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Abstract: 

 

This deliverable contains three scientific publications. The first two publications deal with 

computer vision aspects that arose during the building of an augmented OAC space-time 

representation. The first publication, entitled “Affine Epipolar Direction from Two Views of a 

Planar Contour,” is devoted to the geometry of the viewing mechanisms employed. More 

specifically, it relates changes in object appearance to changes of robot viewpoint, by studying 
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what can be recovered from two uncalibrated views of a planar contour under affine viewing 

conditions. The second publication, entitled “Orientation Invariant Features for Multiclass Object 

Recognition,” discusses one possible set of orientation invariant features that is being explored for 

the construction of our OAC models. 

 

The third publication, “Active Control for Single Camera SLAM,” treats the problem of moving a 

camera to incrementally acquire a model of a scene. Active gazing is achieved by maximizing the 

mutual information between observations and states. Maximizing the mutual information helps the 

camera avoid ill-conditioned measurements typical of monocular vision systems.   

 

 

Keyword list: active contours, tracking, orientation invariant features, active control, SLAM. 
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1. Introduction 

 

This deliverable focuses on three publications [A, B, and C] relevant to the research that has been 

performed under WP7.1. The contributions are related to Tasks 7.1.1 and 7.1.2, which deal mainly 

with action selection for building OAC models. Other published or presented work also relevant to 

WP7.1 is included in the attached papers [D and E]. 

 

2. Camera Motion Estimation 

 

We are interested in building OAC models from varying viewpoints. More than often, accurate 

camera motion estimates are not available from the kinematics models of the robot moving a 

camera. This is especially relevant in PACO-PLUS where the ARMAR robot posses redundancy 

and a complicated kinematics model. Thus, camera motion estimation purely from the content of 

image views is of major importance. Furthermore, when the objects observed are mostly planar, 

motion estimation is even more difficult. 

 

2.1 Affine epipolar direction from two views of a planar contour 

 

Most approaches to camera motion estimation from image sequences require matching the 

projections of at least 4 non-coplanar points in the scene [2]. The case of points lying on a plane has 

only recently been addressed, using mainly projective cameras. We have studied what can be 

recovered from two uncalibrated views of a planar contour under affine viewing conditions [6,7]. 

We proved that the affine epipolar direction can be recovered provided camera motion is free of 

cyclorotation. The proposed method consists of two steps: 1) computing the affinity between two 

views by tracking a planar contour, and 2) recovering the epipolar direction by solving a second-

order equation on the affinity parameters. Two sets of experiments were performed to evaluate the 

accuracy of the method. First, synthetic image streams were used to assess the sensitivity of the 

method to controlled changes in viewing conditions and to image noise. Then, the method was 

tested under more realistic conditions by using a robot arm to obtain calibrated image streams, 

which permit comparing our results to ground truth. 

 

3. Feature Extraction 

 

Once the camera motion estimation hurdle has been passed, we concentrated our efforts on the 

extraction of image features for building OAC models. The objective was to identify a set of 

features robust to viewpoint change.  
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3.1 Orientation invariant features for multiclass object recognition 

 

We presented a framework for object recognition based on simple scale and orientation invariant 

local features that, when combined with a hierarchical multiclass boosting mechanism, produce 

robust classifiers for a limited number of object classes in cluttered backgrounds [8]. The system 

extracts the most relevant features from a set of training samples and builds a hierarchical structure 

of them, by focusing on those features common to all trained objects, and also searching for those 

features particular to a reduced number of classes, and eventually, to each object class. To allow for 

efficient rotation invariance, we propose the use of non-Gaussian steerable filters [5], together with 

an Orientation Integral Image for a speedy computation of local orientation. 

 

4. Action Selection 

 

In building OAC models we must take the actions that are most informative, in the sense that they 

help reduce the uncertainty in the estimation of OAC feature values. To this end, we devised a 

strategy to actively choose the most appropriate viewpoint changes when building OAC models 

using visual primitives. 

 

4.1 Active control for single camera SLAM 

 

Exploring a scene and building a model of the objects contained in it can be interpreted as an 

instance of the Simultaneous Localization and Mapping problem [4]. SLAM in short is typically 

addressed as a stochastic state estimation problem, which can be tackled with a variety of filtering 

techniques. The most popular of them, the Kalman filter [1]. 

 

We consider a single hand-held camera performing SLAM at video rate with generic 6DOF motion 

[3]. The aim is to optimize both the localization of the sensor and the feature map by computing the 

most appropriate control actions or movements. The actions belong to a discrete set (e.g. go 

forward, go left, go up, turn right, etc), and are chosen so as to maximize the mutual information 

gain between posterior states and measurements. Maximizing the mutual information helps the 

camera avoid ill-conditioned measurements appropriate to bearing-only SLAM. Moreover, 

orientation changes are determined by maximizing the trace of the Fisher Information Matrix. In 

this way, we allow the camera to continue looking at those landmarks with large uncertainty, but 

from better-posed directions. Various position and gaze control strategies are first tested in a 

simulated environment, and then validated in a video-rate implementation.  
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Abstract. Most approaches to camera motion estimation from image
sequences require matching the projections of at least 4 non-coplanar
points in the scene. The case of points lying on a plane has only recently
been addressed, using mainly projective cameras. We here study what
can be recovered from two uncalibrated views of a planar contour under
affine viewing conditions. We prove that the affine epipolar direction
can be recovered provided camera motion is free of cyclorotation. The
proposed method consists of two steps: 1) computing the affinity between
two views by tracking a planar contour, and 2) recovering the epipolar
direction by solving a second-order equation on the affinity parameters.
Two sets of experiments were performed to evaluate the accuracy of the
method. First, synthetic image streams were used to assess the sensitivity
of the method to controlled changes in viewing conditions and to image
noise. Then, the method was tested under more realistic conditions by
using a robot arm to obtain calibrated image streams, which permit
comparing our results to ground truth.

1 Introduction

Recovering camera motion from image streams is an important task in a range
of applications including robot navigation and manipulation. This requires a
measure of the visual motion on the image plane and a model that relates this
motion to the real 3D motion. Most of the existing work on motion recovery
relies on a set of point matches to measure visual motion, and, depending on
the acquisition conditions, different camera models have been used to emulate
the imaging process [1,2]. The full perspective model (the pinhole camera), in
� This work is partially funded by the EU PACO-PLUS project FP6-2004-IST-4-27657.

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 944–955, 2006.
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either its calibrated (perspective camera) or uncalibrated (projective camera)
versions, has proved to be too general when perspective effects diminish. Under
weak-perspective viewing conditions (small field of view, or small depth variation
in the scene along the line of sight compared to its average distance from the
camera), simplified camera models, such as orthographic, scaled-orthographic or
their generalization for the uncalibrated case, the affine camera model, provide
an advantageous approximation to the pinhole camera, which avoids computing
ill-conditioned parameters by explicitly incorporating the ambiguities due to
weak perspective into the model.

This paper addresses the motion estimation problem in the context of an
affine camera using active contours to measure visual motion. There are several
previous motion estimation methods based on affine cameras [3,4]. A common
feature of these algorithms is that they require the matching of at least four non-
coplanar points and fail for planar structures [5]. The particular case of features
lying on planes has not been analyzed in detail thus far. The formulation of this
problem is the core of the present paper.

It is well known that two views of a plane are related by a collineation under
full perspective projection. Several authors have used this fact to propose algo-
rithms for camera calibration [6], self-calibration [7,8], or extraction of structure
and motion from uncalibrated views of points on planes [9] or of planar curves
[10]. However, when perspective effects diminish, the relationship between two
views of a planar structure becomes an affinity, which invalidates the methods
based on collineations.

Following the stratified analysis of motion for affine viewing conditions intro-
duced by Koenderink and van Doorn [3] and revisited by Shapiro et al. [4], we
first explore what information of the affine epipolar geometry can be inferred
from the affine deformation of the projection of a rigid and planar contour in
two weak-perspective views. This sets the basis to derive the motion parameters
in a second stage. We show that, under a 3D motion free of cyclorotation, the
epipolar direction can be recovered by relating the two affine views of the con-
tour. A series of experiments is performed to test the sensitivity of the method
to the different conditions imposed.

The paper is organized as follows. Section 2 contains the analytic study of two
weak-perspective views and provides the basis for the recovery of the epipolar
direction. Section 3 explains how the parameters of the affinity relating the two
views are extracted in our implementation, based on a contour tracker. Section
4 is devoted to experimentation, using both synthetic and real image streams.
Finally, Section 5 summarizes our contribution and gives some prospects for
future work.

2 Analytic Study of Two Weak-Perspective Views

2.1 The Camera Model

We assume that the scene object is stationary and that the camera translates
by T and rotates by R around the object, and possibly zooms. A new affine
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coordinate frame associated with a second camera is given by the rows of R and
the new origin lies at −R�T thus a point in this second camera is given by the
expression [

x′

y′

]
=

f ′

Z ′
ave

[
X ′

Y ′

]
, (1)

where [X, Y, Z]� = R[X ′, Y ′, Z ′]� + T, f ′ is the new focal length, and Z ′
ave is

the average distance to the object from the second camera.
Consider the equation aX + bY + c = Z of a world plane S. Then the two

views of the coplanar scene are related by the affinity given by
[
x′

y′

]
= M

[
x
y

]
+ t , (2)

with

M = s
f ′

f

[
R1,1 + aR1,3 R1,2 + bR1,3
R2,1 + aR2,3 R2,2 + bR2,3

]
, (3)

t = − f ′

Z ′
ave

[
R1,1 R1,2 R1,3
R2,1 R2,2 R2,3

] ⎡
⎣Tx

Ty

Tz

⎤
⎦ + c

[
R1,3
R2,3

]
, (4)

and where s = Zave/Z
′
ave is the scale factor that accounts for depth variation

(s > 1 if the second camera approaches the scene object, and s < 1 if it departs
from it), and Ri,j are the elements of the rotation matrix R.

A direction v = [x, y]� of the first image R is mapped by the above affinity to
the direction Mv of the second image R′. Since the affine references chosen in
the two cameras match by the displacement, we can superpose the two images
and it has sense to consider directions invariant by M.

2.2 Recovery of the Epipolar Direction

Consider an orthonormal coordinate frame associated to the first image (for
instance, normalized pixel coordinates, when aspect ratio and skew are known).
The rotation matrix about the unit axis [cosα, sin α, 0]� and angle ρ has the
form

R =

⎡
⎣(1 − cos ρ) cos2 α + cos ρ cosα sin α(1 − cos ρ) sinα sinρ

cosα sin α(1 − cos ρ) (1 − cos ρ) sin2 α + cos ρ − cosα sinρ
− sinα sin ρ cosα sin ρ cos ρ

⎤
⎦ . (5)

Hence, the matrix M is

M = s
f ′

f

⎡
⎢⎢⎢⎢⎣

(1 − cos ρ) cos2 α
+ cosρ + a sin α sin ρ

cosα sin α(1 − cos ρ)
+b sinα sin ρ

cosα sin α(1 − cos ρ)
−a cosα sin ρ

(1 − cos ρ) sin2 α
+ cosρ − b cosα sinρ

⎤
⎥⎥⎥⎥⎦ , (6)
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S

r1

r2
R

Fig. 1. Graphic illustration of Theorem 1. See text for details.

where a = [cos α, sin α]� is the direction of the rotation axis. The orthogonal
vector e = [− sinα, cosα]� = a⊥ is the epipolar direction. A straightforward
computation shows that

Me = s
f ′

f
(cos ρ + sin ρ(a sinα − b cosα))e , (7)

thus giving an analytic proof of the following result:

Theorem 1. If the rigid motion between two weak-perspective cameras is as-
sumed to be free of cyclorotation, then the epipolar direction e can be recovered
as one of the two eigenvectors of the vectorial part M of the affinity that relates
two views of a planar scene.

As a consequence, the direction a = e⊥ of the axis of rotation can also be
recovered.

Figure 1 illustrates the above result. Two views R and R′ of a planar H-
shaped object are shown, which are related by a rotation about an axis parallel
to the image plane (i.e., free of cyclorotation). For simplicity of illustration, a
basis {r1, r2} is chosen aligned with the main axes of the H, and the axis of
rotation is taken to be parallel to r2. Thus, the gray plane swept by r1 is left
invariant by the rotation. Note, then, that the epipolar direction is that of r1
in R and that of Mr1 in R′, and its perpendicular within each image is the
direction of the rotation axis.

A geometric proof of Theorem 1 is included in [11]. Within the same geomet-
rical framework, this result is generalized to the affine camera model leading to
Theorem 2. Let us sketch the main ideas of this generalized result; the reader
is referred to [11] for the details of the proof. The main advantage of this gen-
eralization is that, within the affine camera model, the projected target does
not need to be centered in the image (assuming that the image center is a good
approximation to the principal point). This enables us to handle a broader range
of situations where the condition of small field of view is satisfied but the con-
dition of being centered is relaxed. The affine camera model, which encloses the
weak-perspective one, projects a scene point first under a fixed direction (which
corresponds to a point O lying on the plane at infinity Π∞) onto the average
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depth plane RC (the plane parallel to the image plane R containing the centroid
C of the scene object), and then perspectively from this fronto-parallel plane RC

onto the image R. When O equals the direction O orthogonal to the image plane,
the affine camera becomes a weak-perspective camera. By this projection proce-
dure it is inferred that the affine camera, as well as the weak-perspective camera,
preserves parallelism.

While in the weak-perspective camera model the improper optical center O is
determined by the orientation of the image plane (i.e., O is the pole with respect
to the absolute conic Ω of the improper line r of R), in the affine camera model
the improper optical center O may be any point in Π∞. In fact, the direction of
parallel projection, i.e., the improper optical center, depends on the position of
the projected target within the image plane. This implies, on the one hand, that
the same (pinhole) camera under affine viewing conditions can take two affine
views with different improper optical centers (but keeping the same image plane).
On the other hand, this also implies that, while the orientation of the image plane
(and hence the improper optical center in case of a weak-perspective camera) is
determined by the displacement performed by the camera, the improper optical
center is not determined by the camera motion in the more general case of an
affine camera. This is one of the reasons that makes the affine camera model
more difficult to handle than the weak-perspective one.

Since the improper optical centers lie at infinity, the epipoles (of the first
and second affine cameras) are also located at infinity in the image planes, i.e.,
the epipolar lines in both views are parallel. But, while in the weak-perspective
cameras the epipoles coincide with the orthogonal direction (in the image plane)
of the axis of rotation, in the general affine cameras the epipoles are no more
related to this distinguished direction and, thus, a priori, they do not provide
information about the rigid motion between the two affine cameras. This explains
why most of the literature about the general affine camera model switches to the
weak-perspective camera model when the question of inferring camera motion is
addressed. Let us state the announced generalization result:

Theorem 2. Assume that the rigid motion between two affine cameras is free of
cyclorotation and that the target projections are shifted (from the center of the
image) along the direction orthogonal to the axis of rotation. Then the epipolar
direction can be recovered as one of the two eigenvectors of the vectorial part
M of the affinity that relates the two affine views of a planar scene.

2.3 Computing the Epipolar Direction from the Affinity Parameters

Fix any coordinate frame in the image (for instance pixel coordinates, since
orthonormality is not required) and assume that the affinity that relates the two
views has the expression

x′ = Mx + t =
[
M1,1 M1,2
M2,1 M2,2

] [
x
y

]
+

[
tx
ty

]
. (8)
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In virtue of Theorem 1, the epipolar direction is one of the eigenvectors of M.
An eigenvector [1, w]� of M satisfies the equation

M1,2w
2 + (M1,1 − M2,2)w − M2,1 = 0 . (9)

If the motion is under the hypothesis of Theorem 1, then (9) must have two real
solutions w1, w2, and the epipolar direction is e = [1, wi]�, for some i ∈ {1, 2}
(or [0, 1]�, in case M1,2 = 0).

3 Extracting the Affinity Parameters in Our
Implementation

The affinity that relates two affine views is usually computed from a set of
point matches. However, point matching is still one of the key bottlenecks in
computer vision. In this work an active contour [12] is used instead. The active
contour is fitted to a target object and the change of the active contour between
different views is described by a shape vector deduced as follows. The contour
is first represented as a parametric spline curve as it is common in Computer
Graphics [13]. It has previously been shown [12] that the difference in control
points Q′ − Q may be written as a linear combination of six vectors. Therefore,
using matrix notation,

Q′ − Q = WS , (10)

where

W =
([

1
0

]
,

[
0
1

]
,

[
Qx

0

]
,

[
0

Qy

]
,

[
0

Qx

]
,

[
Qy

0

])
, (11)

and S is a vector with the six parameters of the linear combination, the shape
vector

S = [tx, ty, M1,1 − 1, M2,2 − 1, M2,1, M1,2]� , (12)

which encodes the relation between different affine views of the planar contour.
Note that the dimension of the shape vector can be reduced if robot motion

is constrained, for instance to lie on a plane [14].
Once the compact representation of the contour in terms of control points

and knots is obtained, a Kalman filter is used to track the contour along the
sequence [12], and the shape vector is updated at each frame.

In previous works [15,16], the continuously updated shape vector was used to
estimate robot egomotion in practice, provided data from other sensors (such
as an inclinometer) or scene information (such as depth) were supplied. Here
we focus on the extraction of epipolar direction from the shape vectors of just
two views, and the analysis of the attainable accuracy in the different possible
working conditions.

4 Experimentation

Two sets of experiments were performed to evaluate the accuracy of the pro-
posed method. The first set uses synthetic image sequences generated by simul-
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ating camera motion and computing projections under a full perspective camera
model. Using this set, the sensitivity of the proposed algorithm to perspectivity
effects is assessed by changing the distance of the target to the camera. A com-
plete study involving the relaxation of all weak-perspective hypotheses can be
found in [11].

The affine epipolar geometry is usually estimated using the Gold Standard
algorithm [5]. This technique requires image correspondences of at least 4 non-
coplanar points. Using also our synthetic experimental testbed, we show the
effects of approaching coplanarity for this configuration, and compare the results
with those of our method.

The second set of experiments uses real images taken by a robot arm moving
along a calibrated path, showing the performance of the approach under real-
istic imaging conditions. In this setting, a comparison with the Gold Standard
algorithm is also provided.

4.1 Simulations

When synthetic images are generated using an affine camera model (i.e., as-
suming perfect weak-perspective conditions), the epipolar direction is exactly
recovered with the proposed method. However, we would like to assess the va-
lidity of the method under more general conditions. To this end, we generate
the test set of synthetic images using a full perspective camera model. Then, of
course, perspectivity effects affect the recovery of the epipolar direction in the
ways that will be analysed in the following.

In the first experiment we analyse how a decrement of the distance Zave
from the camera to the target affects the computation of the epipolar direction.
Decreasing the distance enlarges perspective effects, and consequently, should
increase the error in epipolar direction recovery. For this experiment we consider
distances of 500, 750, 1000, 1250, 1500, 1750 and 2000mm. The smallest of these,
500mm, corresponds to an extreme situation for the weak-perspective model,
in which important unmodelled distortions in the projected control polygon are
present. For larger depth values, the affine conditions are better satisfied, thus
reducing the error, as shown in Figure 2. It is worth noting that even under
these unfavourable conditions the recovery error stays below 0.6◦.

The effects of relaxing other assumptions, such as lateral translations leading
to uncentered targets, introducing depth relief, or having cyclorotation have also
been explored and the results are given in [11], where the sensitivity to contour
shape is also analysed.

Next we describe a comparison with a standard technique for computing the
affine epipolar geometry, namely the Gold Standard (GS) algorithm [5]. This al-
gorithm, contrary to our procedure, needs non-coplanar point correspondences
in order to compute the maximum likelihood estimate of the affine fundamental
matrix. While in theory, only four non-coplanar points would suffice for comput-
ing the affine epipolar geometry using the GS algorithm, its performance is af-
fected by the amount of non-coplanar information provided, both in terms of de
pth range and in the number of points used. The idea is to establish experimen-
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tally the amount of depth information required by GS algorithm for it to provide
equivalent epipolar direction recovery results to our procedure.

To this end, we set first an experiment in which we add a range from two to
twelve extra points to the H-shaped contour, varying their distance with respect
to the contour plane. Camera parameters are fixed at: 500 mm distance to target
and a focal distance of 767 pixels. As before, camera motion is achieved via a
rotation of 40◦ about an axis placed at an orientation of 45◦ on the target
plane. The results are shown in Figure 3. It can be seen how as the depth of
these points is increased, the error in the computation of the epipolar direction
decreases. Moreover, it turns out that the number and xy location of these
points have little effect in the computation of the epipolar direction. The figure
contains plots of the resulting errors in the computation of the affine epipolar
direction with the GS algorithm for different numbers of out-of-plane points, and
a threshold indicating the error in the recovery of the epipolar direction using

(a) Init (b) 15◦ (c) 30◦ (d) 45◦ (e) 60◦ (f) 75◦

Fig. 4. The first experiment with real images entails pairs of views consisting of the
initial one plus each of the other five, corresponding to camera rotations of 40◦ about an
axis on the target with inclinations sampled at intervals of 15◦. The epipolar direction
computed by the proposed technique is displayed as a line passing through the target
center, while the thin lines are the epipolar lines obtained with GS.
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Table 1. Mean and standard deviation in degrees of the epipolar direction computed
by the proposed technique and the GS algorithm from real images

epipolar direction -15 -30 -45 -60 -75

θ̄ -16.63 -31.01 -45.00 -57.63 -72.04

σ 0.14 0.09 0.14 0.19 0.13

θGS -18.53 -34.25 -49.46 -62.53 -76.36

our proposed technique under the same experimental conditions (the additional
points out of the contour plane are evidently not used in this case). As shown
in the figure, for the given experimental conditions, the results of our technique
are comparable to those of the Gold Standard algorithm when the extra points
are placed roughly at a distance equal to the target size (120 mm in our case).

Note the importance of parallax in the computation of the affine fundamental
matrix with the Gold Standard algorithm. As the target points approach copla-
narity, the parallax vector, which determines the epipolar direction, is mono-
tonically reduced in length. Consequently, the accuracy of the line direction is
also reduced, and the covariance of the estimated affine fundamental matrix in-
creases. This situation does not occur in our procedure, as it has been devised
precisely to compute the affine epipolar direction from two views of a plane.

4.2 Experiments Using Real Images

We present now results on image sequences in a controlled setting of our tech-
nique for computing the affine epipolar direction from pairs of views of a plane
only. The goal of this work is not tracking, but computing the affinity from an
active contour deformation, and using it to estimate the epipolar direction in-
duced by the two views. To this end, we facilitate the tracking phase by moving
a simple target placed on a manipulator end-effector, and focus on evaluating
the accuracy of the direction recovered in different situations, compared to robot
motion ground truth.

The experimentation setup consists of a Stäubli RX60 manipulator holding
the target pattern on its end-effector. This target is a planar artificial H-shaped
figure with corners and curved edges, which can be easily tracked with our active
contour tracker. We are interested in using such setup in order to obtain a precise
ground truth for the experiment. The initial distance from camera to target
has had to be set to 500 mm. This corresponds to the extreme case discussed
in Section 4.1, Fig. 2, and, therefore, we are testing the proposed approach
under relaxed weak-perspective conditions. The acquired images have evident
perspective effects, as shown in Figures 4 and 5, which make our algorithm
work under extreme conditions. In order to provide depth information to the GS
algorithm, the endpoints of two 20 mm screws placed at both sides of the contour
are used as matching features in junction with the eight corners of the contour.
Note that these are also extreme conditions for the GS algorithm to work, since
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(a) Init (b) Tx + 40◦ (c) 20◦ (d) 40◦

Fig. 5. Experiments with real images further relaxing weak-perspective conditions. The
first sequence, entailing an uncentered target, starts at (a) and ends at (b). The next
one departing from a non-frontoparallel target position starts at (c) and ends at (d).

Table 2. Mean and standard deviation of the epipolar direction computed over real
images when weak-perspective conditions are further relaxed

Frames θ̄ σ θGS

Not Centered -34.65 0.13 -56.29

Not Frontoparallel -43.89 0.09 -49.78

very little depth information is provided: only two out-of-plane points. Thus,
due to the setup we currently have, we are comparing both algorithms at the
limit of their respective working conditions.

The first experiment entails camera motion induced by a rotation of 40◦ about
an axis on the target at various inclination angles sampled at intervals of 15◦.
This, thus, relates to Fig. 2 with distance equal to 500 mm. Starting from the
fronto-parallel position shown in Figure 4(a), the contour is tracked to each of the
final views shown in the remaining frames of the figure. The epipolar direction
computed by the proposed algorithm in each case is displayed as a line passing
through the target center. Thin lines passing through the points correspond to
the epipolar direction computed with the GS algorithm.

Table 1 presents the numerical values obtained in the computation of the
epipolar direction. Standard deviation is computed by acquiring 300 images in
the final position, estimating the shape vectors and then computing the cor-
responding epipolar directions. Note that the standard deviations are all very
similar, and the mean values deviate more from ground truth as the angle de-
parts from the 45◦ inclination. This should be interpreted in the light of Fig. 2
as meaning that the tracker amplifies the recovery error due to perspectivity
effects unmodelled by the weak-perspective camera. Consequently, under true
weak-perspective conditions, the errors should be much lower as indicated by
the shrinking of the error curves in Fig. 2 when the distance Zave from the cam-
era to the target increases. Results using the GS algorithm are sightly worse than
those obtained with the proposed algorithm. This is due to perspective effects
as well as to the poor depth information provided with the point matches used.

Two additional sequences were analyzed after further relaxing weak-perspecti-
ve conditions. The first such sequence, labelled “Not centered”, starts at the
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fronto-parallel initial position (Fig. 5(a)) and finishes at an uncentered position,
after a translation of 100 mm along the x axis of the robot coordinate frame
and a rotation of 40◦ about an axis at 45◦ inclination (Fig. 5(b)). Consistent
with our simulated results [11], this lateral camera translation is by far the
violation of weak-perspective conditions that has the most pervasive effect on
the computation of the epipolar direction. See the numbers in Table 2, first row,
which is far from the motion assumption of Theorem 2. This pervasive effect
appears also in the computation with the GS algorithm, yielding the largest
error in the experiments.

The second experiment, labelled “Not Frontoparallel”, corresponds to the
same rotation described above, but the initial frame is not frontoparallel. The
sequence starts with the target already rotated 20◦ as shown in Fig. 5(c) and,
after a further rotation of 20◦, finishes at 40◦ (Fig. 5(d)), all rotations about an
axis at 45◦ inclination as before. Observe that the result is only a bit worse than
that of the initial experiment, but with a similar standard deviation. The result
with the GS algorithm here is similar as before.

5 Conclusions

The recovery of camera motion and scene structure from uncalibrated image
sequences has received a lot of attention lately due to its numerous applications,
which range from robot localization and navigation, to virtual reality and arche-
ology, to name just a few. Most works rely on detecting a set of non-coplanar
points in the scene and matching their projections on the different views. In
this paper we have departed from this main stream, by dealing with a less in-
formative situation, namely features lying on a plane, and recurring to contour
tracking instead of point matching.

Our main result is that, under weak-perspective conditions and assuming a
camera motion free of cyclorotation, the epipolar direction can be recovered from
the affinity relating two views of a planar scene.

Synthetic images were used to evaluate the results in a noise-controlled en-
vironment, and then to compare the accuracy of our method with that of the
Gold Standard algorithm, which relying on matches of non-coplanar points falls
in the main stream mentioned above.

The outcome of the comparison has been very encouraging, since with less
scene information (only from a plane) and with a much simpler processing (solv-
ing a single second-order equation), we are able to obtain the epipolar direction
with similar accuracy. It is worth reminding, however, that our method is less
general in that it requires a camera motion free of cyclorotation.

The second experimental set consisted of image sequences that were used
to validate the proposed approach under real imaging conditions. Note that
the objective of the paper is to show what can be obtained from the affine
deformation of two views of a contour, and not to validate the robustness of the
contour tracker used. For this reason, simple and well-calibrated image sequences
were used in order to have a good basis for ground truth comparison.
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Future work will include an error analysis that involves positional errors on the
contours due to the image acquisition process. Moreover, we will try to unravel
under what circumstances additional information on camera motion and scene
structure can be recovered from two (or more) uncalibrated views of a planar
object. Along the same line, we will tackle the recovery of the orientation of
the scene plane, as well as what occurs in degenerate situations in which such
orientation is the same as that of the image plane, or when both planes have a
common direction.
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Abstract. We present a framework for object recognition based on sim-
ple scale and orientation invariant local features that when combined
with a hierarchical multiclass boosting mechanism produce robust clas-
sifiers for a limited number of object classes in cluttered backgrounds.
The system extracts the most relevant features from a set of training sam-
ples and builds a hierarchical structure of them. By focusing on those
features common to all trained objects, and also searching for those fea-
tures particular to a reduced number of classes, and eventually, to each
object class. To allow for efficient rotation invariance, we propose the use
of non-Gaussian steerable filters, together with an Orientation Integral
Image for a speedy computation of local orientation.

1 Introduction

Object detection is a fundamental issue in most computer vision tasks; par-
ticularly, in applications that require object recognition. Early approaches to
object recognition are based on the search for matches between user-generated
geometrical object models and image features. To overcome the need of such
models, appearance-based object recognition gained popularity in the past two
decades using dimensionality reduction techniques such as PCAs for whole-image
matching. Unfortunately, appearance based matching as such, is prone to fail in
situations with modest occlusions or under varying backgrounds. Lately, a new
paradigm for object recognition has appeared based on the matching of geomet-
rical as well as appearance local features. The most popular of these, perhaps,
the SIFT descriptor [1].
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Instead of using general saliency rules for feature selection as in the case of the
SIFT descriptor, the use of boosting techniques for feature selection has proven
beneficial in choosing the most discriminant geometric and appearance features
from training sets. Despite their power in achieving accurate recognition from
trained data, early boosting mechanisms such as [2], were tailored to single class
object recognition, and are not suitable for multiclass object recognition given
the large amount of features that need to be trained independently for each
object class. Lately however, there have been some extensions to the general
idea of classfication with boosting that allow the combined training of multiple
classes [3,4]. In the computer vision doamin, Torralba et al. [5] proposed an
extension to one such boosting algorithm (gentleboost), with the purpose of
sharing features across multiples object classes so as to reduce the total number
of classifiers. They called it JointBoost, and in this approach, all object classes
are trained jointly, and for each possible subset of classes (2n − 1 excluding the
empty set), the most useful feature is selected to distinguish that subset from the
background class. The process is repeated until the overall classification error
reaches a minimum, or until a limit on the number of classifiers is achieved.

The type of weak classifier features used in [5] are very simple template match-
ing masks, that would presumibly fail if sample objects are to be found at dif-
ferent orientations than as trained. In this work we investigate on the use of
similar multiclass feature selection, but with keen interest in fast computation
of orientation invariant weak classifiers [6] for multiclass rotation invariant object
recognition.

In [2], Viola introduced the integral image for very fast feature evaluation.
Once computed, an integral image allows the computation of Haar-like features
[7] at any location or scale in real time. Unfortunately, such system is not in-
variant to object rotation or occlusions. Other recognition systems that might
work well in cluttered scenes are based on the computation of multi-scale local
features such as the previously mentioned SIFT descriptor [1]. One key idea be-
hind the SIFT descriptor is that it incorporates canonical orientation values for
each keypoint. Thus, allowing scale and rotation invariance during recognition.
Even when a large number of SIFT features can be computed in real time for one
single image, their correct pairing between sample and test images is performed
via nearest neighbor search and generalized Hough transform voting, followed
by the solution of the affine relation between views; which might end up to be a
time consuming process.

Yokono and Poggio [8,9] settle for Harris corners at various levels of resolu-
tion as interest points, and from these, they select as object features those that
are most robust to Gaussian derivative filters under rotation and scaling. As
Gaussian derivatives are not rotation invariant, they use steerable filters [10] to
steer all the features responses according to the local gradient orientation around
the interest point. In the recognition phase, the system still requires local feature
matching, and iterates over all matching pairs, in groups of 6, searching for the
best matching homography, using RANSAC for outlier removal. Unfortunately,
the time complexity or performance of their approach was not reported.
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In [6] we realized that filter response to Haar masks can be not only be
computed efficiently with an integral image scheme; but also, that such masks
can be approximately rotated with some simplifications of the Gaussian steerable
filter. Thus, allowing for fast computation of rotation invariant filter responses
as week classifiers.

In this paper, we incorporate these two ideas, multiclass boosting, and rota-
tion invariance, for the selection of joint and specific local features to construct a
hierarchical structure that allow recognizing multiples objects independently of
position, scale and orientation with a reduced set of features. In our system, key-
points are chosen as those regions in the image that have the most discriminant
response under convolution with a set of wavelet basis functions at several scales
and orientations. Section 2 explains how the most relevant features are selected
and combined to classify multiples objects. The selection is based on JointBoost,
in which a hierarchical structure is composed by sets of joint and specific classi-
fiers. A linear combination of these weak classifiers produces a strong classifier
for each object class, which is used for detection. Rotation invariance is achieved
by filtering with oriented basis functions. Filter rotation is efficiently computed
with the aid of a steerable filter, that is, as the linear combination of basis filters,
as indicated in Section 3.

During the recognition phase, sample image regions must be rotated to a
trained canonical orientation, prior to feature matching. Such orientation is dic-
tated by the peak on a histogram of gradient orientations, depicted in Section
4. Section 5 explains our proposed Orientation Integral Image for the speed of
kernel orientation computation, and Section 6 presents some experiments.

2 Feature Selection

The set of local features that best discriminates an object is obtained by con-
volving positive sample images with a simplified set of wavelet basis function
operators [7] at different scales and orientations. These filters have spatial ori-
entation selectivity as well as frequency selectivity, and produce features that
capture the contrast between regions representing points, edges, and strips, and
have high response along for example, contours. The set of operators used is
shown in Figure 1. Filter response is equivalent to the difference in intensity in
the original image between the dark and light regions dictated by the operator.
Figure 1 d) exemplifies how an object can be represented by a small set of the
most useful local features.

Convolving these operators at any desired orientation is performed by steering
the filter (Section 3), and fast convolution over any region of the entire image is
efficiently obtained using an integral image (Section 5).

Feature selection is performed as in JointBoost [5], choosing one at a time,
from the 2n − 1 subsets of the classes c = 1...n (empty set excluded), the weak
classifier h(I, s) that best discriminates any subset s from the background class
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Fig. 1. Simplified wavelet basis function set. a) center-surround b) edge, and c) line;
and d) object local features.

(lowest classification error). The weak classifier is defined by the parameters
filter type, size, location, orientation and threshold, taking the binary decission
value

h(I, s) =
{

1 : I ∗ f > t
0 : otherwise (1)

where I is a training sample image of class c in the subset s, f is the filter being
tested, with all its parameters, ∗ indicates the convolution operation, and t is
the filter response threshold.

At each iteration during the training phase, the algorithm must find for all of
the 2n − 1 subsets, the weak classifier that best discriminates that subset from
the background class by minimizing the squared error over weighted samples of
all classes in that subset

Jwse =
n∑

c=1

m∑
s=1

wc
i (z

c
i − h(I, s))2 (2)

where zc
i and wc

i are the membership label and weight of the sample i for class
c respectively, and m the total number of training samples. The algorithm also
updates sets of weights over the training samples. The number of sets corre-
sponds with the number of classes to learn. Initially, all weights are set equally,
but on each round, the weights of missclassified samples are increased so that
the algorithm is forced to focus on such hard samples in the training set the
previously chosen classifiers missed. Finally, choosing the weak classifier for the
subset that had the minimum squared error J , and iteratively adding it to the
Strong Classifier for every class c in s, H(I, c),

H(I, c) := H(I, c) + h(I, s) (3)

Scale invariance is obtained by iterating also over scaled filters within the clas-
sifier H . Scaling of the filters can be performed in constant time for a previously
computed integral image.
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3 Steerable Filters

In order to achieve orientation invariance, the local filters must be rotated previ-
ous to convolution. A good alternative is to compute these rotations with steer-
able filters [10], or with its complex version [11]. A steerable filter is a rotated
filter comprised of a linear combination of a set of oriented basis filters

I ∗ f(θ) =
n∑

ki(θ)I ∗ f(θi) , (4)

where f(θi) are the oriented basis filters, and ki are the coefficients of the bases.
Consider for example, the Gaussian function G(u, v) = e−(u2+v2), and its

first and second order derivative filters G′
u = −2ue−(u2+v2) and G′′

u = (4u2 −
2)e−(u2+v2). These filters can be re-oriented as a linear combination of filter
bases. The size of the basis is one more than the derivative order.

Consequently. the first order derivative of our Gaussian function at any direc-
tion θ is

G′
θ = cos θG′

u + sin θG′
v , (5)

and, the steered 2nd order Gaussian filter can be obtained with

G′′
θ =

3∑
i=1

ki(θ)G′′
θi

(6)

with ki(θ) = 1
3 (1 + 2 cos(θ − θi)); and G′′

θi
precomputed second order derivative

kernels at θ1 = 0, θ2 = π
3 , and θ3 = 2π

3 . See Figure 2.
Convolving with Gaussian kernels is a time consuming process. Instead, we

propose in [6] to approximate such filter response by convolving with the Haar
basis with the objective of using the integral image. Thus, we approximate the
oriented first derivative response with

I ∗ f1(θ) = cos θI ∗ f1(0) + sin θI ∗ f1(π
2 ) . (7)

and in the same sense, the filtering with our line detector at any orientation θ
is obtained with

I ∗ f2(θ) =
3∑

i=1

ki(θ)I ∗ f2(θi) . (8)

The similarity of the response between the Gaussian and the Haar filters
allows us to use the later basis instead as weak classifiers for the detection of
points, edges, and lines; just as the Gaussian filters do. The main benefit of the
approach is in speed of computation. While convolution with a Gaussian kernel
takes time O(n) the size of the kernel, convolution with the oriented Haar basis
can be computed in constant time using an integral image representation. Figure
3 shows some results.
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Fig. 2. First and second order steerable filters. (a-b) Gaussian basis, (c-d) Gaussian
oriented filters, (e-f) Haar basis, (g-h) Haar oriented filters.

Fig. 3. Filter responses. (a) original image, (b-e) filter responses.

4 Local Orientation

Consider a training session has produced a constellation H of local features h as
the one shown in Figure 4. Now, the objective is to test for multiple positions
and scales in each new image, whether such constellation passes the test H or
not. Instead of trying every possible orientation of our constellation, we chose
to store the canonical orientation θ0 of H from a reference training image block,
and to compare it with the orientation θ of each image block being tested. The
difference between the two indicates the amount we must re-orient the entire
feature set before the test H is performed.

On way to compute block image orientation is with ratio of first derivative
Gaussians G′

u and G′
v [9], tan θ = I∗G′

v

I∗G′
u
. Another technique, more robust to

partial occlusions, is to use the mode of the local gradient orientation histogram
(see Figure 4 c-d), for which it is necessary to compute gradient orientations
pixel by pixel, instead of a region convolution as in the previous case.
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Fig. 4. Local orientation a) canonical orientation, b) rotated constellation, c) image
gradients, b) gradient orientation histogram

Fig. 5. Integral Images, a) Integral Image b) Orientation Integral Image

5 The Local Orientation Integral Image

An integral image is a representation of the image that allows a fast computation
of features because it does not work directly with the original image intensities.
Instead, it works over an incrementally built image that adds feature values
along rows and columns. Once computed this image representation, any one of
the local features (weak classifiers) can be computed at any location and scale
in constant time.

In its most simple form, the value of the integral image M at coordinates u, v
contains the sum of pixels values above and to the left of u, v, inclusive.

M(u, v) =
∑

i≤u,j≤v

I(i, j) (9)

Then, it is possible to compute for example, the sum of intensity values in a
rectangular region simply by adding and subtracting the cumulative intensities
at its four corners in the integral image (Figure 5a). Then, the response from
the Haar-filters can be calculated in a fast way independently of size or location.

Area = A + D − B − C (10)
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Extending the idea of having cumulative data at each pixel in the Integral
Image, we decide to store in it orientation histogram data instead of intensity
sums. Once constructed this orientation integral image, it is possible to compute
a local orientation histogram for any given rectangular area within an image in
constant time. see Figure 5b.

Histogram(Area) = Histogram(A) + Histogram(D)
−Histogram(B) − Histogram(C) (11)

6 Experiments

In this communication we report on initial recognition results for a limited number
of objects in gray scale images. The training set had 100 images for each class, and
500 negatives or background images. These negatives images were extracted from
exterior and interior scenes. The positive class images used for training presented
some small translation, orientation, and scale, as shown in Figure 6.

Figure 7 a) and b) show examples of extracted feature constellation for each
object class. Each one is composed by 8 weak classifiers (Haar-like features), with
4 of them common to both classes, and the remaining 4 specific to each class.

a) b) c)

Fig. 6. Training object classes. a) dice images, b) CD box images, and c) background
images.

(a) (b) (c) (d)

Fig. 7. Constellations. a) dice constellation b) CD box constellation (c-d) joint classi-
fiers.



Orientation Invariant Features for Multiclass Object Recognition 663

(a) (b)

Fig. 8. Training performance. a) dice b) CD box.

Fig. 9. Examples of correct detection of classifiers trained jointly (dice and Cd box).
The last image shows also under what circumpstances a false detection might occur.

Thus, producing a hierarchical structure of weak classifiers. Frames c) and d)
show only those four classifiers that are common to both classes. They capture
simmilar local information in both classes, separating them from the background
set, without the need to be class specific.

The Strong Classifiers can be expressed as the combination of joint and specific
weak classifiers. Consider the dice to be class 1, the CD box to be class 2, and
c12 the set of training samples containing either one or both objects. Then

H(I, c1) =
∑

h(I, c12) +
∑

h(I, c1) (12)
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H(I, c2) =
∑

h(I, c12) +
∑

h(I, c2) (13)

The training curves are shown in Figure 8.They illustrate how the correct
classification of the training set is achieved. Some results in detection process
over a image sequence are visualized in Figure 9.

7 Conclusions

In this paper we have introduced a hierarchical feature selection structure that
reduce the total number of weak classifiers needed to detect multiples object
classes. With this method the system finds common features among objects and
generalizes the detection problem.

Our approach is based on boosting over a set of simple local features. In
contrast to previous approaches, and to efficiently cope with orientation changes,
we propose the use of Haar basis functions and a new orientation integral image
for a speedy computation of local orientation.
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Abstract—

In this paper we consider a single hand-held camera perform-
ing SLAM at video rate with generic 6DOF motion. The aim
is to optimise both the localisation of the sensor and building
of the feature map by computing the most appropriate control
actions or movements. The actions belong to a discrete set (e.g.
go forward, go left, go up, turn right, etc), and are chosen so as to
maximise the mutual information gain between posterior states
and measurements. Maximising the mutual information helps
the camera avoid making ill-conditioned measurements appro-
priate to bearing-only SLAM. Moreover, orientation changes are
determined by maximising the trace of the Fisher Information
Matrix. In this way, we allow the camera to continue looking
at those landmarks with large uncertainty, but from better-
posed directions. Various position and gaze control strategies are
first tested in a simulated environment, and then validated in a
video-rate implementation. Given that our system is capable of
producing motion commands for a real-time 6DOF visual SLAM,
it could be used with any type of mobile platform, without the
need of other sensors.

I. INTRODUCTION

Impressive advances in 2D and, more recently, 3D simul-

taneous localisation and mapping (SLAM) for mobile robots

have been made over the last 15 years, largely using sonar

and laser range sensing [1]–[5]. Most recently, there has been

considerable interest in solving the SLAM problem using

visual sensing, both in order to obtain more accurate 3D

representations of the environment and to exploit its richer

potential for scene representation [6], [7]. In this communica-

tion, we consider the problem of SLAM with a single camera

carried by a human, and how to implement control strategies

in this context. In that sense, this work is different from

other control work because we can only give a human quite

approximate, low frequency, easy to understand commands

like ‘left’, ‘right’, ‘stay’.

One of the first active vision-based SLAM approaches used

feature correspondences from stereo image pairs [6]. The

This research is supported by the Spanish Ministry of Education and
Science under projects DPI 2004-5414, TIC 2003-09291, and the EU PACO-
PLUS project FP6-2004-IST-4-27657 to TVC and JAC, and by the UK
Engineering and Physical Research Council under an Advanced Research
Fellowship Grant GR/N03266 to AJD, and by Grant GR/S97774 to DWM.

computational burden for the accurate detection and matching

of image pairs motivated the use of active visual sensing

for landmark selection in sparse feature maps. Their work

is different to ours because they only control orientations

of the stereo head, and we are now talking about actually

controlling translation as well. Other reported techniques to

visual SLAM — although with no control — include the

use of SIFT features, and matching over a trinocular rig [7].

More elegantly and economically, feature locations can also

be computed by tracking landmarks over multiple views from

only one camera, a process referred to a ‘bearing-only SLAM’.

One key issue in bearing-only SLAM is the initialisation

of feature locations. In [8] for example, the initial estimation

of a landmark’s location is achieved by sampling hypotheses

of a 1D particle distribution along the line of sight. Another

technique consists of using sums of Gaussian distributions

to parameterise 3D feature locations over a delayed state

representation [9].

When the sensor capabilities in SLAM are limited, camera

motion plays an important role in the quality of reconstruction

obtained. Driving the sensor to the locations that maximise the

expected information gain from acquiring an observation at

that location has been a common strategy [10]–[12]. However,

Sim has showed that maximising the expected information

gain leads to ill-conditioned filter updates in the bearing-only

SLAM [13]. In [14], Bryson et al. present simulated results

of the effect different vehicle actions have with respect to the

entropic mutual information gain. The analysis is performed

for a 6DOF aerial vehicle equipped with two cameras and an

inertial sensor, for which landmark range, azimuth, and eleva-

tion readings are simulated, and data association is known.

In this paper we are interested in the video-rate estimation

and control of a single camera’s motion, moving rapidly

with 6DOF in 3D in normal human environments, mapping

visual features with minimal prior information about motion

dynamics. Our aim is to localise the sensor and build a feature

map by computing the appropriate control actions in order to

improve overall system estimation.

However, insisting on video-rate performance using mod-

est hardware imposes severe restrictions on the volume of



computation that can take place in each 33ms time step.

Re-estimation must take place of course, but making strictly

optimal camera movements would require in addition the

computation of the derivatives of a well-chosen performance

metric with respect to the inputs [15]. Such a computation

remains unfeasible for a 6DOF highly nonlinear system model.

Besides, human actions can only be approximate, and at

low frequency. So, instead of computing the optimal motion

command, we decide only upon a small set of choices.

Actions belong to a discrete set (eg. go forward, go left,

go up, turn right, etc.), and the particular movement chosen is

the one that maximises the mutual information gain between

posterior states and measurements. Using entropy for explo-

ration only makes sense if we can be certain that uncertainty is

reduced as landmarks are being discovered. To that, one must

have an idea first of the shape of the space to be mapped, and

filling it with randomly placed features with large uncertainty

[14]. Maximising the mutual information aims at reducing

the overall state uncertainty, and helps the camera move

away from making repeated ill-conditioned measurements.

Orientation changes are determined by maximising the trace

of the Fisher Information Matrix. In this way, we allow the

camera still to look at those landmarks with large uncertainty,

but from better-posed directions.

The remainder of the paper is ordered as follows. First we

briefly describe the system and the estimation scheme. Then

the metrics used as cost functions to choose the appropriate

actions are explained; and our control strategy is illustrated

through simulations. Lastly, we present the results of real-

time experiments with a hand-held wide-angle camera, where

a GUI feeds-back motion commands to the user.

II. 6 DOF BEARING-ONLY SLAM

A. Unconstrained Camera Motion

It is assumed that the camera could be attached to any

mobile platform — in our case the hand — and is free to

move in any direction in IR3 × SO(3). We adopt a smooth

unconstrained constant-velocity motion model, its translational

and rotational altered only by zero-mean, normally distributed

accelerations and staying the same on average. The Gaussian

acceleration assumption means that large impulsive changes of

direction are unlikely. The camera motion prediction model is

xv(k+1|k) =



p(k+1|k)

q(k+1|k)

v(k+1|k)

ω(k+1|k)


 =



p(k|k) + (v(k|k) + a(k)∆t)∆t

Qq(k|k)

v(k|k) + a(k)∆t
ω(k|k) + α(k)∆t


 ,

with p = [x, y, z]⊤ and q = [q0, q1, q2, q3]
⊤ denoting the cam-

era pose (three states for position and four for orientation using

a unit norm quaternion representation), and v = [vx, vy, vz]
⊤

and ω = [ωx, ωy, ωz]
⊤ denoting the linear and angular

velocities, respectively. The subscripts (k|k) and (k + 1|k)
denote the posterior at time k and the prior (before integrating

measurements) at k + 1. The input to the system is the

acceleration vector u = [a⊤,α⊤]⊤ = [ax, ay, az, αx, αy, αz]
⊤.

An Extended Kalman Filter propagates the camera pose

and velocity estimates, as well as feature estimates. A state

that includes the features y is made of x = [x⊤v ,y⊤]⊤.

The model Q for the prediction of change in orientation

is inspired by [16] and is detailed in the Appendix. The

redundancy in the quaternion representation is removed by a

||q|| = 1 normalisation at each update, accompanied by the

corresponding Jacobian modification.

B. Feature Extraction

In this work we are interested in mapping the 3-D coordi-

nates of salient point features from images, and need to do

so at video-rate. As in previous work, we use the Shi-Tomasi

saliency operator, and match correspondences in subsequent

frames using normalised sum-of-squared differences [6], [8].

Although more robust detectors such as SIFT have become

widely popular for their ability to find and match features

with higher degree of uniqueness, they come at the expense

of heavier computational load.

Image projection is modelled using a full perspective wide

angle camera. The position of a 3D scene point yi is trans-

formed into the camera frame as yc
i = [xc, yc, zc]⊤ =

R
⊤(yi − p) , with R the rotation matrix equivalent of q.

The point’s projection onto the image plane is

hi =

[
u
v

]
=

[
u0 − uc/

√
d

v0 − vc/
√

d

]
, (1)

where uc = fkuxc/zc, vc = fkvyc/zc, the radial distortion

term is d = 1 + Kd(u
2
c + v2

c ), and the intrinsic calibration of

the camera — focal distance f , principal point (u0, v0), pixel

densities ku and kv , and radial distortion parameter Kd — are

determined beforehand.

When an image feature is detected, its measurement must

either be associated with an existing feature or be added

as a new feature in the map. The location of the camera,

along with the locations of the already mapped features,

are used to predict feature position hi using Eq. (1), and

these estimates checked against the measurements using a

nearest neighbour test. Feature search is constrained to 3σ
elliptical regions around the image estimates as defined by

the innovation covariance matrix Si = HiPk+1|kH
⊤
i + R ,

with Hi the Jacobian of the sensor model with respect to the

state, Pk+1|k the prior state covariance, and measurements

zi assumed corrupted by zero mean Gaussian noise with

covariance R.

C. Initialisation

Inserting a new feature to the map cannot be done im-

mediately because the measurement model is non-invertible.

Though bearing is recoverable from one measurement, 3D

depth is not.

Several schemes have been reported [8], [9], [17], and we

adopt the first of these. The initial measurement results in a

semi-infinite line with Gaussian uncertainty in its parameters,

starting at the estimated camera position and heading to

infinity along the feature viewing direction. A 1D particle



distribution represents the likelihood of the 3D feature’s posi-

tion along this line. The line is projected as an epipolar line

into subsequent images, but specifically it is the projection of

the point particles and their uncertainly ellipses that provide

the regions to be searched for a match, in turn producing

likelihoods for Bayesian re-weighting of the depth distribution.

A small number of steps is required to reduce to below a

threshold the ratio of the standard deviation in depth to the

depth estimate itself. At that time, the depth distribution is

re-approximated as Gaussian and the feature is initialised as

a 3D point yi into the map.

III. INFORMATION GAIN

This section first presents a metric for expected information

gain as a result of performing a given action, and then develops

an overall information conditioning strategy for the computa-

tion of orientations. The aim will be to move the camera in the

direction that most reduces the uncertainty in the entire SLAM

state, by using the information that should be gained from

future, predicted, landmark observations were such a move to

be made, but taking into account the information lost as a

result of moving with uncertainty.

A. Mutual Information Gain

We adopt entropy as a measure of uncertainty; that is, as

a measure of how much randomness there is in our state

estimate. Entropy is defined as H(X) = −∑
x

p(x) log p(x) ,
which, for our case where p(x) is a n-variate Gaussian

distribution, reduces to H(X) = 1
2 log((2π)n|P|) .

Now consider the following two random vectors: the state

prior xk+1|k, and the prediction of measurement i, zi,k+1|k.

We want to choose the action that maximises the mutual in-

formation between the two. The mutual information is defined

as the relative entropy between the joint distribution p(x, zi),
and the marginals p(x) and p(zi).

I(X;Z) =
∑

x∈X,zi∈Z

p(x, zi) log
p(x, zi)

p(x)p(zi)

= H(X) + H(Z) − H(X,Z)

= H(X) − H(X|Z) ,

which, for our Gaussian multivariate case, evaluates to

I(X;Z) =
1

2
log

( |Px|
|Px − PxzP

−1
z P⊤

xz
|

)

=
1

2
log

(
|Pk+1|k|

|Pk+1|k − Pk+1|kH
⊤
i S−1

i HiP
⊤
k+1|k|

)

=
1

2

(
log |Pk+1|k| − log |Pk+1|k+1|

)
.

Thus, in choosing a maximally mutually informative motion

command, we are maximising the difference between prior and

posterior entropies [18]. In other words, we are choosing the

motion command that most reduces the uncertainty of x due

to the knowledge of z as a result of a particular action. Figure

1 shows the directions maximising the mutual information for

a simple 2DOF camera and 3 landmarks.

3

MaximumMaximumMaximumMaximum

2

1 Camera

Fig. 1. Maximisation of mutual information for the evaluation of motion
commands. A simple 2DOF camera is located at the centre of the plot, and a
decision where to move must be taken as a function of the pose and landmark
states, and the expected measurements. Three landmarks are located to its
left, front, and right-front. Moving to the location in between landmarks 2
and 3 maximises the mutual information between the SLAM prior and the
measurements for this particular example.

Note that the use of mutual information only makes sense

prior to reaching full correlation. In SLAM, |Pk|k| tends

asymptotically to zero, point at which the map becomes fully

correlated and there is nothing else the camera can do to

improve the estimates of the features. From then on, entropy

can still be used to decide what actions to take to reduce

the camera’s own uncertainty, and this can be done just by

replacing x with xv from the above discussion.

B. Fisher Information for Gaze Direction

Measurements in the bearing-only SLAM case are ill-posed

for motions along the principal axis, when points are close

to the principal axis and there is little perspective distortion.

Motion commands based on the maximisation of the mutual

information metric drive the camera away from those config-

urations, that is, perpendicular to the principal axis. However,

we still want the camera to look at those landmarks with

large uncertainty so as to reduce their covariance when seen

from different locations. To do that, we incorporate another

information metric to control the direction of gaze. From a

set of possible orientation changes, we propose choosing that

which maximises the trace of the Fisher Information Matrix.

In this way we will be choosing the best direction to look at,

in the sense that it is the one that is most informative, but from

a different position than the ill-posed one. Under the Gaussian

assumption for sensor and platform noises, the minimisation

of the least squares criteria (the KF) is equivalent to the

maximisation of a likelihood function Λ(x) given the set of ob-

servations Zk, that is, the maximisation of the joint pdf of the

entire history of observations, Λ(x) =
∏k

i=1 p(zi|x, Zi−1) .
The Total Fisher Information Matrix, a quantification

of the maximum existing information in the observations



about the state, is defined in [19] as the expectation J =

E
[
(∇ log Λ (x)) (∇ log Λ (x))

⊤
]

, which here evaluates to

J =
∑

H⊤S−1H .
The information for the reconstruction of the state con-

tributed by the set of measurements at each iteration is

contained in H⊤S−1H. The eigenvalues λj of this contribution

to J show which linear combinations of the states can be

estimated with good accuracy and which will have large

uncertainties from the coming measurements. It also shows

which linear combinations of states are unobservable. When

one dimension of J has a very small eigenvalue (information

along the line of sight), the product is not a reliable measure of

the elongation of the information hyperellipsoid, as it collapses

the volume to zero. Our strategy is to look in the direction at

which
∑

λj is maximum [20]. This is the viewing direction

that will introduce the largest amount of information in one

single measurement step.

Under a Fisher information motion strategy, maximally

informative actions move the robot as close as possible to the

landmarks under observation. We do not want to move towards

them, but only to orient towards them. Our idea of using the

Fisher Information is only to fixate our camera to those most

uncertain landmarks, and use the change in entropy to select

movement actions. This way, by using the mutual informa-

tion metric, maximally informative actions would prevent the

camera from producing ill-posed measurements. Note that an

omnidirectional sensor would not require a strategy to direct

fixation. In our case, as opposed to a mobile robot, translation

and orientation changes are kinematically decoupled, for this

reason, it makes sense to use different information measures

in evaluating them.

IV. CONTROL STRATEGY

In this Section we demonstrate in simulation how combining

the strategies of effectively controlling translation by maximis-

ing mutual information thereafter controlling orientation by

maximising the information available from the new position

yields reliable active control of pose and velocity for a free

moving camera, whilst building a map optimally.

A. Deciding Where to Go and Where to Look At

As noted earlier, the real-time requirements of the task

preclude using an optimal control decision that takes into

account all possible motion commands which is impracticable

to compute, leading to an exponential growth because of the

curse of dimensionality of long term action evaluation. Instead

we evaluate our information metrics for a small set of actions

carried out over a fixed amount of time, and choose the best

action from those.

The set of possible actions is divided in two groups.

Mutual information is evaluated for the translational actions

go_forward, go_backwards, go_right, go_left,

go_up, go_down, and stay; and Fisher information is max-

imised from the set of orientation commands turn_right,

turn_left, and stay.

In our simulated setting, desired camera locations are pre-

dicted for the best action chosen, and a PD low-level control

law is applied to ensure these locations are reached at the

end of one second; at which point the motion metric is again

evaluated to determine the next desired action. Orientations

however, are evaluated at frame rate, leaving the system to

freely rotate, governed only by the information maximisation

strategy.

The simulation considers a fixed number of expected land-

marks to be found, and both the Mutual Information and

Fisher Information metrics are computed taking into account

the corresponding full covariance matrices, including these

unvisited landmarks, which have been initialised with large

uncertainties. This is the only thing that prevents our control

strategies from defaulting to homeostasis.

B. Simulation Results

Figure 2 contains simulation results from our mutual in-

formation strategy for the computation of motion commands,

and compares various orientation computation schemes. The

simulated environment represents a room 6×6×2 m3 in size

containing 33 randomly distributed point landmarks, out of

which 6 are fiduciary points, to be used as global references

[21].

The initial standard deviation in camera pose is 6-cm in

the x and y directions, 4.6 cm in height z, and 45◦ in

orientation, right after matching the fiduciary points, but before

any motion takes place. Sensor standard deviation is set at 2

pixels, and data association is not known a priori. Instead,

nearest neighbour χ-squared tests are computed to guarantee

correct matching. New features are initialised once their ratio

of depth estimate to depth standard deviation falls below a

threshold of 0.3.

The plots show the results of actively moving a 6-DOF

camera whilst building a map of 3D features. In all cases, each

of the seven motion actions will produce a displacement of

30 cm in the corresponding direction. Our mutual information

metric is evaluated at each of these positions. The action that

maximises the metric is chosen, and the camera is controlled

to reach that position in one second with a PD control law.

Orientation changes are computed every 50 ms.

Three approaches were tested for the computation of gaze

commands: (i) constant rotational velocity of 0.2 rad/sec,

frames (a,d); (ii) maximisation of mutual information both

for the position and orientation of the moving camera, frames

(b,e); and (iii) maximisation of mutual information for position

and maximisation of Fisher information for gaze, frames (c,f).

The experiment shown in the plots lasted 35 seconds.

The constant rotational velocity and the mutual information

strategies tend to insert landmarks into the map at a faster

pace than the Fisher Information strategy. As can be seen in

the error plots in Figure 3, this might not be always the best

choice. It seems reasonable to let the system accurately locate

the already seen landmarks before actively searching for new

ones.
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(a) Final Map by using Mutual Information for
position and constant angular velocity.
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(b) Final Map by using Mutual Information for
position and orientation.
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(c) Final Map by using Mutual Information for
position and Fisher Information for orientation.
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(d) Entropy for MI in position and constant
angular velocity.
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(e) Entropy for MI in position and orientation.
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(f) Entropy for MI in position and FI in orien-
tation.

Fig. 2. Trajectories with Final Maps and Entropy. (rReal and rEst are the real and estimated camera trajectories, the label newland and the green dots and
dotted vertical lines represent the value of entropy at the instant when new landmarks are initialised. Pcam, Plan, and P indicate the camera, map, and overall
entropies.

The third alternative, controlling camera orientation by

maximising the Fisher Information entering into the filter,

has the effect that it focuses on reducing the uncertainty of

the already seen landmarks, instead of eagerly exploring the

entire room for new landmarks. The reason is that landmarks

that have been observed for a small period of time still have

large depth uncertainty, and the Fisher Information metric

is maximised when observations are directed towards them.

The technique tends to close loops at a faster pace than the

other two approaches, thus propagating correlations amongst

landmarks and poses in a more efficient way. Additionally, by

revisiting fiduciary points more often, orientations are much

better estimated in this case.

Strategy (iii) needs more time to reduce entropy and takes

more time to insert the same number of landmarks in the map.

But, at the point at which the same number of landmarks is

available it has lower entropy than the other two strategies

(see for example in Figure 2, frames (d-f), that when the 14th

landmark is added, the times are 19, 18, and 30 secs, and the

entropies are -530, -550, and -610).

V. EXPERIMENTS

This section presents an initial experimental result validating

the maximisation of mutual information strategy for the con-

trol of a hand-held camera in a challenging 15fps visual SLAM

application. Within a room, the camera starts approximately

at rest with some known object in view to act as a starting

point and provide a metric scale to the proceedings. The

camera moves, translating and rotating freely in 3D, according

to the instruction provided in a graphical user interface, and

executed by the user, within a room or a restricted volume,

such that various parts of the unknown environment come into

view. The aim is to estimate and control the full camera pose

continuously during arbitrarily long periods of movement. This

involves accurately mapping (estimating the locations of) a

sparse set of features in the environment.

Given that the control loop is being closed by the human

operator, only displacement commands are computed. Gaze

control is left to the user. Furthermore, the mutual information

measure requires evaluating the determinant of the full covari-

ance matrix at each iteration. Because of the complexity of this

operation, single motion predictions are evaluated one frame

at a time. It is only until the 15th frame in the sequence that

all mutual information measures are compared, and a desired

action is displayed on screen. That is, the user is presented

with motion directions to obey every second. Note also, that

in computing the mutual information measure, only the camera

position and map parts of the covariance matrix are used,

leaving out the gaze and velocity parts of the matrix. Finally,

to keep it running in real-time, the resulting application must

be designed for sparse mapping. That is, with the computing

capabilities of an off-the-shelf system, our current application
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(a) Position error when using MI for position
and constant angular velocity.
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(b) Position error when using MI for position
and orientation.
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(c) Position error when using MI for position
and FI for orientation.
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(d) Orientation error when using MI for posi-
tion and constant angular velocity.
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(e) Orientation error when using MI for position
and orientation.
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(f) Orientation error when using MI for position
and FI for orientation.

Fig. 3. Estimation errors for camera position and orientation and their corresponding 2σ variance bounds. Position errors are plotted as x, y, and z distances
to the real camera location in meters, and orientation errors are plotted as quaternions.

is limited to less than 50 landmarks.

Figure 4 shows the graphical user interface. The top part of

the figure contains a 3D plot of the camera and the landmarks

mapped, while the bottom part shows the information being

displayed to the user superimposed on the camera view. Figure

5 contains a plot of the decrease in the various entropies for

the map being built, and the list of actions chosen as shown

to the user during the first minute.

Worth noticing is that in the real-time implementation, the

system prompts the user for repeated up-down movements,

as well as left-right commands. This can be explained as if

after initialising new features, the system repeatedly asks for

motions perpendicular to the line of sight to best reduce their

uncertainty. Also, closing loops has an interesting effect in the

reduction of entropy, as can be seen around the 1500th frame

on Fig. 5-a.

VI. CONCLUSION

In conclusion, we have shown plausible motion strategies

in a video-rate visual SLAM application. On the one hand, by

choosing a maximal mutually informative motion command,

we are maximising the difference between prior and posterior

SLAM entropies, resulting in the motion command that mostly

reduces the uncertainty of x due to the knowledge of z.

Alternatively, by controlling gaze maximising the information

about the measurements, we get a system that prioritises in

accurately locating the already seen landmarks before actively

searching for new ones.

Our method is validated in a video-rate hand-held visual

SLAM implementation. Given that our system is capable of

producing motion commands for a real-time 6DOF visual

SLAM, it is sufficiently general to be incorporated into any

type of mobile platform, without the need of other sensors.

A possible weakness of this information-based approach is

that it estimates the utility of measurements assuming that

our models are correct. Model discrepancies, and effects of

linearisation in the computation of our estimation and control

commands might lead to undesirable results.

APPENDIX

The orientation of the camera frame, and its rate of change,

are related to the angular velocity by the quaternion multi-

plication Ω = 2q̇q∗ , with Ω = [0, ωx, ωy, ωz]
⊤, the angular

velocity vector expressed in quaternion form, and q∗ is the

orientation quaternion conjugate. Or equivalently, by q̇ =
1
2Mq ≈ q(k+1)−q(k)

∆t
, with

M =




0 −ωx −ωy −ωz

ωx 0 −ωz ωy

ωy ωz 0 −ωx

ωz −ωy ωx 0


 .

Solving for q(k+1) in the above approximation when ω is con-

stant, our smooth motion model for the prediction of change



Fig. 4. Feature map and camera view as shown in the Graphical User
Interface (844th frame).

in orientation becomes qk+1 = Qqk with the quaternion

transition matrix

Q = cos

(
∆t‖Ω‖

2

)
I +

2

‖Ω‖ sin

(
∆t‖Ω‖

2

)
M .

Note that when computing the quaternion propagation, the

angular velocities are to be evaluated at (k + 1|k), i.e.,

including the angular acceleration term.
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Depth from the visual motion of a planar target induced by zooming

Guillem Alenyà, Maria Alberich and Carme Torras

Abstract—Robot egomotion can be estimated from an ac-
quired video stream up to the scale of the scene. To remove
this uncertainty (and obtain true egomotion), a distance within
the scene needs to be known. If no a priori knowledge on
the scene is assumed, the usual solution is to derive “in some
way” the initial distance from the camera to a target object.
This paper proposes a new, very simple way to obtain such a
distance, when a zooming camera is available and there is a
planar target in the scene. Similarly to “two-grid calibration”
algorithms, no estimation of the camera parameters is required,
and no assumption on the optical axis stability between the
different focal lengths is needed. Quite the reverse, the non
stability of the optical axis between the different focal lengths is
the key ingredient that enables to derive our depth estimate, by
applying a result in projective geometry. Experiments carried
out on a mobile robot platform show the promise of the
approach.

I. INTRODUCTION

This paper presents a new method for inferring depth

information using a zooming camera. In previous works [1],

[2] we have shown how to recover robot egomotion from

the deformation of an active contour. We have proposed to

express the deformation of the contour in the image with a

6-dimensional affine shape vector. Then, with a non-linear

non-derivable algorithmic function the performed 3D motion

can be recovered up to a scale factor (as it is common in

monocular vision). Scaled 3D motion can be recovered also

in the context of a zooming camera [3]. Studying further

the characteristics of the proposed affine shape space, we

will show how the initial distance can be computed from the

affine shape deformation caused by a zoom-lens camera.

Being based on active contour tracking, our egomotion

recovery algorithm requires that the whole object projection

keeps into the image all along the robot trajectory. This is

sometimes too restrictive with a fixed camera, as the allowed

robot motion is highly limited. One of the more promising

solutions we have considered is to provide motion to the

camera by means of a pan-and-tilt unit, and to implement a

control algorithm to keep the target centered in the image (or

at least within the image) in the whole sequence. One of the

main problems of the control algorithm is that different gains

should be applied depending on the distance from camera to

target. Observe that, as usual in monocular imaging, it is not
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IST-4-27657.
The authors are with the Institut de Robòtica i Informàtica

Industrial (CSIC-UPC), Llorens i Artigas 4-6, 08028 Barcelona
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Maria Alberich is also with the Departament de Matemàtica
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possible to disambiguate a priori the motion of a closer and

small object from that of a far and big one.

Metric egomotion may be obtained if some additional

information can be gathered. The scale factor depends on the

camera focal distance and also on the initial distance from the

camera to the viewed target. The camera focal distance can

be obtained easily by a camera calibration or autocalibration

method, even for zooming cameras [4]. The initial distance

from camera to target is harder to obtain. In [2] we used

a laser and other authors have proposed, for example, to

use the range scanner of an autofocus camera [5], stereo

correspondence, trifocal tensors [6], depth from defocused

images [7] and depth from zooming.

In depth from zooming both camera and scene should

be stationary and image deformation be caused only by

zooming. Ma and Olsen [8] proposed a method to recover

depth information from the variation in the focal distance and

the optical flow. They noticed that the equation that describes

the displacement obtained by zooming is similar to the one

describing the translation of a camera along the optical axis.

They assumed a thin-lens camera model (that nowadays

is known not to be the most suitable model for zoom

lenses [6]). In their mathematical formulation, they assumed

that the apparent object translation is due exclusively to

focal length variation. Lavest et al. [9] showed that this is

not correct. In their work they use the thick-lens camera

model, which is more accurate in modelling the focal change

process. The correspondence that they establish between a

thick-lens model and the corresponding pinhole configuration

is interesting. To obtain good reconstruction data, a very

accurate calibration process should be performed, including

intrinsic (with radial distorsion) and extrinsic parameters.

They were forced to use high-quality lenses, as they assumed

that the optical axis was stable during the zooming sequence.

Rodin and Ayache [10] introduced a calibration method

that does not require a physical axial camera. They used

a geometric rectification method, but distorsions were not

taken into account and the triangulation base they used was

very small (only 50 mm).
Later, Lavest et al. [11] proposed an implicit reconstruc-

tion method that uses a two-plane geometric calibration

procedure. The method was originally developed by Martins

et al. [12] to solve the back-projection problem, and extended

by Gremban et al. [13] to include also a solution to the pro-

jection problem, formulated with systems of linear equations.

The idea is to find, without any explicit camera model, the

ray in space that defines the line of sight of a given pixel. To

calibrate, Lavest et al. used a micrometric table to translate

the calibration pattern, as the reconstruction method that they

2007 IEEE International Conference on
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proposed requires a high-precision calibration process. A

new point in the image (located manually in [11] and by

means of an iterative algorithm in [14]) can be triangulated

with the calibration data to find the 3D point location.

This method has the advantages of taking into account all

distorsions, the optical center displacement produced when

zooming, and not requiring the estimation of the camera

parameters. A common comment [15], [16] is that it doesn’t

take into account the blurring effects that in some situations

are produced when zooming.

The article is structured as follows. Section II presents the

shape space that parameterises the general 6 d.o.f motion,

and the reduced space corresponding to a zooming camera

used to extract the required scale. In Section III we present

the calibration algorithm and the proposed method to infer

depth. Experiments with real images taken from a mobile

robot are explained in Section IV. Finally, in Section V some

conclusions and ideas about the applicability of the method

in current approaches that require an initial depth estimate

are stated.

II. AFFINITY RECOVERY FROM THE

DEFORMATION OF AN ACTIVE CONTOUR

Under weak-perspective conditions (i.e., when the depth

variation of the viewed object is small compared to its

distance to the camera), every 3D motion of a planar object

projects as an affine deformation in the image plane.

The affinity relating two views is usually computed from

a set of point matches [17], [18]. In this work an active con-

tour [19] fitted to a target object is used instead. The contour,

coded as a B-Spline [20], deforms between views leading to

changes in the location of the control points. A relation can

be established between some extracted point features and

a contour, considering the list of points as the set of the

B-Spline control points. As a consequence, the method pre-

sented next, that obtains a motion parameterisation through

pseudoinverse multiplication, can be applied also with point

correspondences (as will be proved in Sec. IV).

It has been formerly demonstrated [19], [1], [3] that the

difference in terms of control points Q′ − Q that quantifies

the deformation of the contour can be written as a linear

combination of six vectors. Using matrix notation

Q′ − Q = WS (1)

where

W =

([
1

0

]
,

[
0

1

]
,

[
Qx

0

]
,

[
0

Qy

]
,

[
0

Qx

]
,

[
Qy

0

])
(2)

and S is a vector with the six coefficients of the linear

combination. This so-called shape vector

S = [tx, ty,M1,1 − 1,M2,2 − 1,M2,1,M1,2] (3)

encodes the affinity between two views d′(u) and d(u) of
the planar contour:

d′(u) =Md(u) + t, (4)

where M = [Mi,j ] and t = (tx, ty) are, respectively, the
matrix and vector defining the affinity in the plane.

The deformation of the contour parameterized as a planar

affinity permits deriving the camera motion in 3D space [1]

even in the presence of zooming [3]. It has shown before that

different deformation spaces can be defined corresponding

to several constrained robot motions [21]. I.e. in the case

of a planar robot, with 3 degrees of freedom, the motion

space is parameterised with two translations (Tx, Tz) and one

rotation (θy) yielding a three-dimensional shape space, which

should be enlarged with one additional degree of freedom to

cope with misalignments of the camera and robot coordinate

systems [2].

Here the proposed solution is similar to the one in [2]. We

need to define a reduced shape space able to deal with all

the possible image deformations caused by zooming. First,

the effect of zooming by a factor ρ is to translate the image
point x along a line going from the principal point v0 to

the point x′ = ρx + (1 − ρ)v0. At practical effects, this

can be implemented by multiplying the calibration matrix

corresponding to the first frame by the factor ρ, and it can
be introduced directly as one of the degrees of freedom in

the reduced shape space that we want to build. Second, the

optical axis in a zooming camera is not constant [9], since the

principal point position changes when zooming. To be able to

model the translation effects present when zooming, we use

the horizontal and vertical translation degrees of freedom1.

The resulting shape matrix is of the form

Wzoom =

([
1

0

]
,

[
0

1

]
,

[
Qx

Qy

])
(5)

and the shape vector is

S = [tx, ty, ρ] . (6)

III. DEPTH FROM THE AFFINITY

As we will show, the algorithm presented here shares the

main advantages of the ”two-grid calibration” algorithm [12],

[11]: no estimation of the camera parameters is required,

and no assumption on the optical axis stability between the

different focal lengths is needed. Quite the reverse, the non

stability of the optical axis between the different focal lengths

is the key ingredient that enables to derive our depth estimate.

Note that if we try to model a zooming camera with the

pinhole model we can assume neither that the optical axis

is constant nor that the projection center is at the same

place [4]. We only assume that the optical axis varies always

in the same way between some two given focal lengths. We

also suppose that the relation between two views of the same

scene taken by a static zooming camera is accurately approx-

imated by a planar homothetic transformation (a change in

scale and a translation). As explained before, the scale factor

(equivalently, the ratio of the homothetic transformation)

accounts for the change in focal length, and the translation

accounts for the displacement of the principal point, due to

the non stability of the optical axis.

1This can be derived in a similar manner as was done in [21].
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Furthermore, the proposed algorithm overcomes one of

the major difficulties of the existing algorithms: it works

well under affine viewing conditions. Moreover, from a

computational point of view, it is a straightforward cali-

bration algorithm: it avoids time-consuming minimization

calculations, since the input data are ratios of three planar

homothetic transformations. The estimation of these ratios

relies on the restriction of a planar affine shape-space, which

parameterizes the deformation of the projected target in the

image (see Sec. II), combined with a quick an robust feature

location method, such as an active contour tracking [19] or

an affine-transfer based method [22].

A. Calibration algorithm

A planar target is located at a distance z1 of the camera.

The target is viewed by the camera at zoom A. Then the
camera switches to zoom B and the homothetic transforma-
tion h1 (whose ratio will be denoted ρ1) that relates these

two views (from zoom A to zoom B) is computed. This
process is repeated at a distance z2 of the camera: a planar

target (it may be different from the preceding one) is viewed

by the zooming camera, from zoom A to zoom B, and the
homothetic transformation h2 (whose ratio will be denoted

ρ2) that relates the initial and final views is computed.

If a new planar target (at an unknown distance z) is
acquired with the zooming camera, again from zoom A
to zoom B, then the homothetic transformation h (whose
ratio will be denoted by ρ) that relates the initial and
final views is computed. We claim that the ratio of depths
z2−z1

z−z1
may be computed from the ratios of the preceding

homothetic transformations and is given by
ρ(ρ2−ρ1)
ρ2(ρ−ρ1)

. Thus,

we obtain a straightforward estimation of the unknown depth

z, without knowing any camera parameter. Moreover, the
tedious use of metric instruments, such as a micrometric

table, is avoided in the calibration process, since the relative

orientation between the planes containing the two calibration

targets is not relevant; besides, there is no need to use grids,

hence the two calibration targets may be familiar objects in

the scene (such as a door, window, board ...). The problem

of computing accurately the ratio of the homothetic trans-

formation relating the initial and final views of a zooming

camera is overcome by reducing the dimension of the shape

vector, which encodes the affine relation between the two

views (see Section II).

B. Inferring the depth

We will show, as announced, how the non stability of the

optical axis between the different focal lengths is used to

infer our depth estimate.

We suppose that the direction of the optical axis in focal

length A differs slightly from the direction of the optical axis
in focal length B. Hence there exists an optical ray l in zoom
A, which goes through an image point x, whose direction
equals the direction of the optical axis aB in zoom B (see
Fig. 1).

This ray l is close to the optical axis in zoom A, and it cuts
the calibration planes in the points X1 and X2, and the target

a
B

l

P
B

x X1 X X2

h3(x)

h2(x)

h1(x)

P
A

A

B

Fig. 1. A static zooming camera views the same scene with zoom A and
zoom B. The variation of the optical axis between the two focal lengths
has been magnified in order to exhibit the relevant features (see III-B) to
infer the depth in the algorithm of Section III-A.
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Fig. 2. Scene line r with three reference points Y1, Y2, Y3 projected in
the image R to x̄ and Ȳ1, Ȳ2, Ȳ3 respectively. P is the vanishing point
of r. Auxiliary points are drawn on R and lines to derive the equality of
simple ratios (Y1, Y2, Y3) = (Y

′

1
, Y ′

2
, Y ′

3
) claimed in Theorem 1.

plane in the point X . Thus the simple ratio of these points
(X1,X2,X) = d(X1,X2)

d(X1,X) (where d(Y1, Y2) is the distance
between two points Y1 and Y2) is a sharp estimate of the

ratio of depths z2−z1

z−z1
.

The scene points X1, X2 and X are projected in zoom
B to the image points h1(x), h2(x) and h(x), respectively
(see Fig. 1). Our goal is to determine the simple ratio of

the scene points (X1,X2,X) from the image points h1(x),
h2(x) and h(x). This is done by applying the following result
of projective geometry:

Theorem 1: Given the vanishing point P of a scene line
r, with three reference points Y1, Y2, Y3, then the simple
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Fig. 3. Pioneer 3AT mobile platform used in the experiments

ratio (Y1, Y2, Y3) can be computed from their imaged points
Y 1, Y 2, Y 3 as follows: choose an image point O (not on the
imaged line r) and an image line s (not going through O)
parallel to the line joining O and P ; for i = 1, 2, 3, determine
the point Y ′

i lying on s and on the line joining O and Y i;

then (Y1, Y2, Y3) = (Y ′
1 , Y ′

2 , Y ′
3) (see Fig. 2).

The case that concerns us is when r = l and Y1 = X1,

Y2 = X2, Y3 = X . The vanishing point of l (the image
point of the point at infinity of l) is the principal point PB =
P in zoom B. The assumption that the optical axis varies
always in the same way between zoom A to zoom B is
equivalent to PB = h1(PA) = h2(PA) = h(PA), where
PA is the principal point in zoom A. Therefore, if we fix
an image reference system centered at P = PB , with first

vector in the direction of r and unit length d(x, PA), then
h1(x), h2(x) and h(x) have coordinates (ρ1, 0), (ρ2, 0) and
(ρ, 0), respectively. By choosing, for instance, O = (0,−1)
and the line x = 1, and by applying Theorem 1, we obtain
the desired result

(X1,X2,X) =
ρ(ρ2 − ρ1)

ρ2(ρ − ρ1)
. (7)

IV. EXPERIMENTS

The performance of the proposed algorithm has been

tested on real images acquired with a Sony DFW-VL500

digital camera. The camera brochure states that the zoom

of the camera can be moved to predefined positions ranging

from 40 to 1432 corresponding to focal lengths from 5.5 to

64 mm. The camera is mounted on a Pioneer mobile platform

(see Fig. 3). The translations performed with the robot are

roughly estimated with marks on the floor. The drawers of

a table and a stool serve as natural landmarks from which

calibration information is extracted. Although the focus of

the camera is kept constant, no defocus problems have been

TABLE I

RESULTS OF ESTIMATED DEPTHS USING DIFFERENT CALIBRATION

DISTANCES AND DIFFERENT TARGET OBJECTS.

Exp. ID Cal1 Cal2 Estimated Measurements

1 240 360 277.6 280
2 321.4 320
3 401.7 400
4 269.8 280

5 240 320 288.2 280
6 357.8 360
7 281.6 280

8 320 360 367.7 400

observed in the range of zoom positions and distances that

we have used.

The robot takes an image pair with zoom in positions

40 and 708, at distances 240, 280, 320, 360 and 400 cm
with respect of the table drawers. From Figure 4(a) to

Figure 4(d) the image pairs corresponding to 240 and 360
cm are plotted. For the distance 280 we use also a wood
stool (see Fig. 4(e) and 4(f)) to validate that the proposed

method is only dependent on the zooming camera, and not on

the calibration object. The idea is to perform the calibration

off-line with a natural landmark, and use this calibration in

real-time operations with any given new landmark, as usual

with other calibration methods. The steps to compute the

unknown depth are detailed in Alg 1.

for i=1 to 2 do1

Place camera at distance di from the calibration2

object

Compute the shape vector Si produced by the3

deformation between the image taken at zoom1 and

the one at zoom2
end4

Place the camera at unknown distance from the target5

object

Compute the shape vector S produced by the6

deformation between the image taken at zoom1 and the

one at zoom2

With S1, S2 and S find the unknown distance by7

applying (7)

Algorithm 1: Steps of the depth estimation algorithm

Four points are manually extracted for each drawer image

in order to construct the corresponding shape vector. For

the stool images, six points are extracted instead, in order

to assess the robustness of the shape vector obtained. As

the method to obtain the shape vector through pseudoinverse

multiplication can be seen as a minimization [19], the more

point location measures are available, the more precision can

be obtained.

Some results are summarized in Table I. The columns

labelled Cal1 and Cal2 indicate the two distances used to

perform the geometric calibration, and the other two columns

show the estimated distance by the presented algorithm and
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(a) d=240cm, Zoom=40.

(b) d=240cm, Zoom=708.

(c) d=360cm, Zoom=40.

(d) d=360cm, Zoom=708.

(e) d=280cm, Zoom=40.

(f) d=280cm, Zoom=708.

Fig. 4. For each camera position two images are needed to estimate the scale factor. The shown images correspond to the experiment labelled 4 in
Table I. (a) (b) First calibration pair. (c)(d) Second calibration pair. (e)(f) Testing pair. Note that the calibration object and the one used for testing are not
the same, and also different numbers of location measures are used to estimate the shape vector, 4 for the drawer images and 6 for the stool ones.

the measured one. For the experiments labelled 1 and 2,

the camera is placed at 280 and 320 cm from the drawer,

respectively. These depths are between the two calibration

distances (240 and 360 cm), and the estimated depth is

correctly computed by the algorithm in each experiment. In

the experiment labelled 3 the camera is placed farther than

the second calibration distance (out of the calibration range),

and the depth is also recovered with small error, compared

to the measured one. With these calibration parameters we

perform a fourth experiment (numbered 4) using the 6 points

extracted from the stool images. In this case depth is also

reasonably recovered, although worse than in the previous

cases.

In experiments 5, 6 and 7 the calibration range is short-

ened, using the calibration distances 240 and 320 cm. When

the distance is between the calibration ones, as in experiment

5, the error is of the same order as in the previous experiment.

When the camera is located farther than the second calibra-

tion distance, the depth is correctly recovered but with more

error, compared to experiment 3. As typical in geometric

calibration, the depth is correctly recovered within the range

defined by the first and the second calibration distances as

the algorithm is interpolating. Out of this zone the depth

can be also inferred extrapolating, but the error grows as the

distance increases. We find also that the larger the distance

between calibration positions the more precision is obtained.

Finally, with experiment 8 we test the effect of moving

both calibration camera positions farther away. Calibration

was done with images taken at 320 and 400cm. A test is

performed placing the camera in the middle obtaining a

correct recovered depth.

V. CONCLUSIONS AND FUTURE WORKS

We have presented a simple method to determine the depth

of a robot placement with respect to a landmark. The image

deformation caused by zooming is modelled by a 3 degrees

of freedom shape vector in a presented shape space, where

the third element is the scale of the associated homotecy. This

simple scale value is recorded at each calibration step. When

a new scale is computed from the zooming of a new object,

it can be compared to the calibration scales and, knowing

the depth of the calibration objects, deduce the depth of the

current target with a simple operation.

A minimum set of 3 point correspondences are needed to

construct the affinity, but more correspondences will result in

a better shape vector estimation, as a minimisation process

is used. Here we have presented experiments using 4 and 6

correspondences between zooming images.

With the experiments we have demonstrated the validity

of the method. The distance between calibration positions

determines a calibrated zone where the algorithm is more

precise. Out of this zone the algorithm also infers the

depth but is less precise as the distance increases. We have

demonstrated that the required shape vector can be calculated

from different objects and using different numbers of point

correspondences.

We have observed that the zooming sometimes drops the

target out of the image. For practical purposes it is convenient

to calibrate with some different zoom positions to be able to

find one zoom range that contains the target in both images

and for which we have calibration information.
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Our objective has been mainly to remove from the ego-

motion algorithm the scaling uncertainty, common in all

monocular systems. But this method can be used also for

other purposes, for instance, the initialisation of the pan and

tilt controllers of our active vision system. Experiments with

the PTZ control show that the obtained precision is enough

to initialize the controllers in a good response zone.

In [2] we estimate the initial distance with a laser, and

in [23] with a calibration pattern. Several other algorithms

could benefit from the estimation of the initial distance of a

given landmark. Let us just enumerate a few. Davison [24]

estimate the depth of a landmark in monocular vision using

a particle filter. In order to acquire the scale of the scene in

the first frame a known object is used. Our method can be

used thus changing the known object by any object in the

scene. Sola [25] proposed to solve the depth initialisation

problem with an approximation of the Gaussian Sum Filter,

and Jensfelt et. al. [26] proposed to exclude from the SLAM

process those features for which the depth had not been

determined. When little disparity between matched features

is present, for example in approaching robot motions and

distant targets, all these methods could not extract significant

information.

Recently Caballero et. al. [27] presented a monocular vi-

sual odometer for aerial vehicles. They proposed to measure

the distance between the camera and the various targets used

in the experiments with a sonar or a laser range sensor, but

finally they did it manually.

Obviously, for traditional point-based maps it is not prac-

tical to perform the zoom positioning for each landmark

initialisation. However, the presented algorithm is useful for

those situations where an average depth is needed, as those

mentioned before.
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Abstract

We present a framework for object detection that is in-
variant to object translation, scale, rotation, and to some
degree, occlusion, achieving high detection rates, at 14 fps
in color images and at 30 fps in gray scale images. Our
approach is based on boosting over a set of simple local
features. In contrast to previous approaches, and to effi-
ciently cope with orientation changes, we propose the use
of non-Gaussian steerable filters, together with a new ori-
entation integral image for a speedy computation of local
orientation.

1. Introduction

Object detection is a fundamental issue in most computer
vision tasks; particularly, in applications that require ob-
ject recognition. Early approaches to object recognition are
based on the search for matches between geometrical ob-
ject models and image features. Appearance-based object
recognition gained popularity in the past two decades us-
ing dimensionality reduction techniques such as PCAs for
whole-image matching. Lately, a new paradigm for object
recognition has appeared based on the matching of geomet-
rical as well as appearance local features. Moreover, the
use of boosting techniques for feature selection has proven
beneficial in choosing the most discriminant geometric and
appearance features from training sets.

In this paper we focus on the selection of local features
invariant to translation, scaling, orientation, and to some de-
gree, occlusion. Our approach differentiates from others in
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EURON Network Robot Systems Research Atelier NoE-507728, and the
Spanish Ministry of Education and Science project NAVROB DPI 2004-
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Purcalla for initial AdaBoost code.

that while based on boosting over a set of training samples,
it can achieve object detection in real time. This is thanks to
our extension of the use of steerable filters to non-Gaussian
kernels, together with our proposal of a new integral image
for the computation of local image orientation.

Viola and Jones [10] introduced the integral image for
very fast feature evaluation. Once computed, the integral
image allows the computation of Haar-like features [5] at
any location or scale in real time. Unfortunately, such sys-
tem is not invariant to object rotation or occlusions.

Other recognition systems that might work well in clut-
tered scenes are based on the computation of multi-scale
local features such as the SIFT descriptor [3]. One key idea
behind the SIFT descriptor is that it incorporates canonical
orientation values for each keypoint. Thus, allowing scale
and rotation invariance during recognition. Even when a
large number of SIFT features can be computed in real time
for one single image, their correct pairing between sample
and test images is performed via nearest neighbor search
and generalized Hough transform voting, followed by the
solution of the affine relation between views; which might
end up to be a time consuming process.

Yokono and Poggio [11, 12] settle for Harris corners
at various levels of resolution as interest points, and from
these, they select as object features those that are most ro-
bust to Gaussian derivative filters under rotation and scal-
ing. As Gaussian derivatives are not rotation invariant, they
use steerable filters [1] to steer all the features responses ac-
cording to the local gradient orientation around the interest
point. In the recognition phase, the system still requires lo-
cal feature matching, and iterates over all matching pairs,
in groups of 6, searching for the best matching homogra-
phy, using RANSAC for outlier removal. Unfortunately, the
time complexity or performance of their approach was not
reported.

Work by many others is also related to the issue of ro-
tation invariant feature matching [4]. We feel however, the
success of our approach to be founded on the ideas pre-
sented in the former three contributions: boosting, canon-
ical orientation, and steerable filters, along with the intro-



duction in this paper of the integral image for orientations,
and its extension to non-Gaussian steerable filters.

In our system, keypoints are chosen as those regions in
the image that have the most discriminant response under
convolution with a set of wavelet basis functions at several
scales and orientations. Section 2 explains how the most
relevant features are selected. The selection is made with
a boosting mechanism, producing a set of weak classifiers
and their corresponding weights. A linear combination of
these week classifiers produces a strong classifier, which is
used for object detection. Rotation invariance is achieved
by filtering with oriented basis functions. Filter rotation is
efficiently computed with the aid of a steerable filter [1],
that is, as the linear combination of basis filters, as indicated
in Section 3.

During the recognition phase, sample image regions
must be rotated to a trained canonical orientation, as ex-
plained in Section 4, prior to feature matching. Such ori-
entation is dictated by the peak on a histogram of gradient
orientations, depicted in Section 5. One of the major contri-
butions of this paper is the efficient computation of image
region orientation by means of an integral image of gradient
orientation histograms; enabling our system to perform ob-
ject detection invariant to translation, scaling, orientation,
and some degree of occlusion, in real time. Section 6 is de-
voted to some experimental results of the overall approach,
and Section 7 has some concluding remarks.

2. Feature Selection

The set of local features that best discriminates an ob-
ject is obtained by convolving positive sample images with
a simplified set of wavelet basis function operators [5] at
different scales and orientations. These filters have spa-
tial orientation selectivity as well as frequency selectivity,
and produce features that capture the contrast between re-
gions representing points, edges, and strips, and have high
response along for example, contours. The set of operators
used is shown in Figure 1. Filter response is equivalent to
the difference in intensity in the original image (or color
channel magnitude) between the dark and light regions dic-
tated by the operator.

Convolving these operators at any desired orientation is
performed by steering the filter (Section 3). Furthermore,
fast convolution over any region of the entire image is effi-
ciently obtained using an integral image (Section 5).

Feature selection is performed via a boosting mecha-
nism, namely, AdaBoost [2]. AdaBoost extracts in each
iteration the weak classifier (filter width, location, type,
orientation, and threshold) that best discriminates positive
from negative training images. A weak classifier can be ex-

(a) f0 (b) f1 (c) f2

Figure 1. Simplified wavelet basis function
set. a) center-surround b) edge, and c) line.

pressed as

h(I) =

{

1 : I ∗ f > t

0 : otherwise ,

where I is a training sample image, f is the filter being
tested, with all its parameters (width, location, type, and
orientation), ∗ indicates the convolution operation, and t is
the filter response threshold. The algorithm selects the most
discriminant weak classifier, as well as its contribution α
in classifying the entire training set, as a function of the
classification error ε; α = 1

2 ln 1−ε
ε

.
At each iteration, the algorithm also updates a set of

weights over the training set. Initially, all weights are set
equally, but on each round, the weights of missclassified
samples are increased so that the algorithm is forced to fo-
cus on such hard samples in the training set the previously
chosen classifiers missed. In a certain way, the technique
is similar to a Support Vector Machine, in that both search
for a class separability hyperplane, although using different
distance norms, l2 for SVMs, and l1 for boosting [7]. The
dimensionality of the separating hyperplane in AdaBoost is
given by the number N of weak classifiers that form the
strong classifier

H(I) =

{

1 :
∑N

αihi(I) ≥
1
2

∑N
αi object

0 : otherwise no-object
.

To achieve invariance to translation during the detection
phase, the strong classifier H is tested for a small window
the size of the training samples (30×30 pixels), and at every
pixel for the entire test image. To speed up the process, the
test can be performed every two or three pixels (or rows),
with the compromise of possibly missing the object, i.e.,
having a false negative. In practice, this increment can be
made up to 10% the size of the training sample, without
incurring in false negatives.

Similarly, scale invariance is obtained by scaling each
filter within the classifier H . Scaling of the filters can be
performed in constant time for a previously computed inte-
gral image. Our tests show that we can scale up to 20% the
size of the training sample, with still good detection rates.
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Figure 2. First and second order Gaussian and wavelet-based steerable filterss. (a-b) and (e-f) basis,
(c-d) and (g-h) oriented filters, (i) original image, (j-m) filter responses.

3. Steerable Filters

In order to achieve orientation invariance, the local filters
must be rotated previous to convolution. A good alternative
is to compute these rotations with steerable filters [1], or
with its complex version [8]. A steerable filter is a rotated
filter comprised of a linear combination of a set of oriented
basis filters, I ∗ f(θ) =

∑n
ki(θ)I ∗ f(θi), where f(θi) are

the oriented basis filters, and ki are the coefficients of the
bases.

Consider for example, the Gaussian function G(u, v) =

e−(u2+v2), and its first and second order derivative filters
G′

u = −2ue−(u2+v2) andG′′
u = (4u2−2)e−(u2+v2). These

filters can be re-oriented as a linear combination of filter
bases. The size of the basis is one more than the derivative
order.

Consequently. the first order derivative of our Gaussian
function at any direction θ, isG′

θ = cos θG′
u +sin θG′

v , and
a steered 2nd order Gaussian filter is obtained with G′′

θ =
∑3

i=1 ki(θ)G
′′
θi

, with ki(θ) = 1
3 (1+2 cos(θ−θi)); andG′′

θi

the precomputed second order derivative kernels at θ1 = 0,
θ2 = π

3 , and θ3 = 2π
3 .

Convolving with Gaussian kernels is a time consuming
process. Instead, we propose to approximate such filter
response by convolving with the Haar basis from Figure
1. This, with the aid of an integral image. I ∗ f1(θ) =
cos θI ∗ f1(0)+ sin θI ∗ f1(

π
2 ). Similarly, filtering with our

line detector at any orientation θ is obtained with I∗f2(θ) =
∑3

i=1 ki(θ)I ∗ f2(θi).
The similarity of the response to Haar filters allows us

to use this basis instead as weak classifiers for the detection
of points, edges, and lines; just as the Gaussian filters do.
The main benefit of the approach is in speed of computa-

tion. While convolution with a Gaussian kernel takes time
O(n) the size of the kernel, convolution with the oriented
Haar basis can be computed in constant time using an inte-
gral image representation. Figure 2 shows the results of the
proposed feature selection process.

4. Local Orientation

Say, a training session has produced a constellation H
of local features h as the one shown in Figure 4. Now, the
objective is to test for multiple positions and scales in each
new image, whether such constellation passes the test H or
not. Instead of trying every possible orientation of our con-
stellation, we chose to store the canonical orientation θ0 of
H from a reference training image block, and to compare
it with the orientation θ of each image block being tested.
The difference between the two indicates the amount we
must re-orient the entire feature set before the test H is per-
formed.

ψ =

{

θ − θ0 : θ ≥ θ0
θ − θ0 + 2π : otherwise

On way to compute block image orientation is with ratio
of first derivative GaussiansG′

u andG′
v [12], tan θ =

I∗G′

v

I∗G′

u

.
Another technique, more robust to partial occlusions, is

to use the mode of the local gradient orientation histogram
(see Figure 4), for which it is necessary to compute gradient
orientations pixel by pixel, instead of a region convolution
as in the previous case. When the scene is highly structured,
such histogram can easily be multimodal. We follow for
such cases the same convention as with SIFT features: for
any peak in the histogram greater than 80% the size of the
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Figure 3. Image orientation computed as the mode of the gradient orientation image. a) canonical
orientation, b) rotated constellation, c) image gradients, d) gradient orientation histogram, local ori-
entation error subject to e) scale change, and f) small occlusions, g) integral image, and h) local
histogram integral image.

mode, a new weak classifier, oriented at that value is added
to the classifier set.

We have done several tests to estimate which of these two
techniques for computing local image orientation is most
suitable to our needs. As shown in Figure 3(e), computing
local orientation using the histogram deteriorates more with
scale changes than computing the gradient over the entire
image block. However, as seen in Figure 3(f), given that the
mode is a nonlinear filter, the technique is much more reli-
able in the presence of small occlusions. We settle for the
histogram mode to handle occlusions, and let the boosting
mechanism deal with translation and scale affinities.

5. The Local Orientation Integral Image

An integral image is a representation of the image that
allows a fast computation of features because it does not
work directly with the original image intensities (color val-
ues). Instead, it works over an incrementally built image
that adds feature values along rows and columns. Once
computed this image representation, any one of the local
features (weak classifiers) can be computed at any location
and scale in constant time.

In its most simple form, the value of the integral im-
age M at coordinates u, v contains the sum of pixels val-
ues above and to the left of u, v, inclusive, M(u, v) =
∑

i≤u,j≤v I(i, j),
Then, it is possible to compute for example, the sum of

intensity values in a rectangular region simply by adding
and subtracting the cumulative intensities at its four corners
in the integral image, Area = A+D −B − C.

Furthermore, the construction of the integral image is
O(n) in the size of the image, and is computed iteratively
with M(u, v) = I(u, v) + M(u − 1, v) + M(u, v − 1) −
M(u− 1, v − 1).

In this form, the response from the two orthogonal Haar-
filter basis from Figure 2, at any size or location, can be
computed by simple adding and subtracting four values
from the integral image. This, in constant time.

Extending the idea of having cumulative data at each
pixel in the Integral Image, we decide to store in it ori-
entation histogram data instead of intensity sums. Once
constructed this orientation integral image, it is possi-
ble to compute a local orientation histogram for any
given rectangular area within an image in constant time.
Histogram(Area) = Histogram(A) + Histogram(D) −

Histogram(B) − Histogram(C).

6. Experiments

For the experiments reported here, our training set had
5250 negative images and 1100 positive images. Nega-
tive images were obtained under varying illumination con-
ditions, both from exterior and interior scenes. In order
to have the boosting mechanism choose the most invariant
classifiers, we have added as positive samples, synthetic im-
ages where the object to be learned appears translated, ro-
tated, and scaled. Object translations reach 5 pixels in all
directions. Scaling of the object images goes up to 20% of
the original image size, and rotated images reach 10 degrees
in order to aid the histogram method which was chosen to
have a precision of 10 degrees, given that has 36 bins. Some
positive and negative samples are shown in Figure 4.

Figure 5 shows some frames of a sequence in which the
trained object is being recognized. At some point, the ob-
ject is being detected at multiple neighboring locations, fact
indicated by the repetitive superimposed squares. Frame
(a) shows the object being detected as trained; frames (b-
d) show robustness to orientation changes; frame (e) shows
detection at a different scale; frames (f) and (g) show de-
tection at both different scale and orientation; and frame (h)
shows positive detection under scale, orientation, and mild
occlusion.

Note however, that while convolution with the two or-
thogonal basis required for the first order Haar filter can be
computed using an integral image; the same is not true for
the second order filter since it requires basis kernels oriented
at π

3 rad. and 2π
3 rad., besides the already orthogonal basis



Figure 4. Positive and negative samples.
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Figure 5. Some frames that show the object being detected under varying scales, orientation, and
mild occlusion.

at 0 rad. Fortunately, our experiments indicate that line fea-
tures are seldom chosen by the boosting algorithm as weak
classifiers, accounting in the worst cases for at most 20%
the total number of weak classifiers, and in little detriment
of speed of computation. Nevertheless, the computation of
these basis kernels in a fast integral-image-like manner is a
subject of further study.

7. Conclusions

In this paper we have presented a system for object de-
tection that is invariant to object translation, scale, rotation,
and to some degree, occlusion, achieving high detection
rates, at 14 fps in color images and at 30 fps in gray scale
images. Our approach is based on boosting over a set of
simple local features. In contrast to previous approaches,
and to efficiently cope with orientation changes, we propose
the use of Haar basis functions and a new orientation inte-
gral image for a speedy computation of local orientation.
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