledge
and the object’s shape representation is corrected, disam-
biguated and completed (section 2.2).

2.1. Primitive–based shape representation

In this work, we use local contour descriptors called
primitives (see [7]). The primitives are sparsely extracted
from local signal operators, and reconstructed in 3D using
stereopsis. A primitive encodes local orientation, phase and
color. They, therefore describe local tangents to image con-
tours, augmented with these contours’ color and phase in-
formation.

Therefore, a primitive π is encoded by the vector:

π = (x, θ, ω, c) (1)

where x contains the primitive position, θ its orientation,
ω its phase, and c its color. An appearance metric dm be-
tween two primitives is defined as the mean of the distance
between those two primitives in all three components θ, ω, c
— see [7] for a discussion of the individual metrics.

2.1.1 Stereopsis and 3D–reconstruction

Given one 2D–primitive in the first image, we compute the
corresponding epipolar line in the second image. All 2D–
primitives in the second image that lie close to the epipolar
line are considered as putative correspondences. Each pu-
tative correspondence is associated a confidence depending
on how similar it is to the primitive in the first image.

At this stage, a simple heuristic would be to select the
correspondence with the highest confidence. We will see
in the following that it is worthwhile preserving competing
correspondences until more information is available.

Once we have a pair of corresponding 2D–primitives, we
can reconstruct a 3D–primitive in space, that describes the
3D contour they describe. Because 2D–primitives are lo-
cal tangents to the image contours, the reconstructed 3D–
primitives are also defined by a position and an orienta-
tion in space, alongside with phase and color information.
Therefore, a 3D–primitive Π is encoded by

Π = (X,Θ,Ω,C) (2)



(a) image (b) 2D–primitives (c) detail

Figure 1. Illustration of the 2D–primitive extraction. (a) original image; (b) extracted 2D–primitives; and (c) detail of (b).

where X is the position, Θ the orientation, Ω the phase, and
C the color.

2.2. 3D–Primitive tracking

In order to improve the reconstructed shape model of the
object, the 3D–primitives’ pose is tracked using known mo-
tion. The predicted representation is then assessed, merged
and corrected using the 3D–primitives reconstructed from
the next stereo pair of images.

2.2.1 Prediction

In this work it is assumed that the object’s motion is known
from the robot’s arm (Note that it could alternatively be
computed using visual odometry). Considering a primitive
with a pose (Xt,Θt), its pose (Xt+1,Θt+1) after a motion
M can be predicted by{

Xt+1 = M ·Xt

Θt+1 = M ·Θt
(3)

2.2.2 Data association

The data association is performed in both 2D image planes,
in order to reduce uncertainty. The predicted 3D–primitive
is re–projected onto both image planes, and compared with
the extracted stereo pairs of 2D–primitives that lead to a
valid reconstruction in 3D. Two 2D–primitives Πp and Πe

are considered as matched if they are proximate and similar,
i.e., { ||xp − xe|| < τE

dm(Πp,Πe) < τA
(4)

Here dm is an appearance constraint that is 0 if the two
primitives look perfectly similar and 1 if they are totally
different — see section 2.1. τM is the threshold on this ap-
pearance constraint. τE is the maximal distance between
two primitives for a match to be valid. This is set to the size
of the 2D–primitives, 3 pixels.

By extension, two 3D–primitives are matched if their re–
projections in both image planes are matched.

2.3. Confidence re–evaluation

Stereopsis suffers from a certain level of ambiguity. Ac-
cumulating visual representations over time allows to re-
solve some of this ambiguity, and to discard erroneous as-
sumptions. This section describes how the accumulated
primitives’ confidence is re–evaluated as a function of suc-
cess of the primitive tracking.

2.3.1 Confidence update

The confidence in a putative 3D–primitive was originally
estimated as the similarity between the stereo–pair of 2D–
primitives that reconstructed it. In the general case where
the scene contains repetitive structures, this assumption
does not hold. Tracking the 3D–primitives over time allows
to re–evaluate this confidence, and to discard erroneous
primitives. Therefore, it is worthwhile conserving compet-
ing stereo–correspondences as discussed in section 2.1.1, to
avoid losing correct hypotheses early on.

We will write the fact that a primitive Πi that predicts a
primitive Π̂t

i at time t is matched (as described above) as
µt(Π̂i). We define the matching history of a primitive Πi

from its apparition at time 0 until time t as:

µ(Πi) =
(
µt(Π̂i), µt−1(Π̂i), · · · , µ0(Π̂i)

)T

(5)

thus, applying Bayes formula:

p
“
Πi|µ(Π̂i)

”
=

p
“
µ(Π̂i)|Π

”
p (Π)

p
“
µ(Π̂i)|Π

”
p (Π) + p

“
µ̄(Π̂i)|Π̄

”
p
`
Π̄
´

(6)
where Π and Π̄ are correct and erroneous primitives, re-
spectively.

Assuming independence between the different observa-
tions, that Π has been tracked since n iterations, and has
been matched successfully m times, the confidence can be



estimated to:

p
“
µ(Π̂i)|Π

”
=
Q

t p
“
µt(Π̂i)|Π

”
= p

“
µt(Π̂i) = 1|Π

”m

p
“
µt(Π̂i) = 0|Π

”n−m

(7)
In this case the µt are equiprobable and therefore, defining
the quantities α = p (Π), β = p

(
µt(Π̂) = 1|Π

)
and γ =

p
(
µt(Π̂) = 1|Π̄

)
, Eq. (6) can be rewritten as:

p
“
Πi|µ̄(Π̂i)

”
=

βm(1− β)n−mα

βm(1− β)n−mα+ γm(1− γ)n−m(1− α)
(8)

The prior and conditional probabilities were estimated
to the values of α = 0.46, β = 0.83, and γ = 0.41 us-
ing a variety of video sequences with known motion where
depth ground truth was provided by a range scanner. This
means that, in these examples, the prior likelihood for a
stereo hypothesis to be correct is 46%, the likelihood for
a correct hypothesis to be confirmed is 83% whereas for an
erroneous hypothesis it is of 41%. These probabilities show
that Bayesian inference can be used to identify correct cor-
respondences from erroneous ones.

2.3.2 Confidence freeze

While the robot manipulate the object, it is expected that
some parts of the object become occluded and therefore fail
to be updated. For example, if the object is fully rotated,
3D–primitives on the occluded side will repeatedly fail to
be matched during half of the rotation. This would normally
lead to a large decrease in the primitive’s confidence. In
order to preserve primitives that become occluded, we state
that if the a primitive’s confidence become high enough (>
0.9) it is not updated anymore. Conversely, if a primitive’s
confidence drops below 0.1, it is discarded. This allows
to reduce the system’s computational load by only tracking
promising hypotheses.

2.4. Correction of the representation

Even when the motion knowledge is very accurate,
tracking a primitive by successive predictions is bound
to become inaccurate after a large number of iterations.
To prevent this problem, we correct the accumulated
3D–primitives at each time step with the observed 3D–
primitives they were matched with. Moreover, correcting
the primitives’ full pose at each iteration with newly ob-
served data allows to reduce uncertainty.

In order to correct the primitives’ full pose, we use a pair
of Kalman filters, one for the position and one for the ori-
entation. Both states are handled as homogeneous vectors,
as a rigid body motion in space is linear in homogeneous

coordinates (the orientation vector is encoded as an homo-
geneous point at infinity, with an homogeneous coordinate
of zero).

When considering rigid motion of 3D poses, the Kalman
equations simplify to

Kt+1 = Λ[x]t+1|t ·
(
Λ[x]t+1|t + Λ[z]t+1

)− 1(9)
xt+1|t+1 = xt+1|t +K · (zt+1 − xt+1|t) (10)

Λ[x]t+1|t+1 = Λ[x]t+1|t −Kt+1 · Λ[x]t+1|t (11)

where xt+1|t is the predicted state, zt+1 is the observed
state, xt+1|t+1 the corrected state, Λ[x] stands for the co-
variance matrix of x, and Kt+1 is the Kalman gain.

2.4.1 Integration of new 3D–primitives

Finally, all reconstructed 3D–primitives that are not asso-
ciated with a predicted one are added to the representation.
This allows to complement the representation, but also to re-
cover primitives that may have been mistakenly discarded.

3. Results and discussion

The scheme presented in the above section has been eval-
uated on artificial and real video sequences, to evaluate dif-
ferent the aspects of the accumulation. As discussed in the
introduction, a good accumulation framework should im-
prove visual representation in three ways:

• Accuracy: the representation is corrected over time us-
ing new observations. This is evaluated in section 3.1
on artificial data.

• Reliability: tracking primitives allows to discard erro-
neous ones. This is evaluated on artificial data in sec-
tion 3.2

• Completeness: by manipulating the object, the system
can witness it under a wide range of viewpoints, and
accumulate 2 1

2D representations into a full 3D repre-
sentation. This is evaluated in section 3.3 on a real
scenario.

3.1. Correction

Figs. 3 and 2 shows the 3D pose error of the accumulated
primitives during a pure translation. The same experiment
was done with a triangle and a circle. The mean position
and orientation errors both fall quickly to half their initial
values, and the variance becomes neglectable. The same
experiments was done with a rotation of 180 degrees (18
degrees per frame), with similar results. This shows that
using a linear correction of rigid body motion is suitable
approach for our scenario.
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(a) correspondence problem (b) all candidates (c) after accumulation

Figure 4. Illustration of the correspondence problem and its disambiguation by tracking. In (a) the correspondence problem is illustrated:
The primitive P in the left image has four putative correspondences on that satisfy the epipolar constraint, that lead to the reconstruction of
four mutually exclusive 3D–primitives A, B, C and D. Because B and C have opposite phase, their similarity ( 0.4) is lower than the one of
A and D ( 0.9). On the other hand, A and D are locally indistinguishable. Fig. (b) shows all putative correspondences reconstructed in 3D.
Fig. (c) shows the result of the accumulation.

(a) images

(b) stereo

(c) accumulation 10 frames

Figure 2. Pose correction over time, for a pure lateral translation.

3.2. Selection

Fig. 4 illustrates how the accumulation process resolves
the ambiguity generated by the stereo correspondence prob-
lem. Consider one primitive in the left image, its potential
correspondences all lie on the epipolar line χ. In the exam-
ple of Fig. 4(a), the epipolar line cross four image contours
(two per circle) and therefore stereopsis allow for four mu-
tually exclusive reconstructions, noted A, B, C and D. Out
of those four, two (B and C) imply that the left side of the
left circle be matched with the right side of one circle in the
left image. Although the primitives’ orientation is similar,
the phase information contradicts such association, the sim-
ilarity of these matches is low ( 0.4). Therefore these two
hypotheses could be discarded by a local appearance con-
straint. On the other hand, the two other hypotheses (A and
D) are locally indistinguishable. Fig. 4(b) show the recon-
struction of all hypotheses: the two far circles represent the
correct reconstruction. The nearby circle is generated by the
left side of the left–hand circle matched with the left side of
the right hand circle (e.g., case D). The lines are generated
by the unlikely match of the left and right sides of the cir-
cles (e.g., cases B and C). Fig. 4(b) shows the hypotheses
left after accumulation: all erroneous hypotheses have been
removed.

3.3. Completeness

We applied the scheme presented above to some real
video sequences. We use an industrial robot arm (Staubli
RX60) that allows for a very precise motion control. The
images were captured using a pre–calibrated Bumblebee
camera system. The hand–eye calibration was also calcu-
lated off–line. Fig. 5 shows the result of the applications



(a) position

(b) orientation

Figure 3. Pose correction over time, for a pure lateral translation,
see Fig. 2.

the scheme presented herein to this scenario. The object is
rotated by the robot’s arm so that all perspectives are shown
to the cameras. The bottom part of the figure shows the re-
constructed (left) and accumulated (right) representations,
from two different views. The accumulated representation
is free of most outliers, while offering a representation of
the whole 3D shape. On the other hand simple stereo re-
construction lead to an incomplete and less reliable rep-
resentation. In order to provide the reader with a better
perception of the reconstructed and accumulated represen-
tations, three videos are attached to this paper. The first
one, named accumulation-process.avi shows the
accumulated representation, every 5 frames until frame #45.
The second one, named stereo.avi shows the visual
representation reconstructed by stereopsis, under different

frame #0 (left image) frame #45 (left image)

stereo reconstruction accumulation 45 frames
Figure 5. Illustration of the accumulation scheme on a real se-
quence. The plastic jug held by the robot’s arm is rotated, show-
ing all parts of the object to the camera. Two views on the recon-
structed and accumulated representation are shown.

viewpoints (at frame #45). Finally, the last one, named
accumulated.avi shows the accumulated representa-
tion (also at frame #45) from different perspectives.

4. Conclusion

This paper presented a Bayesian filtering framework for
accumulating instantaneous 2 1

2D visual representations, re-
constructed using stereopsis, into full 3D representations.
The proposed framework is shown to improve the quality
of the representation, comparatively to pure stereopsis, in
three respects: accuracy, reliability, and completeness. Im-
plemented into an active system with a grasping reflex and
a basic exploratory behavior, this mechanism enables a sys-
tem to discover objects in its environment.

Future work includes using visual odometry in cases
where the knowledge of the robot’s arm is inaccurate of
absent. Inaccurate motion requires to correct the motion
estimate along with the primitives. Also, the confidence
re–evaluation scheme could be refined by considering the
quality of each match instead of the binary matched / not–
matched that is presently used.



References
[1] D. Aarno, J. Sommerfeld, D. Kragic, N. Pugeault, S. Kalkan,

F. Wörgötter, D. Kraft, and N. Krüger. Early Reactive Grasp-
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Abstract— In this paper an approach for object separation
using active methods and multi-view object representations
is presented. Daily life objects reveal natural similarities,
which cannot be resolved with the perception of a single view
only. The presented framework allows for the separation of
different object hypotheses which have similar views to the
current percept. By actively rotating the object, the coherence
between controlled path, inner models and percept is observed
and allows to reject implausible hypotheses. Using the same
framework, pose and object correspondence can be determined.
With the benefit of active methods the perceptual task can be
solved using very coarse features, which facilitates a compact
multi-view object representation. The proposed approach is
independent from a specific visual feature descriptor and thus
suitable for multi-modal object recognition.

I. INTRODUCTION

In this work an approach is presented which solves a task
that is natural to humans. A humanoid robot which acts
in a natural environment has to cope with a large variety
of different objects. In order to perceive the surrounding
world in a robust manner the robot has to be able to
learn, classify and act on objects accordingly. The amount
of different objects imposes a challenging problem for the
research in machine vision. Many approaches for object
recognition are restricted to a small amount of objects and are
also restricted to objects that are separable with the feature
extraction method deployed. Since visual perception is one
of the building blocks of cognition, this restriction hinders
the application of cognitive systems in real environments.
Inference and reasoning based upon usually require a large
set of examples which cover the variety of percepts required
to solve a cognitive task.

One typical problem when dealing with a large amount of
objects consists in the natural similarities of daily life objects.
Many objects can not be discriminated when observed from
one unique view point using a single feature descriptor. There
are two different approaches to cope with this fact. One pos-
sibility consists in the integration of different modalities and
senses which allows for a reduction of the uncertainty that
is imposed by the similarities. Another possibility consists
in the active exploration of objects in order to determine the
correct correspondence between inner models and perceived
world. In this paper we present an approach which uses active
vision to reduce the uncertainty deriving from similarities in
the world surrounding. Within a coupled action-perception
framework, the robot generates views of the object until the

perception system is capable of narrowing the possibilities
of matches between inner models and perceived object.

Since the active vision paradigm was introduced ([1],
[2], [3]) the availability of humanoid robot systems with
distinct manipulation capabilities has opened the possibility
to study and implement active methods in real environments.
Recent research focuses on solving some ill-posed problems
in machine vision with active methods. Fitzpatrick et. al
use the manipulator of a robot to gain an initial idea of
the presence and the shape of an object [4]. Omrcen et.
al propose a control scheme and an active vision approach
which addresses the problem of figure ground segmentation
[5].

In the work introduced in this paper, an active approach
for object separation is presented which is designed for the
implementation on a humanoid robot platform.

The next section will introduce some principles from
cognitive science and neuroscience which were taken into
consideration during the development of the approach. The
subsequent section gives a brief overview of the different
modules of the proposed system. The algorithm used for
interpretation of the current percept and adaption of the
movement will be explained in Section IV. Finally, experi-
mental results are presented and discussed.

II. GUIDING PRINCIPLES

In the following section some of the guiding principles in
the development of the system are presented. All principles
stand in line with the conviction that perception systems
aimed for the application in cognition should agree with
the basic findings of cognitive science and neuroscience in
the past years. Here we present principles which directly
influence the approach, explain how and give references to
work which focuses on similar aspects.

1) Object representation is based on two dimensional
views: In our work we use view based representations of
objects. Psychophysical experiments on humans [6] and on
monkeys [7] have lead to a view-based model of how the
visual system achieves consistent identification of objects.
View-based methods model the object by selected views
rather than by constructing a 3D-model to match the object
in the scene. Logothetis et al. found cells in the macaque
Inferotemporal cortex (IT) that are tuned to specific views
of an object [8]. Psychophysical studies carried on with
human subjects indicate that object recognition is performed
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Fig. 1. Overview of the system structure. The system couples control and
perception modules via the environment. The interpretation module receives
input from perception and control modules and guides the control module.

around views presented while training [9]. Logothetis et al.
identified view-tuned cells which respond with a significant
spike rate for specific views of objects. In the presented
approach each object model consists of a set of object views
which are represented by nodes in a spherical graph. This
representation of objects is usually referred to as aspect
graph or viewing sphere. In recent research the aspect graph
showed to be a feasible representation for multi-view object
representations. Aspect graphs usually contain prototypical
views of objects. These views are used during recognition
tasks (see e.g. [10]). A main interest also has been to extract
outstanding views of objects as prototypes which allow for
a more compact and descriptive representation ([11], [12]).
Also the problem of pose estimation was addressed using a
combination of local features and aspect graphs [13].

2) Representations should allow for multi modal integra-
tion: One possibility to reduce uncertainty in perception
consists in the integration of different cues for the task of
object separation. There have been many efforts to integrate
different visual modalities [14] and modalities from different
senses ([15], [16]) into a unified percept. In this paper an ap-
proach is proposed that allows for the integration of different
visual modalities. As described later, only very coarse global
features are used for the experiments. Features can be used
with the approach if they are global and rotationally invariant
in the viewing plane.

3) Sensory memory is transient and of limited capacity:
The model of human sensory memory has been introduced
with the Atkinson-Shiffrin memory model [17]. Sensory
memory contains rich sensory information and is transient.
The proposed system accounts for this model in the sense
that rich sensory information is only stored in order to be
processed immediately. The approach is designed in a way
that, despite the inner models, only the features from the
current percept are required for processing.

III. SYSTEM DESCRIPTION

Figure 1 shows the structure of the proposed system.
The control module guides the rotation of the object using
the manipulator of the robot. In simulation the control
module sets the rotation of the simulated object model. In
execution we plan to use a control scheme based on the null
space of the Jacobian as presented in [5]. The perception

module provides the feature extraction methods. In this
work global features are extracted from the current percept.
For the application on the robot, background subtraction
techniques are required. In the interpretation module the
system checks the coherence between object hypotheses,
percepts and the currently controlled movement. For this
purpose path hypotheses on the surface of the viewing sphere
are generated and compared with the controlled path and the
sequence of processed percepts. From the path hypotheses
the pose between controlled path and object hypotheses is
calculated. With the pose, the best separating view of object
hypotheses is determined and the controlled movement is
adjusted accordingly. Object separation is performed using
quality ratings for path hypotheses. Since the movement
approaches a view which is ideally only valid for one
object, only path hypotheses belonging to that object will
be plausible and rated accordingly.

All three parts of the system run at different speeds.
The interpretation module runs at about 3Hz. Each time
an iteration has been completed, the feature of the current
percept is requested from the perception module. The timing
of the control module is independent. In the experiments a
new movement is initiated every second.

As feature descriptor color cooccurrence histograms
(CCHs) are used throughout the experiments. CCHs offer
some properties which allow the application in real world
recognition tasks. The resulting description of the objects’
appearance is invariant to rotation in the viewing plane
and robust to scaling. CCHs combine texture information
in terms of the distribution of pixel pair colors as well as
color information. For more detailed information the reader
is referred to [18]. In our work CCHs based on red and green
color channels as well as on the gradient image of red and
green color channels are used. This results in a feature vector
of 320 dimensions.

A. Building the model

Prior to object separation using the proposed approach,
object models in the desired form have to be generated.
Object models consist of aspect graphs with features cor-
responding to the views associated to each node. Object
views are generated in simulation by rotating a 3D model
of the object and sampling views at predefined positions.
For the experiments in this paper, only block shaped models
are deployed. The nodes in the aspect graph are selected
to be distributed equidistant on the viewing sphere surface.
Considering the Euclidian distance, the points which are
closest to one node describe a Voronoi region. To encode the
neighbour relationship between Voronoi regions in the aspect
graph, Delauney triangulation is performed. Nodes are con-
nected with an edge if their corresponding Voronoi regions
have a common edge. All extracted views are processed
with the feature extraction method. As the inner model for
the objects, the extracted features for each view, the node
positions and connections are stored.
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Fig. 2. The initial algorithm connects nodes to the path hypothesis which
are neighbours of the last node nl and similar to the current view from the
controlled path pc

B. Perception Module

The perception module extracts descriptors from the ap-
pearance of the currently perceived object. Since background
subtraction is not necessary in the simulation, CCHs are
directly extracted from the current view of the object.

C. Control Module

The control module specifies which view of the object will
be visible to the perception module. In all our experiments
we start with a random movement. Once the most separating
view of the object hypotheses is determined within the
interpretation module, control is guided towards this view.

D. Interpretation Module

The interpretation module checks the coherence between
object hypotheses, current percepts and the controlled move-
ment. To accomplish that, path hypotheses are rated con-
sidering their plausibility in comparison to the controlled
path and the current percept. From the interpretation, the
transformation from controlled path to hypothesis paths
can be determined. The controlled path is adjusted by the
interpretation module once the transformation of all object
hypotheses has been calculated. The controlled movement
is directed towards the most separating views. With the
rating of the path hypotheses, the correct correspondence
for the current percept can be calculated within the object
hypotheses.

IV. PATH HYPOTHESIS GENERATION

Since the system has to cope with very coarse and ro-
tational invariant feature descriptors the perception of one
object view alone is not sufficient to discriminate between
objects. In order to separate between multiple object hy-
potheses the ability of a humanoid robot to actively rotate
objects in front of its cameras is exploited. While rotating,
the current percept of the object changes and reveals new
object views at different aspects. The direction of the object
rotation can be specified in the control module and is made
availabe to the interpetation module.

A. Initial Algorithm

Each path hypothesis pi can be expressed with a sequence
of nodes in the following way:

pi = (((α0, β0), c0), . . . , ((αN−1, βN−1), cN−1)) (1)

where α describes the rotation of the node about the vertical
axis and β describes the rotation about the horizontal axis.
The value cm describes the number of percepts which have
been valid for the path element m and is referred to as hit
counter.

From the sequence of rotations initiated by the control
system the controlled path pc can be determined in a similar
way. The angles α and β describe the currently controlled
rotation. The hit counter cm for each path element of the
controlled path pc is set to one.

In the course of rotating, path hypotheses on the viewing
sphere of the object hypotheses considering the feature of
the current view are determined. Algorithm 1 describes the
initial idea on how to generate path hypothesis:

Input: Current Views and Object Models
Output: Path Hypothesis P = {pi}
{pi} = searchExhaustive(current view, models);1

foreach Path pi do2

nl = lastNodeOfPath(pi);3

{nj} = neighbours(nl);4

{nj} = {nj} ∪ nl;5

nb = mostSimilarw0(current view, {nj});6

if nb == nl then7

increaseHitCounter(nl);8

end9

else10

appendNodeToPath(pi,nb);11

end12

end13

Algorithm 1: Initial algorithm for path hypothesis genera-
tion

The feature of the current view and all object models are
made available as input to the algorithm. Once, on start of
the algorithm, all features of the object models have to be
traversed and compared with the extracted feature of the
current view. Only the Nhypo best matches are stored in the
set of path hypotheses P . In each iteration, the last node
nl of each path pi is considered. With the edges stored
during the model building step, the direct neighbours of
nl can be identified. The stored features of all neighbours
nj including the last node nl are compared with the input
feature. The most similar node nb is determined using the
similarity measure of the feature extraction method used
denoted with w0. If the most similar node corresponds to
the last node of the path nl the hit counter of that node is
increased. Otherwise, the most similar node nb is appended
to the path pi.

Figure 2 illustrates how the algorithm searches for new
nodes. The object was already rotated according to the
controlled path pc. During rotation, the path hypothesis
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Fig. 3. All 50 path hypothesis for the four different variations of the algorithm. The object was rotated 70 degree about the vertical axis. The controlled
path pc is displayed in red. All path hypothesis have been transformed according to the estimated pose.

extended from an initial node to two connected nodes. In
each iteration, the algorithm searches in the set of nodes
connected to the path’s last node nl for the most similar
view. If the most similar view is not the last node, the path
is extended accordingly.

Figure 3(a) shows 50 path hypotheses after rotating an
object 70 degrees around the vertical axis. The generated
hypotheses are distributed over the aspect graph and no good
hypothesis could be identified. The bad performance of the
algorithm is due to the fact that using CCHs, neighbouring
nodes usually exhibit very similar descriptors. If the con-
trolled path moves away from one starting node the current
view will be similar to a large amount of neighbouring nodes.
It can not be guaranteed that the most similar neighbour will
be in the direction of the controlled path. Once a node is
chosen which leads to a different direction than the controlled
path, the algorithm cannot backup to the correct path, since
only neighboured nodes are considered.

In the following we will explain how the initial algorithm
was adapted in order to gain the ability to deal with coarse
features like CCHs. All adpations were made with the
principles presented in section II in mind.

B. Hypothesis generation using Particles

In the initial algorithm the knowledge of the controlled
path pc was not considered. Path hypotheses were only
generated on base of the similarity of features from the
current percept and nodes of the object models. Since the
course of the controlled path is known, path hypotheses can
be rated according to their similarity not only to the current
view, but also to the controlled paths course. To judge the
quality of the path course the similarity between controlled
path and path hypothesis has to be determined. In order to
obtain comparable paths, the rotations required to transform
the hypothesis path to the controlled path are calculated.
Figure 4 illustrates how a path hypothesis with starting point
s1 and end point e1 are transformed into the controlled path
with starting point s2 and end point e2. Three rotations with
different rotation axes are performed. The first two rotations
with the angles α and β ensure that the starting points of both
paths match. The third rotation with the angle ψ assures that
the transformed starting point s′′1, the starting point s2, the
end point e1 and the end point e2 lie on the same arc of the
viewing sphere.

�z

�rβ

�rψ

α

β

ψ

s1 s1
′

s2

e2

e1
′′

Fig. 4. Transformation of the path (s1, e1) into the path (s2, e2). First
a rotation around the z-axis with angle α is performed until the projection
into the xy-plane of the startingpoints s1, s2 lie on the same line. Then a
rotation with the angle β is performed in order to tranform s1 to the position
of s2. Finally the rotation ψ is performed to ensure that the transformed
endpoint e1′′ lies on the same arc as s2 and e2.

Overall the complete transformation ti can be described
with the following parameters:

ti = (α, β, ψ, �rβ , �rψ) (2)

where �rβ , �rψ are the rotation axis for the rotation with β and
ψ respectively. The initial rotation α is performed around the
z-axis.

Once the transform is determined, the similarity of the
path’s courses can be calculated. In order to compare paths
according to their elements it is ensured during the compo-
sition of the controlled path that the overall number of hits
of hypothesis path and controlled path is identical. This is
achieved by adding one element to the controlled path each
time a new iteration of the hypothesis generation is started
and setting the hit counter to one. Let h(p, e) be the function
that returns the path element which has been valid at the time
of the e-th hit. The similarity of the path’s course can then
be calculated in the following way:

w1(pc, pi) =
∑H−1

e=0 d(h(pc, e), h(pi, e))
H

(3)

where H is the sum of hits over the complete path and d is
returns the distance of both points on the sphere.



In order to integrate the path course rating, an approach
similar to particle filtering is deployed. In a hypothesis
generation step, different hypotheses referred to as particles
are generated. In a verification step, the best particles are
determined and kept for the next iteration of the algorithm.
The initial algorithm is altered in the following way. Instead
of appending the most similar node to a hypothesis path
(Alg. 1 line 11) particles are generated for each neighbour
of the last node nl and the hit counter of the node nl in
the currently considered particle is increased. After all path
hypotheses have been generated, the similarity of the path
courses with the controlled path w1(pc, pi) is calculated.
Furthermore, the similarity of the last new node nl of each
path hypothesis with the current view is determined using the
similarity measure for the feature descriptor w0. In order to
combine both measures independent from their actual values
all path hypotheses are inserted into one priority queue using
their similarity for each measure. The overall rating of the
path is calculated by the mean position of the hypothesis
in both queues. Since the number of generated hypotheses
is increased with this approach, only the Nhypo hypotheses
with the best overall rating are stored for the next iteration.

Figure 3(b) illustrates all path hypotheses after applying
the adapted algorithm to a rotation around the vertical axis
of 70 degrees. Still the course of the generated hypothesis
does not resemble the controlled path. Again the similar-
ity between neighboured nodes leads to the generation of
hypotheses that do not approximate the controlled path in
a satisfying way. While iterating, the similarity measure w0

causes the paths to loop between similar nodes which results
in a bad rating using the measure w1.

C. Loop Elimination

In order to take account for this behaviour, a loop elimina-
tion step is integrated into the algorithm. With restricting the
allowed controlled movements to loop free movements, all
elements of the path that have the same start and end node
are deleted and the hit counters of the remaining elements
are adjusted accordingly. Afterwards all path hypothesis are
compared and paths are deleted if there is another path in
the set of hypothesis with the same node sequence. This is
necessary to keep the number of required hypothesis small.
Figure 3(c) illustrates the resulting hypothesis after applying
loop elimination and the removal of identical paths. The
generated hypotheses form a good approximation of the
controlled path.

D. Similarity Accumulation

Until now, only the similarity of the last node of each
path hypothesis and the current view were considered for
the rating of path hypotheses. Now, in order to improve the
approximation of the controlled path, the best similarity that
was encountered while rotating the object is stored for each
node. These best similarities can be accummulated in another
measure:

w2(pi) =

∑N−1
j=0 b(nj)
N

(4)

where N is the number of nodes of path pi and b(nj) returns
the best similarity of an input view to node nj as encountered
while rotating. The measure w2 is integrated with the other
measures in the same way as described above to gener-
ate an overall path hypothesis rating. The resulting paths
after integrating similarity accumulation into the algorithm
is illustrated in Fig. 3(d). The visible difference between
the outcome with and without similarity accumulation is
marginal. Nevertheless in the results section we will show
that the convergence of the algorithm can be improved by
introducing the measure w2.

E. Object Separation

In order to calculate the best separating view between
objects the relative pose between the object hypotheses has
to be known. The relative pose can be derived from the
transformations of the path hypotheses to the controlled path.
The calculation of the best separating view is initiated, once
the running variance of the mean transformation of all path
hypotheses is below a threshold. For all object hypotheses
the running variance is calculated using the mean rotation
angles α, β and ψ over all path hypotheses. A window size
of 5 is used for the running variance and the sum of the
variances of all three angles is used to establish a threshold
for convergence of the transformation. The relative pose is
approximated by the mean of all rotation angles for each
object hypothesis.

With the relative pose, the aspect graphs of all object
hypotheses are transformed into one common base coordi-
nate system. Once having all views in the base coordinate
system, the similarity graph between the object hypotheses
can be calculated. Therefore, the best object hypothesis is
determined using the path ratings w0, w1 and w2 and its
structure is copied to the similarity graph. For each node
in the similarity graph the closest node in the common
coordinate system of each remaining object hypothesis is
determined. In order to derive a measure for the similarity of
corresponding nodes, the variance of all features associated
to a set of closest nodes is calculated. The result is stored
in the nodes of the similarity graph. Figure 5(a) illustrates
the similarity graph for two object hypotheses with different
textures on their backsides.

In order to discriminate between the object hypotheses, the
robots ability to rotate objects is exploited to reveal the most
separating view. Since also small inaccuracies of the pose
estimation and control side have to be coped with, the most
separating view is determined, also considering neighboured
nodes in the similarity graph. For all nodes in the similarity
graph the mean variance of the corresponding features of
the node itself and all its neighbours is calculated. The node
with the highest mean variance is used as the most separating
view. In figure 5(a) the most separating view is denoted with
green color.

Since also the transformation between controlled path
and object hypothesis is known, the position of the best
separating view is available in the control coordinate system.
The closest path between the current view and the best



(a) Similarity graph as calculated from two object
hypothesis and related estimated poses.

(b) The path hypothesis for the correct object
hypothesis approximates the controlled path pc.

(c) The path hypothesis for the incorrect object
hypothesis does not converge to the controlled path
pc.

Fig. 5. Object Separation

separating view is calculated and the movement is adapted
accordingly.

In order to separate between object hypotheses, the mea-
sure w1 of the best path hypothesis is considered. Once
the current percept is not coherent with one of the object
hypotheses, the path will not be able to proceed in the desired
direction and will vary from the controlled path. This state
can be determined by monitoring the path rating w1. There
are two possible stages of the system, where one object
hypothesis becomes invalid. Either the system approaches
an object view which is not coherent with one hypothesis
before the relative pose could be estimated or the system
already moves towards the most separating view, which will
force incoherent object hypotheses to be eliminated.

Figure 5(b) illustrates the estimated path for a valid object
hypothesis. The controlled path could be approximated well,
which results in a good rating with the path measure w1. In
Fig. 5(c) the backside of the object was exchanged compared
to the inner model. Once views of the object that are not
similar to the inner model are revealed, the algorithm does
not find its way in the vicinity of the controlled path. This
will cause a reduction in the path rating measure w1.

V. EXPERIMENTAL RESULTS

All results in this paper were achieved in simulation.
As mentioned in section III-A, block shaped models of
objects were used to generate views at the desired viewing
angles. The application of block shapes does not imply a
simplification for the approach. Since the algorithm has to
cope with planar surfaces, many neighboured views of one
object look similar and thus do not reveal information which
can be exploited to generate path hypotheses.

All inner models were represented with aspect graphs con-
sisting of 100 views. The number of maximum hypotheses
per iteration was set to Nhypo = 50. Both parameters were
chosen empirically prior to the experiments. The approach
was evaluated using randomly selected starting points in
spherical polar coordinates in all experiments. All inner
models were transformed using random rotation axes and
angles. The initial direction of the movement was also
selected randomly with constant increments in the azimuth

and zenith in spherical polar coordinates. By using spherical
polar coordinates, it was ensured that not only straight paths
were generated.

A. Path hypothesis accurracy

The parameters for path hypothesis convergence were cho-
sen in a way that the generated pose hypotheses are accurate
enough to find the transformation between multiple object
hypotheses and between object hypothesis and the control
space in order to identify and reach the most separating view.
During model building, the viewing sphere was discretised
to 100 views. The mean angle between neighboured views
amounts to 22.6 degrees. This gives a benchmark to select
the thresholds for convergence accordingly.

Figure 6(a) illustrates how the different variations of
the initial algorithm perform in comparison. The results
were achieved by using views of the same model for the
representation as well as for the view generation in order
to allow convergence of the path hypotheses. To capture the
correct trend for the different approaches, 100 rounds with
random starting points and transformations were executed for
each variation. The graph shows the development of the sum
of mean running variances over the three rotations measured
during 100 rounds. As can be seen, the initial algorithm
did not converge at all to a robust object pose estimation.
With the introduction of particles the pose approximation
performed better but settled down at a very high variance.
The restriction to loop free paths allowed to produce much
more realistic paths on the surface of the viewing sphere.
Combined with the elimination of similar paths this approach
converged very fast to a stable amount. The accumulation of
views again improved the convergence of the hypotheses.

To measure the accuracy of the pose approximation pro-
cess the mean pose error was calculated for 100 rounds. Each
round was limited to 400 iterations. If the path hypothesis
did not converge after 400 iterations, the round was marked
as failure and the pose estimation was not considered. Eight
of the 100 rounds were marked as a failure. All eight errors
occurred in cases where the randomly chosen controlled path
was close to the singularities of the spherical polar coordinate
system. In these cases, only a few very similar views were
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Fig. 6. Experimantal results using the proposed approach.

presented to the system which was not sufficient to allow the
path hypothesis to converge to a valid solution. The resulting
mean pose error using the remaining 92 rounds amounted to
14.89 degrees which lies within in the desired accuracy of
22.6 degrees.

B. Object Separation

To evaluate object separation, two pairs of object models
were deployed. In each pair, the backside of the objects
differed. One of the objects from each pair was used as input
and both models of one pair were stored as inner models.
The task was the identification of the correct correspondence
for the input model.

In Fig. 6(b) the path rating measure w1 for the best path
hypothesis is shown for both object hypotheses over the
iterations until the movement reached the most separating
view. Once a view is revealed which is not coherent with
one of the object hypotheses, the distance between controlled
path and best path hypothesis increases immediately. This
circumstance is deployed to discriminate between the ob-
ject hypotheses. We assign a perceived object to an object
hypothesis if its path rating is 5 times better than the path
rating of the remaining object hypothesis.

Using this threshold, 100 separation tasks were performed.
For each task the convergence of the pose estimation and
the calculated correspondence were determined. In the 100
test cases, the object be assigned to the correct object
models with only the path rating w1 in 88% of the cases.
In the remaining 12% of the cases, the threshold used for
the path rating was not sufficient to separate between the
object hypotheses. With the help of the similarity rating
for the current percept w0, 95% of presented objects could
be assigned to the correct object hypothesis. The remaining
5% of tries failed because of controlled movements close to
singularities which can be avoided by restricting movements
to be far from singularities thus revealing enough object
views.

C. Performance

All experiments were accomplished using an Intel Cen-
trino Duo 2.0GHz notebook. The interpretation module

achieved a cycle time of about 3-5Hz. As in most vision
applications, feature extraction and comparison is the most
time consuming task. Compared to a brute-force algorithm,
where in each iteration the 100 nodes of the complete inner
model is compared with the current view, the hypothesis
generation reduces the necessary feature comparison. Figure
6(c) illustrates the number of comparisons between different
features required in relation to the number of iterations of
the algorithm. Initially the complete neighbourhood of all
candidate views has to be examined. Once path hypotheses
develop, only the neighbouring nodes of the last path element
have to be examined. Since the pose converges towards the
same controlled path many hypothesis paths have the same
last nodes and examine the same neighbours. This helps
reducing the required feature comparisons to about 14 when
the hypothesis have converged.

VI. CONCLUSION

In this work an active vision approach for object separa-
tion and pose approximation is presented. The experimental
results show that the proposed approach allows to reliably
separate between multiple object hypotheses. Also it has
been shown that the transformation from the path hypotheses
to the controlled path gives a good approximation of the
object pose. Both results, pose and object correspondence,
are achieved within the same active vision framework only
on basis of the coherence between controlled movement and
percept.

It has been shown that coarse features are sufficient to
achieve a good performance. With the use of active vision
methods, the inner model of objects could be kept compact.
Each object can be described by only 32000 feature values.
This reveals the benefit that can be obtained by using active
methods in solving visual tasks.
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Abstract— A cognitive robot system has to acquire and
efficiently store vast knowledge about the world it operates in.
To cope with every day tasks, a robot needs to learn, classify and
recognize a manifold of different objects. Our work focuses on
an object representation scheme that allows storing perceived
objects in a compact way. This will enable the system to store
extensive information about the world and will ease complex
recognition tasks. The human visual system deploys several
mechanisms to reduce the amount of information. Our goal is
to develop an artificial system that mimics these mechanisms
to create representations that can be used in cognitive tasks.
In particular, in this paper we will present an approach that
exploits similarities among different views of objects. The
proposed representation scheme allows for reduction of storage
required for the representation of objects and preserves the
information about the similarity among objects. This is achieved
by selecting ‘important views’ of objects, depending on their
stability. Furthermore, by extending the same approach to
multiple objects, we are able to exploit similarities between
objects to find a common representation and to further reduce
the storage requirements.

I. INTRODUCTION

The main focus of our work is to develop an object
representation and learning scheme, that is suitable for learn-
ing in humanoid robots, e.g. via action-perception coupling,
much the same way as humans learn about objects in their
environment. To achieve the ability of recognizing objects
from all viewing directions, we introduced a learning and
representation scheme that allows generalizing to specific
views of objects [1]. We have shown that, given locations of
important views, the objects can be represented in a depth
rotational invariant manner, with a reduced amount of views
stored as representations. However, in the former work the
important views were selected manually.

In this paper, we introduce a solution on how to select spe-
cific important views of objects automatically. Our approach
is driven by the observation that there are specific views of
an object, that allow recognizing a wide range of rotational
variations of the object. Such views are often referred to as
stable views [2]. With these stable views of an object, its
appearance can be described using a minimal set of views.

The robot perceives the world in different modalities,
depending on the sensors and feature extraction methods
used. In real world scenarios, the robot will face objects,
which are similar in at least one modality and are only

separable by combining different modalities. Furthermore,
learning of objects from all possible viewing directions will
reveal even more similarities between views of different
objects. In our approach, we identify views that are shared
between objects. Similar views can be subsumed and stored
only once. In such cases we do not want to recognize objects
in the modality, in which the similarities exist, but rather
aim at a representation that preserves the information, which
objects are candidates for the specific view and modality. The
ability to discriminate such objects has to be achieved by
combining multiple modalities. The shared view of objects
in one modality can then be used to restrict the possibilities
in other modalities to only a few objects.

Our approach follows a global appearance-based repre-
sentation scheme of objects. In appearance-based vision sys-
tems, objects are represented with multiple retinal projections
of object views. In contrast, model-based representations
need more structural information, like full 3D models, which
are hard to aquire during online learning [3]. Furthermore, we
use global object descriptors to identify important views of
the object. The majority of recent work on object recognition
uses local features, which describe important locations in the
object’s appearance, considering measures for texturedness
or cornerness. These systems perform well in real envi-
ronments, are able to handle occlusion, and usually offer
invariances to at least shift and rotation in the camera plane
[4] [5]. Recognition of all rotations of an object with local
features is possible, but impractical in terms of efficiency
due to the amount of stored local feature representations.

The selection of important views of an object has strong
correspondence to the notion of canonical views used in
psychology [6]. In the past, different criterias that define
canonical views have been introduced. Blanz et al. give
a good overview of different criteria [7]. As our aim is
to implement an object recognition system based on our
representation and learning scheme, we are mainly interested
in the goodness for recognition criteria. More precisely, we
identify views of the objects, that are stable for at least small
transformations.

While the work on canonical views copes largely with
one outstanding view of the object, a representation scheme
which is used for recognition has to rely on multiple im-
portant views of the object, which together should cover the



Fig. 1. System structure of the proposed learning and recognition system.

complete appearance.
Hall et al. presented an approach to extract multiple

important views of an object by identifying the most unique
views of the object [8]. The identification of unique views is
suitable, if the objects are to be visualized or if the resulting
views are used only to discriminate objects. The approach did
not take into account the similarity of views. Moreover, the
resulting views did not capture similarities among different
objects.

Yamauchi et al. introduced an approach for the identi-
fication of important views which combines the saliency
of views and the stability criterion [2]. They proposed an
approach based on spherical graphs which reflect all available
viewing directions of the object. Important views were iden-
tified using Zernike Moments [9] to measure the similarity
between neighbored views in the spherical graph. In their
work, Yamauchi et al. did not take into account similarities
among different objects. Each object had its own set of
keyframes regardless of the appearance of other objects.
Furthermore the number of extracted views per object had
to be predefined.

In the following, we present an approach that can be
applied to the output of different feature extraction methods.
Our approach will identify stable views for the objects
considering the Euclidian distance of the output from the
used extraction method. In the following we will referr to
these stable views as keyframes. Furthermore, our method
exploits similarities among different objects. The number of
keyframes per object does not have to be predefined. Rather,
the accuracy can be defined with an overall maximum error,
thus the system generates a different number of keyframes
per object, depending on the object’s appearance.

II. SYSTEM DESCRIPTION

A. Overview

Figure 1 gives a schematic overview of the system struc-
ture used throughout this paper. The system can be divided
into a training part and a recognition part. In the appli-
cation on a robot system, both parts have to be executed
simultanously to allow the acquisition of new objects during
interaction with the environment. The following sections will
primarily focus on the training part, since the recognition part
needs to rely on more than one modality as explained later
(subsection II-E).

As mentioned earlier, the presented approach does not
depend on a certain feature extraction method. The extraction

method used should fulfill the following requirements:
• The extraction method has to capture the global appear-

ance of an object.
• The extraction method should represent each view in-

variant to rotations in the viewing plane.
• The extracted feature vectors should be of reasonable

size to allow fast extraction of keyframes.
For the experiments in this paper, we use color cooccurrence
histograms (CCHs) to extract descriptors of the global ap-
pearance of views. The extraction of CCHs will be explained
in subsection II-B.

During keyframe selection, significant views of the objects
are identified by clustering the feature space into classes
containing similar views. Each class is identified with its
centroid, which is referred to as a keyframe.

Objects are assigned to keyframes in the labeling step.
Each keyframe will be associated with all objects that have
views in the corresponding class. Furthermore, we define the
activation of a keyframe as the number of views an object
participates with in the corresponding class. The keyframes
are stored in the object database, together with the labels and
activations determined in the labeling phase.

During recognition, the extracted features are classified
using the stored keyframes from the object database. The
classification will output all objects that have views similar
to the current percept and the corrsponding activations.

The following subsections will explain the different ele-
ments of the system structure in detail.

B. Feature Extraction

Throughout this paper, we will use color cooccurrence
histograms (CCHs) for the description of object appearances.
CCHs were chosen because they offer some properties which
allow the application in real world recognition tasks. For
instance CCHs offer a description of the object, which is
invariant to the rotation in the viewing plane, when the
parameters are chosen accordingly. Furthermore, CCHs offer
some robustness towards scaling. Finally, CCHs combine
texture information (in terms of information about pairs of
neighbored pixels) as well as color information.

Based on work performed by Haralick et al. [10], CCHs
were first introduced by Chang et al. [11]. In their work they
define an entry in the color coocurrence histogram by the
cooccurring colors and their distances in an observed image:

CH(c1, c2, Δx, Δy), (1)

where c1 and c2 describe two colors in RGB space and Δx
and Δy describe their distances in terms of pixels in the
observed image. To achieve a rotation invariant description,
only the absolute distance of the two colors is used in their
approach:

d =
√

(Δx)2 + (Δy)2 (2)

The cooccurrence histogram is derived by counting all oc-
currences of entries CH in the observed images.

In our implementation only cooccurences with a distance
d < 1.5 are observed. This restricts the cooccurences to



Fig. 2. Resulting growing neural gas network after 2000 iterations.
10 objects with 72 views each were used as input. The features and node
positions were projected into 2D eigenspace.

neighboring pixels. Furthermore, the red and green color
channels (Ir, Ig) and the gradient magnitude of both color
channels (∇Ir,∇Ig) are used as histogram dimensions. The
choice of these image descriptors is motivated by the previ-
ous works of Ekvall et al. [12]. They showed that with the
combination of intensity and gradient descriptor calculated
on the basis of the red and green channels good recognition
results could be achieved. The cooccurrences in each channel
are considered separately. Each channel is quantized to 80
clusters in a preprocessing step. This results in a feature
vector of 320 dimensions, which is still of reasonable size.

C. Keyframe Selection

The identification of similar views in the set of CCH
features can be achieved by clustering the feature space into
similar classes. Since the keyframe selection process will run
autonomously, an unsupervised clustering method is required
for our approach. Furthermore, the applied method should
select the number of generated clusters dependent on the
distribution of the input data rather than on a prespecified
number of keyframes. One algorithm that fulfills these re-
quirements is the Growing Neural Gas algorithm (GNG)
which was first introduced by Fritzke [13]. The GNG is a
self organizing map, which grows in the process of training
according to the distribution of the input data. Thus the GNG
algorithm creates a topological map which represents the
distribution of the training data.

The GNG algorithm combines the Competitive Hebbian
Learning and the Neural Gas method proposed by Martinez
et al. [14] with an incremental learning approach. GNG
thus overcomes the problem of prespecifying the number of
nodes that is required to reach a certain goal. Heinke et al.
[15] provided a comparison of different incremental neural
network algorithms. Their comparison comprises Growing
Cell Structures (GCS), Fuzzy Artmap (FAM), and Growing
Neural Gas (GNG). As benchmark the performance of the
multi-layered perceptron (MLP) was used. The GNG algo-
rithm outperforms FAM on nearly all datasets and generates

less nodes then GCS with similar performance for most
datasets.

In the following, a brief introduction to the GNG algorithm
is given to ease the understanding of the choice of certain
parameters and the termination criterion. For a more detailed
description of the algorithm the reader is referred to [13]. The
network consists of the following components:

• A set of nodes N , each node n ∈ N has an associated
position vector wn.

• A set of edges E, each edge c ∈ E connects pairs of
nodes and has an associated age.

The algorithm can be described with the following steps:
1) Create two nodes n1 and n2 with random positions

wn1 and wn2 .
2) Select one feature f from the training set randomly.
3) Identify the nearest and second nearest nodes na and

nb to the feature f .
4) Increment the age of all edges starting from na.
5) Accumulate the error of node na by the squared

distance of node position wna and input signal f :

Δena = ||wna − f ||2

6) Move the nearest node na and the second nearest node
nb towards the input signal f using the learning rates
spa and spb:

Δwna = spa(f − wna)
Δwnb

= spb(f − wnb
)

7) Reset the age of the edge from the nearest to second
nearest node cna,nb

to zero. If no edge exists, create a
new edge.

8) Remove edges with an age larger than amax.
9) If the accumulated error ene of one node ne exceeds

the maximum error emax insert a new node in the
following way:
• Identify the node connected to ne with the maxi-

mum error nm.
• Insert a new node nc halfway between the two

nodes ne and nm:

wnc =
(wne + wnm)

2
• Insert edges cnc,ne and cnc,nm and remove the

edge cne,nm .
• Set the accumulated error enc of the new node to

the mean error of the nodes ne and nm.
• Decrease the accumulated error ene and enm by

multiplication with a constant factor α < 1.
10) Decrease all error variables by multiplication with a

constant γ < 1:
e′n = γen

11) Check termination criterion. If not matched restart with
step 2.

Depending on the termination criterion and the parameters
used for training, the GNG algorithm will produce a topo-
logical map of the input data with respect to the distribution



of the input data. Figure 2 shows an example outcome of the
GNG clustering for 720 CCH features, which describe the
rotations of 10 objects.

The parameters used for training the GNG were deter-
mined empirically. Aim of the parameter choice was a bal-
ance between stability of the network and fast convergence.
Throughout the experiments a maximum edge age amax =
20 was used. The learning rates were set to spa = 0.16
and spb = 0.01. The factors for the adjustment of the
accumulated error in the case of a new node (α) and for
each iteration (γ) were set to α = 0.001 and γ = 0.995.

The parameters for the maximum accumulated error per
node emax and the termination criterion directly influence
the number of nodes created for the input data. The choice
of these parameters will be discussed in section III.

Each node from the network represents one cluster in the
space of input features and is considered a keyframe.

D. Labeling
The clustering results in a set of nodes N = (n1, . . . , nr).

In order to use these nodes for object representation and
recognition we have to restore the association of object views
with the clusters formed by the nodes. In the following,
s objects W = (F1, . . . , Fs) each described with t features
Fx = (fx,1, . . . , fx,t) are considered.

To associate object labels with nodes all objects x and their
features fx,v are traversed. For each node ni the number of
features of the object where the node is the nearest neighbor
to the corresponding feature is determined as:

bi,x = |{fx,v : i = argminu∈{1,...,r}||wnu − fx,v||2}| (3)

If bi,x is not zero, the object label x is appended to the list
of object labels Li for node ni, if not already present:

L′
i = (Li, x) (4)

Additionally, the activation ai,x of the node ni for the
object x is calculated by the following equation:

ai,x =
bi,x∑
x bi,x

(5)

The activation describes how likely a feature which is
associated to the node ni will belong to the object x. If
bi,x is non-zero, the activation ai,x is appended to the list of
activation Ai of the node:

A′
i = (Ai, ai,x) (6)

It is guaranteed that for all labels of one object the sum
of the corresponding activations is equal one, i.e.:

s∑
x=1

ai,x = 1 (7)

This shows that if the activation for an object for the node
equals 1, then the corresponding keyframe describes one
object uniquely. The node will only contain one object label
in this case.

In the object database, the node positions wn1 , · · · , wnr

are stored along with the associated labels Ln1 , · · · , Lnr and
activations An1 , · · · , Anr .

E. Classification

In the classification step, a perceived view of an object
in terms of its CCH f is matched with the keyframes
stored in the object database. This can be accomplished
by identification of the nearest neighbor ni in the set of
keyframes:

i = argminu∈{1,...,r}||wnu − f ||2 (8)

If the label list Li contains only one label, the corresponding
object is found. Otherwise the classification can not be per-
formed in a unique way. The list of labels Li contains objects
that have views similar to the currently perceived view. The
corresponding activations Ai describe the probabilities for
the individual objects.

In the case of multiple potential candidates for the current
view, the feature extraction method used is not sufficient
to separate between the objects in this class. In this case
other modalities are required to uniquely detect the object
corresponding to the perceived view. For this purpose our
approach reduces the number of possibilities to similar
objects in the modality observed and allows the restriction
to only a few objects for the search in other modalities.

III. PARAMETER EVALUATION

For all experiments in this paper, object views from the
Amsterdam Library of Object Images (ALOI) [16] are used.
The ALOI contains images of objects on black background
from 72 distinct viewing angles, which are generated by
rotating the object around the vertical axis. We use 10 objects
for the evaluation of our approach, which results in 720
CCHs.

As mentioned earlier, the maximum error emax and the
termination criterion are crucial for the number of nodes that
are generated by the GNG algorithm. In the following, our
choice of these parameters is explained.

To verify if the network has converged, the overall error
E(t) of the network is monitored for each iteration t.
The overall error can be determined by summing up the
accumulated errors of all nodes:

E(t) =
r∑

x=1

enx(t) (9)

The overall error is smoothed by calculating the mean overall
error M(t) over the last 200 iterations. This helps in coping
with local peaks in the course of the error over the iterations.
To detect the convergence of the network, we check if M(t)
is in a defined range r for a minimum number of iterations
Δt. The termination criterion c(t) is defined in the following
way:

c(t) =
{

0 a ≤ M(t − t0) < b; 0 ≤ t0 < Δt; b− a < r
1 otherwise

We choose a range of r = 5000 and set the minimum
time the mean overall error has to stay in this range to
Δt = 500 iterations. Figure 3(a) shows the development
of the overall network error E(t) and the mean error M(t)
during one training phase. Every time the accumulated error
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Fig. 3. Results from the parameter evaluation

of one node exceeds emax the accumulated error is adjusted
and a new node is inserted. This results in a diminution
of the overall error. On new input data, the accumulated
error of both nodes increases again. The overall error of a
network containing more nodes can exceed the overall error
of a network with less nodes because each single node can
accumulate an error of up to emax. The termination criterion
terminates the training, if the error stays inside the range r
denoted by the two horizontal lines.

In order to determine the maximum node error emax for
our experiments, two measures were observed using a range
of emax ∈ [10000 : 50000]. First the mean number of
labels per node L was observed. Furthermore, the mean
number of labels per object I was observed. In figure 3(b)
both measures L and I are recorded. The graphs show that
with a large emax, the mean number of labels per node
decreases fast. With decreasing emax, the gradient of L
reduces. The number of nodes per object I grows about linear
with decreasing emax. A suitable choice of emax should
reduce the number of labels produced per node, since this
decreases the uncertainty during recognition. Furthermore,
not too many nodes per object should be generated, since the
resulting representation has to be compact. For this reason, a
maximum accumulated error of emax = 25000 was chosen
for our experiments. The choice of a maximum accumulated
error less than 25000 would result in the generation of more
nodes without significantly decreasing the number of labels
per node.

IV. EXPERIMENTAL RESULTS

In our experiments, the GNG algorithm proved to be very
stable. For the 10 objects with 720 views the number of
nodes usually converged to 19. Depending on the sequence
of the random selection of input data that was exposed to
the network, occasionally 18 or 20 nodes were created.

Fig. 4. Important views of objects as extracted by our approach. Only
views corresponding to an activation ai,x above 20% are shown.

A. Keyframe Selection

The GNG network produces clusters of similar views and
corresponding nodes with object labels Li and activations
Ai. The node positions do not exactly correspond to object
views. In order to visualize important views for the objects,
the nearest neighbor from the set of samples for each object
x which is in the list of labels Li is identified. Views are
reported only if the activation ai,x from the list of activations
Ai is above a given threshold. Thus, only those views are
reported that are produced by clusters where the object
participates with a significant amount of views.

Figure 4 shows the important views produced by our
approach with a threshold of ai,x > 0.2. The selected views
depend on the used feature extraction method. Using a color
descriptor like CCH results in the selection of views which
are stable in terms of color.



Fig. 5. During recognition, the orange on the left side can be identified
uniquely. The can on the right side is associated to a keyframe with two
labels. The connections are tagged with the corresponding activations ai,x.
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Fig. 6. Percentage of views of all 10 objects in relation to the number of
similar objects associated.

B. Recognition

In the recognition phase all object views are associated to
the corresponding keyframes. Figure 5 shows two examples
of associated views. In the first case, the view was associated
to a keyframe which containes only one label. In the second
case, the keyframe contained two labels. The keyframes are
visualized with the corresponding closest views for each
label contained in the label list. The connections are tagged
with the activations ai,x.

In order to provide a measure on how our approach
reduces the uncertainty about the perceived object, we as-
sociate all object views to their keyframes. For each view
the uncertainty can be expressed with the number of similar
objects obtained from the label list. Figure 6 shows the
percentage of views in relation to the number of similar
objects. 6% of the object views are associated to keyframes
which contain only one view and thus can be uniquely
identified. 80% of the views are associated to keyframes
which contain two or three labels. The remaining views are
associated to keyframes with four and more views. The mean
number of similar objects per view is about 2.7.

V. CONCLUSION

The proposed approach allows for the extraction of
keyframes on the basis of similarities among objects. For 10
objects with overall 720 views we were able to reduce the
number of stored features for one modality to only 19. The
experiments show, that with these 19 features, the potential
candidates for a perceived object can be reduced to 2.7 on
average.

An artificial perception system for a cognitive robot has to
rely on more then one modality to identify and classify the
manifold of different object types it encounters in real world
tasks. The proposed approach will be used in conjunction
with a combination of different descriptors for the object
appearances. Despite the mentioned CCHs we plan to apply
the same approach to other feature extraction methods eg.
Zernike Moments. If chosen accordingly, the combination
of different modalities will allow to identify the perceived
objects uniquely.

Finally, the system will be implemented on our humanoid
robot to ease the acquisition of objects during exploration of
the environment.
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