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Abstract: 
 

In this study we apply temporal sequence learning (Porr and Wörgötter, 2006) in a closed 
loop behavioural system where a driving  robot learns to follow a line. Here for the first time 
we introduce simple chained learning architectures, demonstrating that stable behaviour can 
also be obtained in such architectures. Moreover, results also suggest that chained 
architectures can be employed and better behavioural performance can be obtained as 
compared to simple architectures in cases where we have sparse inputs in time and learning 
normally fails because of weak correlations. 
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1 Introduction
Normally many sensor events, which follow each other in time, are associated to a real life
situation. However, only a few will improve the behaviour. This situation can be addressed
by mechanisms of temporal sequence learning. These mechanisms rest on the assumption
that it is in most cases advantageous to react to the earliest of such sensor events not having
to wait for later following ones. For example, it is useful to react to a heat radiation signal
and not to the later following pain on having finally touched a hot surface. Many similar
sequences of sensor events are encountered during the life time of a creature as the consequence
of the existing far-senses (e.g.: vision, hearing, smell) and near-senses (touch, taste, etc.).
Generically one observes that the trigger of a near-sense is preceded by that of a far sense
(smell precedes taste, vision precedes touch, etc.). Far-senses act predictive with respect to the
corresponding near-senses (Verschure and Coolen, 1991). Conceptionally this type of learning
is related to classical and/or operant conditioning (Sutton and Barto, 1981, 1990; Wörgötter
and Porr, 2005). Algorithmically all these approaches (Sutton and Barto, 1981; Kosco, 1986;
Klopf, 1988; Porr and Wörgötter, 2003a) share the property that they are built in a very simple
way in general only consisting of a single learning unit.

Here we will apply temporal sequence learning to a driving robot that is supposed to learn
to better follow a line painted on the ground. We will try to answer two questions: 1) Whether
it is possible to design simple chains of learning units while at the same time still guaranteeing
behavioural stability and 2) can chained architectures be employed in order to obtain better
behavioural performance as compared to the simple architecture in cases where we have sparse
inputs in time and weak correlations.

We believe that the embedding of learning architectures into behaving systems, which close
the loop between perception and action, is an important field of investigation leading away from
the pure stimulus-response paradigm to a more ecological system’s perspective. The current
study is meant to provide a specific contribution to the solution of this problem focusing on
chained learning architectures in a simple closed-loop behavioural context.

The paper is organised in the following way. After presenting our ICO-learning rule (Porr
and Wörgötter, 2006) and its embedding into a closed loop scenario we will first show results
with a simple architecture. By this we would like to demonstrate the efficiency and stability
of the ICO-rule and fast learning in the line-following task using relatively high learning rates.
Next we will introduce two simple chained architectures and present the behaviour of these
architectures in an open loop case. Finally, we will show results for chained architectures in a
closed loop context and compare these architectures with the simple setup.

2 Methods

2.1 Robot setup
We used a small (diameter of 18 cm) two-wheeled Rug Warrior Pro driving robot for inves-
tigation which is shown in Fig. 1 A. Fig. 1 B shows the physical setup used for learning. A
camera mounted at the front of the robot produces images of the track like the one shown.
Since the robot drives forward, obviously sensor fields more at the top of the image (xL,R

1 ) rep-
resent far-sensors, while those at the bottom (xL,R

0 ) can be regarded as near-sensors. Initially
we implement only a crude, abrupt, and aversive steering reflex as soon as the image of the
track moves over one of these near-sensor fields. As a consequence the robot will be forced
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back to a situation where the track will remain mostly in the centre of the image. The learning
goal is to increase the synaptic weights of the far-sensor fields in an appropriate way such that
earlier, predictive, and smoother steering reactions will be elicited leading to the situation that
the near-sensor fields will never be triggered again (hence avoiding the initial reflex).

Figure 1: Physical and neuronal setup of the leaning. A) Image of the Rug Warrior Pro driving
robot. B) Camera image with sensor fields marked by xL,R

1 and xL,R
0 . C) The simple neuronal

setup of the robot. Symbols α and β denote neurons, u denote filtered input signals x, ρ
connection weight and v output of the neuron used for steering. v is calculated by the method
shown in Fig. 2 B and its corresponding Eq. 1. SL,R is given in Eq. 3 and transforms v to the
motor output.

2.2 Learning algorithm
The learner (Fig. 2 B) has inputs xj which feed into a summation unit v. The output is calcu-
lated by

v =
∑
j

ρjuj, (1)

where u = h ∗ x is a convolution of the input x with a resonator h. We define h(t) =
1
b
eat sin(bt), a = −πf/Q and b =

√
(2πf)2 − a2, with f the frequency and Q > 0.5 the damp-

ing. This convolution allows correlating temporally non-overlapping signals (see Fig. 2 A).
The time delay T (see Fig. 3) between x0 and x1 depends on the speed of the robot. To

accommodate some variability, x1 is fanned out and fed into a filterbank of different filters
h as indicated by the dashed lines in Fig. 2 B. As shown in our older studies, the number of
filters is not critical and we use 10 (Porr and Wörgötter, 2003a, 2006). The robot’s base speed
of 0.125 m/s together with the camera frame rate of 25 Hz used in all experiments leads to
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f1,k = 2.5/k Hz, k = 1, . . . , 10 for the filterbank in the x1 pathway. Frequency of the x0

pathway was f0 = 1.25 Hz. Damping parameter of all filters was Q = 0.6.
Weights change according an input-input correlation (ICO) rule (Porr and Wörgötter, 2006):

ρ̇j = µuju̇0, j > 0, (2)

which is a modification of the ISO-learning rule (Porr and Wörgötter, 2003a). The behaviour
of this rule and its convergence properties are discussed in a recent article (Porr and Wörgötter,
2006). Note for the referees: This paper can be downloaded at:
http://www.chaos.gwdg.de/˜tomas/DrivingRobot/.

The weight ρ0 is set to a fixed value, all other weights are initially zero. As discussed
above this learning rule is specifically designed for a closed loop system where the output of
the learner v feeds back to its inputs xj after being modified by the environment (see Fig. 3).

The goal of the learning is to grow ρ1, such that the learner can use the earlier signal at x1

to generate an anticipatory reaction. Learning stops and the weights stabilise at the condition
x0 = 0 when the reflex is not triggered anymore. The convergence properties of this kind of
closed loop learning are discussed in (Porr and Wörgötter, 2006; Porr et al., 2003b).

Figure 2: A) Resonator filters h0 (solid line) for the input signal x0 and h1,k (dashed lines) for
the x1 given by parameters f1,k = 2.5/k Hz, k = 1, . . . , 10 for the filterbank in the x1 pathway.
Frequency of the x0 pathway was f0 = 1.25 Hz. Damping parameter of all filters was Q = 0.6.
B) Schematic diagram of the learning system. Inputs x, resonator filters h, connection weights
ρ, output v. The symbol ⊗ denotes a multiplication, d/dt a temporal derivative. The amplifier
symbol stands for a variable connection weight. Dashed lines indicate that input x1 is fed into
a filterbank.

2.3 Embedding learning in a closed loop scenario
Fig. 3 shows how such a learning unit can be embedded in a closed-loop system. Initially (see
panel A) the system is set up only to react to the near-sense x0 by ways of a reflex. This reflex
will after some behavioural delay reset the signal form the near-sensor again to its starting value
(often zero) closing the loop. In more technical terms, this represents a negative feedback-loop
controller.
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Figure 3: Schematic diagram of the control (A), learning (B) and post-learning case (C). Com-
ponents of the learning system: sensor inputs x0 and x1, motor output v, P0 denotes a reflexive
pathway and P1 predictive pathway. D - disturbance, T - time delay.

The learning system, however, contains a second predictive loop (panel B) from a sensor
x1 that receives an earlier signal (far-sensor). At the beginning of the learning, synapses (ρ1)
which convey information from the far-sense are zero and in Fig. 3 B only the inner loop
(x0) is functioning. During learning, synapses ρ1 will get strengthened and the system will
increasingly better react to the far-sense. As a consequence reactions occur earlier and the
reflex based on x0 will not be triggered anymore. Effectively, the inner loop has functionally
been eliminated after learning (see Fig. 3 C). A forward-model of the reflex has been built
(Porr et al., 2003a). The learning of a forward model makes this approach appear similar to
“feedback-error learning” as introduced by Gomi and Kawato (1993), but there are distinctive
differences as will be discussed later (see Discussion).

Intuitively the mechanism introduced in Fig. 3 will work with any aversive reflex. One
should, however, note the same mechanisms can also be used to learn earlier attraction reac-
tions. Already Braitenberg (1984) had nicely demonstrated that it is the sign-combination of
the motor signals which determines the resulting reaction (aversion versus attraction) in his
vehicles. Here, similarly, we can define the behavioural outcome by ways of the motor signals
leaving the learning mechanism unaffected (see Porr and Wörgötter (2003b, 2006) for exam-
ples of attraction reflexes). Regardless of the motor-signs, the learning goal is always to avoid
the earlier, near-sense-triggered reflex leading to a situation where x0 = 0. We were able
to prove mathematically that synaptic weights will stop to change as soon as this condition
(x0 = 0) is fulfilled (Porr et al., 2003b; Porr and Wörgötter, 2006). Hence learning termi-
nates as soon as the newly learnt behaviour is successful, which creates a nice self-stabilising
property of such systems.

2.4 Input Signals
As described in the introduction, a far-sensor (predictive) pathway and a near- sensor (reflexive)
loop can be defined from sensor fields in the image of a forward pointing camera on the robot.
Fig. 4 B shows a sequence of camera frames obtained during a left curve and the corresponding
raw input signals (Fig. 4 A) obtained from the sensor fields xL,R

0,1 (sum over all pixels within
the sensor field). The vertical solid lines in panel A show that signals x1 are indeed earlier
than those at x0. The sequence of camera frames in B demonstrates that the ego-motion of the
robot creates quite some variability in the field of vision of the robot (see video camera.mpg on
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Figure 4: A) Input signals of the learning system x0,1. Dashed lines represent signals from
the right- (xR) and solid lines those from the left sensor fields (xL). Track layout is shown in
Fig. 5 C. Signals before camera frame 150 come from the left turn, those after frame 150 from
the right turn of the robot. B) Sequence of camera frames taken from the left curve.

http://www.chaos.gwdg.de/˜tomas /DrivingRobot/), for example the moving-out and moving-
in of the bent line clearly visible in the second row in B. This creates a temporally inverted
sequence of input events. Learning needs to be robust against such effects as well as against
other problems that arise from this behaviourally self-generated variability.

2.5 Simple Architecture
A simple neuronal setup of the robot is presented in Fig. 1 C. It has three neurons, two are
essentially only summation nodes, which we, for consistency, also call neurons α. They have
fixed weights (+1 for right side inputs and −1 for left side inputs). In addition there is one
neuron β with changing synapses on which all signals converge. Synaptic weight ρβ

0 are also
set to a fixed value of 1 and only weights ρβ

1 of all ten filters (see Fig. 2 A) change. The output
vβ is used to modify the motor signals of the robot. Note, in this experiment the setup for the
weight development is symmetrical but with inverted signs for the left versus the right curve.
Hence only one set of weights ρβ

1 develops. This is motivated by the fact that, in a natural setup,
left and right curves do not have any a priori bias. Hence, situations were, for example, left
curves are always on average sharper than right curves are not realistic. Hence, weights learnt
for a left curve might as well be applied, with inverted sign, to a right curve (and vice versa),
where learning will commence if the learnt weights are not sufficient. Given that the learning
algorithm is linear, it would not make any difference if inputs were all converging directly onto
β. Note, since the robot is continuously driving, we perform on-line and not batch learning.

2.6 Motor Outputs
The robot has a left and a right motor, which receive a certain forward drive leading to a
constant speed of S = 0.125 m/s in all experiments. This signal is modified by braking (|vβ|)
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and steering (±vβ) according to:

SL,R = 1.1905× 10−4(3097− g(|vβ| ± vβ))− 0.2437 m/s, (3)

where for the left motor we use ”-” and for the right ”+”. Numerical constants as well as g
are determined by the 12-bit resolution of the used DA-converter, where 0=maximal reverse
speed and 4095=maximal forward speed. For the chained architectures, introduced later (see
Fig. 10 B, C), we use vγ instead of vβ in the equation (3).

3 Results

3.1 Basic behaviour of the simple system
The simple architecture was applied in the line following task and three different tracks were
used in this experiment. Trajectories are shown for a left and a right curve. Weights and
motor signals corresponding to the respective tracks are shown to their left. Sensor fields
for predictor x1 and reflex x0 are as depicted in Fig. 1 B. The late and weak reflex response
by itself is not enough to assure line-following behaviour; therefore the robot misses the line
whenever it drives without learning (not shown, but see video control.mpg). In Fig. 5 A,B
two learning trials (separated by a dashed line) are shown, between which connection weights
were frozen and the robot was manually returned to its starting position. A rather high learning
rate µ = 3 × 10−6 was chosen to demonstrate fast learning. The cumulative action of reflex
and predictive response allows the robot to stay on the line already during the first learning
trial (see Fig. 5 C trajectory T1). In the first learning trial the motor signal (Fig. 5 B) shows
three leftward cumulative reflex+predictive reactions (large troughs) and seven (two leftward
and five rightward) non-reflexive reactions. In the second trial only non-reflexive leftward and
rightward steering signals occurred and the reflex was not triggered anymore. An appropriate
steering reaction was learnt after three reflexes (reflected by the three peaks in the weight-curve
in Fig. 5 A) during the first learning trial corresponding to about 50cm of the track (whole track
is about 2 meters). Due to the symmetry of this setup (see Fig. 1 C), results from the learnt left
curve could be equally applied to the right curve and no more reflexes are triggered after these
first three learning experiences. Also we observe, that after learning the robot steers smoother
(see video simple.mpg).

In addition two more extreme tracks were chosen to demonstrate the robustness of these
findings. The results for a shallower track (panels D-F) are similar to those from the previous
experiment but for this track learning stopped already after two reflexes even with a lower
learning rate of µ = 2.5× 10−6 as compared to the previous experiment where µ = 3× 10−6.
As expected a much weaker steering reaction (Fig. 5 E) was learnt and weights are smaller. For
movie of the learning behaviour see shallow.mpg.

The third experiment was performed using a track with very sharp corners (Fig. 5 I) and
a relatively higher learning rate µ = 6.5 × 10−6. This was done to demonstrate that fast and
stable learning is possible even for such a sharp track. The results of three learning trials
(separated by dashed lines) are presented in Fig. 5 G-H. The robot missed the track twice and
finally succeeded in the third trial (see also sharp.mpg). As before, it can now use the learnt
weights also for the right curve. Note, however, as a consequence of the general arrangement,
the robot now ”cuts corners”. This is a result of the fact that the predictive sensor field is
at some distance from the bottom of the camera image. Because steering necessarily always
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Figure 5: Results of the driving robot experiment using the simple architecture (see Fig. 1 C).
A-C) Results for the intermediately steep track (C). Learning rate was: µ = 3 × 10−6. A)
Connection weights ρβ

1 , B) motor output vβ , and C) driving trajectories. Trajectory T1 during
and T2 after learning. D-F) Results for the shallow track. Learning rate was µ = 2.5 × 10−6.
D) Connection weights ρβ

1 , E) motor output vβ , and F) driving trajectories. G-I) Results for the
sharp track. Learning rate was µ = 6.5 × 10−6. G) Connection weights ρβ

1 , H) motor output
vβ , and I) driving trajectories.

consists of a sequence of short straight trajectories, the robot will always take shortcuts if the
curves are too sharp and/or if the predictive sensor field is high up in the camera image.

In general we observed that the robot can learn the task fast even with a low learning rate
as long as the track is shallow but needs higher rates to be able to follow the sharp track after
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about the same number of reflexes. If the same learning rate is chosen for all tracks then more
reflexes are needed for the sharp track than for the shallow one.

Fig. 6 shows results for two control experiments with a shallow left and an increasingly
sharper right curve (see Fig. 6 E). Connection weights ρβ

1 (panel A) and motor output vβ (panel
B) of four learning trials (separated by dashed lines) are shown for a relatively low learning
rate µ = 0.4 × 10−6. At the beginning, the low learning rate prevents the robot even from
following the very shallow left curve (see trajectory T1 in Fig. 6 E). In the second trial, the
robot succeeded for the left curve and the beginning of the right curve but the learnt steering
reaction still was not enough to allow it following the sharper parts of the right curve at the
end of the spiral (see trajectory T2 in Fig. 6 E). In the third learning trial the robot succeeded
to follow the whole trajectory completely (see trajectory T3 in Fig. 6 E) but still most of the
time a mix of predictive and reflexive (large peaks) steering reactions occurred. The robot
continued to improved its steering reactions in the fourth trial (trajectory not shown, but see
video of whole experiment: spiral-low.mpg) where one can see more non-reflexive reactions
(smaller peaks) and less predictive+reflexive reactions than in the third trial. As expected from
the linearity of our learning rule, in the right curve the system can use the weights learnt during
the left curve up to the point where the right curvature remains below the left curvature (three
leftward reactions and then two rightward reactions in the fourth trial) after which weights will
continue to grow (large peaks). However, learning is not yet finished at this stage and would
need more trials until weights finally stabilise.

To speed-up the learning process a higher learning rate of µ = 1.5 × 10−6 was used and
three learning trials are presented in Fig. 6 C,D. In this case, the robot is able to stay on the line
already during the first learning trial (trajectories not shown but see video spiral-high.mpg) but
still more predictive+reflexive (large peaks) than non-reflexive steering reactions occurred (see
panel D). In the second trial only two predictive+reflexive reactions occurred whereas in the
last trial only non-reflexive steering reactions occurred and weights did not change anymore.
When we use the final weights learnt with the sharp curve afterwards for driving a through the
shallow left curve in a third trial the robot oversteers slightly the left curve and then makes a
right-left-right corrective movement, however, without triggering reflexes, in order to remain
on the line (see trajectory T3 in Fig. 6 F).

We also did an experiment to see how the robot behaves on a difficult track with different
kinds of curvatures (see Fig. 7 C). The total length of track is approximately 14.5 m. Connec-
tion weights and the motor output are shown in Fig. 7 A,B. The robot had three reflexes at the
beginning (Fig. 7 A, see arrows in C) while turning to the right and after that the reflex input
was not triggered till it approached the crossing point where the robot turned to the right (see
trajectory in Fig. 7 C) and the reflex was triggered twice again. After that the reflex was not
triggered anymore and weights stopped changing. When the robot approached the crossing
point for the second time it went straight and for the third time (trajectory not shown) it turned
to the left (see video maze.mpg). In general we obtained the same results as on the spiral track
where the robot uses the final weights learnt for the sharpest curve and over-steers a bit when
driving on the shallower curves. Note, as the robot does not use any assumptions about track
smoothness (similar to a known Gestalt Law), for the machine both solutions, driving straight
or turning, are equivalent at the crossing point in the centre of the track and the selection of a
certain behaviour only depends on the status of its sensor inputs.
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Figure 6: Results of the driving robot experiment using the simple architecture (see Fig. 1 C)
on a spiral track. A-B) Results for a learning rate of µ = 0.4 × 10−6. A) Connection weights
ρβ

1 , B) motor output vβ . C-D) Results for a learning rate of µ = 1.5 × 10−6. C) Connection
weights ρβ

1 , D) motor output vβ . E-F) Spiral track and robot trajectories belonging to the
different learning rates used in Fig. 6. E) Ongoing learning with rate µ = 0.4 × 10−6, where
we show trajectory T1, T2 and T3 during learning. Note, learning has not yet finished after
T3, but improves gradually towards a smooth trajectory. F) Final stage T3 reached after two,
not-shown learning trajectories, when using the higher learning rate of µ = 1.5× 10−6. In this
case we find weight stabilisation after two trials (see Fig. 6 C), but learnt weights will lead to
too strong reactions for shallow curves which are compensated by corrective movements (see
bottom part of the trajectory).
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Figure 7: Results of the driving robot experiment using the simple architecture (see Fig. 1 C) on
a maze track. A) Connection weights ρβ

1 , B) motor output vβ . Learning rate was µ = 3× 10−6,
weights stabilised after five reflexes. C) Maze track and robot’s driving trajectory for the first
loop.

3.2 Statistical evaluation
In the experiments above it has become clear that our system performs on-line (and not batch)
learning. Hence the most critical parameter affecting the convergence of learning is in which
way the momentary behaviour will influence, or rather generate, the next learning experience.
Ultimately this is given by the sequence of viewing angles which the robot creates due to its
own driving. As a consequence the investigation of the influence of the viewing angle on
the learning should provide the most relevant information about the robustness of this system.
Other relevant parameters are learning rate as well as relative placement of the different sensor
fields.

Thus, to investigate the robustness against these parameters we used a simulation and per-
formed a set of more than one-thousand experiments where we let the simulated robot learn to
follow left-right tracks with angles of 20, 45 and 90 degrees (see Fig. 8 A). The total length
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of the tracks was 360 points while its thickness was one point. The radius of the robot was
r = 20 points and the positions of the sensor inputs xL,R

0,1 (1x1 point) were defined as shown
in Fig. 8 B. We used the neuronal setup as presented in Fig. 1 C. The output of the neuron vβ

modified by transformation function Sx,y was used here to change the position of the robot in
the environment. It was calculated according to the following equations:

Sx
t = Spx

t + r cos(αt), (4)

Sy
t = Spy

t + r sin(αt), where (5)

Spx
t = Spx

t−1 + (1− 0.001 |vβ|) cos(αt), (6)

Spy
t = Spy

t−1 + (1− 0.001 |vβ|) sin(αt), and (7)

αt = αt−1 − 0.01 vβ, t = 0...N, (8)

where α0 is angle in radians of the robot’s starting position (see Fig. 8 C). We used a filter bank
of ten filters to filter inputs xL,R

0,1 given by parameters f0 = 0.25 for x0 and f0 = 0.5/k, k =
1...10, for x1. Damping parameters of all filters were Q = 0.6.

To evaluate the robot’s performance we define three (AND-connected) conditions to mea-
sure success:

1. The correlation coefficient between robot’s trajectory and the whole track is > 0.90.

2. The reflex is not triggered in three consecutive trials after connection weights stopped
changing.

3. The robot completed the task within maximally 20 trials (20 full tracks).

If these three conditions are not fulfilled at the same time then we count an experiment as
a failure. Results demonstrating the influence of the robot’s position angle while placing the
robot at the starting position are presented in Fig. 8 D. We plot the success rate in 1000 exper-
iments and the average number of reflexes (NR) needed to accomplish the task (in successful
experiments) against the variance of the distribution of the starting angle σ2

α. The success is
slightly decreasing if we increase the variance of the starting angle distribution σ2

α, but we still
get high performance (success rate 0.92 < succ ≤ 0.99 for all tracks). More reflexes are
needed to accomplish the task if σ2

α is increased. Also, as expected, more reflexes are required
for the sharp track as compared to shallower ones. Results of 100 experiments for different po-
sitions of the predictor sensor x1 are shown in Fig. 8 E. Success rate decreases if the distance
between inputs is getting larger for the sharp track whereas for the shallow and middle track
decrease is less significant but also decreases when the distance is very large (d = 9/10. The
number of necessary reflexes (NR) is increasing if the distance between x1 and x0 is getting
larger. This is due to the weight change curve of the ICO learning rule (Porr and Wörgötter,
2006). If the inputs are spaced further apart in time then correlations are weaker, the connection
weights do not change so fast, and more repetitions are needed to complete learning. Due to
this the robot never succeeded to steer the sharp track within 20 trials when distance between
x1 and x0 was > 8. We also investigated the influence of the learning rate and results of 100
experiments are presented in Fig. 8 F. The learning rate does not affect performance except for
the sharp track when the learning rate is relatively low and the robot does not succeed to steer
the curve within 20 trials. As expected we find that with a higher learning rate less reflexes
are needed to complete the task, because with a higher learning rate weights are growing faster
and the task is learnt sooner.
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Figure 8: A-C) Setup of the simulation experiment. A) Tracks with 95, 45 and 20 degrees.
B) Positions of the input signals xL,R

0,1,2. C) Angle α of the robot at its starting position, given
by the deviation from the direction of the track when placing the robot at the start. In the
experiments a Gaussian distribution of α has been used with mean α of zero and different
variances σ2

α. D-F) Results of the simulation experiments using simple neuronal setup. D)
Success in 1000 experiments and average number of reflexes (NR) needed to accomplish the
task within successful experiments are plotted against the variance σ2

α. Learning rate was
µ = 5× 10−6 and distance between x1 and x0 was d = 3. E) Success in 100 experiments and
average NR plotted against the distance between x1 and x0. Learning rate was µ = 5 × 10−6

and the variance was σ2
α = 4. F) Success in 100 experiments and average NR plotted against

the learning rate. The variance was σ2
α = 4 and the distance between x1 and x0 was d = 3.

3.3 Chained Architectures
3.3.1 Open-loop case

Two types of chained architectures were developed by the modification of the simple neuronal
setup and were simulated in the open loop case before applying them in the line following
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task (closed loop case). The neuronal setup of the first type of chained architecture, called the
linear-chain, is presented in Fig. 9 A. There is one reflex input x0 and two predictive inputs
x1 and x2. Output vβ is used as the reflex input of the neuron γ. The weights ρβ,γ

0 are set to
a fixed value 1, all other weights are initially zero. The second type of chained architecture
(Fig. 9 B) is named honeycomb-chain, to which its structure resembles. Output vβ,1

1 is used as
the reflex input of the neuron γ and output vβ,2

1 as its predictive input. Weights ρβ,1
0 and ργ

0 are
set to a fixed value 1, all other weights are initially zero. The connection weight ρβ,2

0 is given
by ρβ,2

0 =
∑10

k=1 ρβ,1
1,k , where k denotes the number of the filter in the filter bank. We note that

both architectures are identical if we set ρβ,2
0 = 0 and ρβ,2

1 = 1.
Inputs for the open loop case were generated as follows: Input x2 occurs 20 time steps

earlier than input x0 with a variability of up to ± 5 time steps and x1 occurs 10 time steps
earlier than x0 with the same variability. This impulse sequence has been repeated every 50
time steps.

Simulation results for the linear-chain (Fig. 9 A) are presented in Fig. 9 B,C. The variability
in the pulse sequences leads to uneven growth. In the open loop case we have to enforce weight
stabilisation by setting the respective inputs x0 to zero at some points. This was done whenever
the growing input weights ρ1 at this neuron, summed over the whole filter bank, exceeded a
threshold of 0.5 (see legend of Fig. 9 for equations).

Using this criterion, first the connection weights ρβ
1 stabilise and after some time ργ

1 stop
to change. Results for the honeycomb-chain (Fig. 9 D) are presented in Fig. 9 E-G. In this
situation first the connection weights ρβ,1

1 stop to change and later both weights ρβ,2
1 and ργ

1

stabilise.

3.3.2 Closed-loop case

The physical and neuronal setups of the learning system for the chained architectures is pre-
sented in Fig. 10. The neuronal setup for the linear-chain architecture is presented in Fig. 10 B
and for the honeycomb-chain in Fig. 10 C. It is similar to those above (see Fig. 9 A,D), only
that we add left and right inputs with inverted signs before this signal finally arrives at neurons
β.

These chained architectures were applied in the line following task and results similar to
those in the simulated open loop case were obtained for both architectures. The results for the
learning task using the linear-chain (Fig. 10 B) are presented in Fig. 11 A-D and the results
for the honeycomb-chain (Fig. 10 C) in Fig. 11 E-H. In the first learning trial the motor signal
(Fig. 11 C) shows three leftward cumulative reflex+predictive reactions and two non-reflexive
reactions, as well as two cumulative rightward reactions and three non-reflexive reactions.
Note, by chance in this trial the three leftward reflexes were elicited by triggering xL

0 , whereas
the two rightward reflexes came from xR

1 . Hence the leftward reflexes where contributing to
the change on ρβ

1 and ργ
1 (Fig. 11 A,B) but not the rightward reflexes, which only contributed

to the change of ργ
1 .

In the second trial only non-reflexive leftward and rightward steering signals occurred and
the reflex was not triggered anymore. The driving trajectories are shown in Fig. 11 D and in the
video linear-chain.mpg. Weights at a certain neuron stabilise as soon as their corresponding
reflex input remains silent. For the linear-chain (A-D) this happens earlier for ρβ

1 where x0

becomes zero after about 150 camera frames and later for ργ
1 , because its reflex input vβ remains

longer active. Essentially the same is true for the honeycomb-chain (E-H). Here ρβ,1
1 stops

growing first, which gets the same reflex input u0 as ρβ
1 in the linear-chain. Convergence of the
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Figure 9: Chained neuronal architectures (A, D) and simulation results for the open loop case
(B, C, E-G). A) Linear-chain and D) honeycomb-chain. Learning rate for both architectures
was µ = 10−7. B, C) Results for the linear-chain (A). Connection weights ρβ

1 and ργ
1 . Weights

ρβ
1 stop growing at the condition x0 = 0 and ργ

1 stop growing when x1 = 0. We have set
x0 = 0 when the sum of weights over all ten filters is

∑10
k=1 ρβ

1,k ≥ 0.5 and x1 = 0 when∑10
k=1 ργ

1,k ≥ 0.5. E-G) Results for the honeycomb-chain (D). Connection weights ρβ,1
1 , ρβ,2

1 ,
ργ

1 . Weights ρβ,1
1 stop growing at the condition x0 = 0, ρβ,2

1 and ργ
1 stop growing when x1 = 0.

We have set x0 = 0 when sum of weights over all ten filters is
∑10

k=1 ρβ,1
1,k ≥ 0.5 and x1 = 0

when
∑10

k=1 ρβ,2
1,k ≥ 0.5.

weights ρβ,2
1 is controlled by reflex input u1 which also contributes to the signal vβ,1, being the

reflex input to neuron γ. Hence weights ρβ,2
1 and ργ

1 behave in the same way and stabilise later
(similar to ργ

1 of the linear-chain).
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Figure 10: The physical A) and neuronal B,C) setups of the chained learning system for the
closed loop case. A) Camera image with sensor fields marked by xL,R

1,2 and xL,R
0 . B) Linear-

chain and C) honeycomb-chain.

3.4 Statistical evaluation
We also did simulations using chained architectures in order to a make comparison with the
simple setup. The simulation setup for the chained architectures is shown in Fig. 8 B. Positions
of sensor fields x1L, R and x0L, R were fixed (distance was 3 pts) and we only varied the posi-
tion of sensor field x2L, R. The influence of the robot’s position angle while placing the robot at
the starting position are presented in Fig. 12 A-B. We plot the success rate in 1000 experiments
and the average number of reflexes (NR) needed to accomplish the task (in successful exper-
iments) against the variance of the distribution of the starting angle σ2

α. We obtained similar
results using the linear-chain (panel A) as compared to the simple architecture where success
is slightly decreasing and more reflexes are needed to accomplish the task if we increase the
variance σ2

α. We get a slightly reduced performance as compared to the simple setup (success
rate 0.86 < succ < 0.96 for all tracks). Also, as for using simple setup, more reflexes are
required for the sharp track as compared to shallower ones. For the honeycomb-chain (panel
D) performance was again lower: success rate 0.71 < succ ≤ 0.94 for the shallow and middle
track where for the sharp track we got very low performance (success rate succ < 0.1). This is
due to the fact that the honeycomb-chain architecture is sensitive to the position of the sensor
fields. We plot the results of 100 experiments for different positions of the predictor sensor
x2 (we kept positions of x1 and x0 fixed) in Fig. 8 D. Here we can see that we get the best
performance for the shallow and sharp track when the distance between x2 and x1 is d2 = 5 pts
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Figure 11: Results of the driving robot experiment using chained architectures. Learning rate
for both experiments was µ = 2.5 × 10−6. A-D) Results for the linear-chain (see Fig. 10 B).
A,B) Connection weights ρβ

1 and ργ
1 . C) Motor output vγ , and D) driving trajectories. Trajec-

tory T1 during and T2 after learning. E-H) Results for the honeycomb-chain (see Fig. 10 C).
E-G) Connection weights ρβ,1

1 , ρβ,2
1 and ργ

1 . H) Motor output vγ . The trajectories are similar to
the previous experiment (D) and not shown.

(success rate 0.70 ≤ succ ≤ 0.96 for all tracks) where for the middle track the importance of
the position of the sensor fields is not significant (except for the smallest distance between x2

and x1 given d2 = 2 pts). For the linear-chain setup (panel C) we obtained the same results as
for the simple one. Success rate decreases if the distance between inputs is getting larger only
for the sharp track whereas for the shallow and middle track decrease is not significant. We
also observed that the number of necessary reflexes (see panel C-D) is increasing if the distance
between x1 and x0 is getting larger except very small distances between x2 and x1 when using
honeycomb-chain setup (panel D).

We can summarise that better performance is obtained with the simple setup as compared
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to the chained architectures. The performance does not crucially depend on the starting angle
position. It decreases only slightly if the variance of starting angle position increases. In
general we observed that only for the honeycomb-chain architecture performance depends on
the position of the sensor fields (distance between sensor fields). The learning rate does also
not affect performance itself. The robot only needs more reflexes to learn the task if we use
relatively low learning rates.

Figure 12: A-D) Results of the simulation experiments using chained architectures. A-B)
Success in 1000 experiments and average number of reflexes (NR) at the motor output neuron
γ needed to accomplish the task within successful trials are plotted against the variance σ2

α: A)
linear-chain, B) honeycomb-chain. Learning rate was µ = 5 × 10−6 and distance between x1

and x0 and between x2 and x1 was d = d2 = 3. C-D) Success in 100 experiments and average
NR plotted against the distance between x2 and x1: C) linear-chain, D) honeycomb-chain.
Distance between x1 and x0 was fixed and was d=3. Learning rate was µ = 5 × 10−6 and the
variance was σ2

α = 4.

4 Simple architecture vs chained architectures
Previously we summarised that with the simple setup we get better performance as compared
to the chained architectures. This is true only for cases where we have good input correlations
(small distances between inputs) in the simple setup. Performance decreases if the distance
between inputs is very large (see Fig. 8 E) for the shallow and middle track and the robot never
managed to steer the sharp curve when the distance between inputs was > 8. However, the
robot managed to steer the sharp curve when chained architectures were used (see Fig. 12 C,D)
where the distance between inputs x2 and x1 was > 5 and between x1 and x0 was 3 (total
distance between x2 and x0 was > 8). To test the hypothesis whether chained architectures
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are advantageous for bad correlations because of sparse inputs we did an experiment where
we compared the performance of all three architectures on the middle curve (45 deg.). The
setup of the input configuration for the simple architecture is shown in Fig. 13 A and for the
chained architectures in Fig. 13 B. Distance between inputs x1 and x0 in the simple setup
was 15 pts and in the chained architectures it was 8 between inputs x2 and x1 and 7 between
x1 and x0 (total distance between x2 and x0 was 15 pts). A comparison between all three
architectures is presented in Fig. 13 C,D where we plot the success rate in 500 experiments
(panel C) and the average number of trials (NT) within successful experiments together with
confidence intervals (95%) needed to accomplish the task (see panel D). From the results we
can conclude that chained architectures indeed perform better (success rate for the linear-chain
0.87 and for the honeycomb-chain 0.92) whereas for the simple architecture we obtained a
success rate of only 0.57 (see panel C). We also needed less trials to complete learning when
using chained architectures as compared to the simple setup (see panel D).

Figure 13: A, B) Setup of the simulation experiment. A) Simple setup. Positions of the input
signals xL,R

0,1 . A) Chained architectures. Positions of the input signals xL,R
0,1,2. C,D) Results of

the simulation experiments using different neuronal setups on the middle track (45 deg.). C)
Success in 500 experiments. D) Average number and confidence intervals (95%) of trials (NT)
needed to accomplish the task within successful experiments. Learning rate for all experiments
was µ = 5×10−6. Distance between x1 and x0 in the simple setup was 15 pts whereas distance
between x1 and x0 and between x2 and x1 in chained architectures was 7 and 8 pts, respectively.
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5 Discussion
This study has addressed two specific aspects in the field of temporal sequence learning. We
have focused on: 1) chaining learning architectures in a closed loop perception-action system
and 2) the question whether chained architectures can be employed in order to obtain better
behavioural performance as compared to the simple architecture in cases where we have sparse
inputs in time and correlations between these inputs are weak. In the following we would like
to discuss how the open- and closed-loop situation compares to biological and other artificial
systems, how our methods relate to other approaches for RF-development, and where there are
relations to some aspects of reinforcement learning.

The ICO-learning rule has been chosen because of its robust convergence properties (Porr
and Wörgötter, 2006) even with high learning rates. ICO learning changes its weights by
correlating inputs, only. This can be interpreted as heterosynaptic plasticity or as modulatory
plasticity. In biological systems, pure heterosynaptic learning is only found at a few specialised
synapses (mossy fibre, amygdala, (Humeau et al., 2003; Tsukamoto et al., 2003)), where the
mossy fiber synapse between dentate gyrus and CA3 in the hippocampus can indeed create fast
and strong changes similar to those induced by ICO-learning with a high learning rate. More
often, however, heterosynaptic influences are thought to be mainly modulatory (Kelley, 1999;
Ikeda et al., 2003; Bailey et al., 2000; Jay, 2003). Here we are not really concerned with the
possible biological implications of such a learning rule (see (Wörgötter and Porr, 2005; Porr
and Wörgötter, 2006) for a more detailed discussion). Instead we have used it as a tool to
employ fast learning in a closed loop scenario. This property is visible when learning succeeds
after the first trial in keeping the robot on track for an intermediately steep track (Fig. 5 C),
while it does not follow the line if only the reflex alone is employed (see video control.mpg).
Hence, already during the first learning reflex synaptic weights adjust quickly and, in turn,
immediately influence the output leading to successful behaviour. This behaviour is generically
observed for the ICO-rule, which thereby approaches the limit of one-shot learning in a stable
behavioural domain (Porr and Wörgötter, 2006), provided the input correlations are robust
enough.

Biological systems are generally operating in close conjunction with their environment.
This so-called ecological embedding has already been discussed by theoreticians very early
as also essential for autonomous artificial agents (Ashby, 1956; McFarland, 1971; Wiener,
1961). On the more practical side the work of W.G.Walter was probably the first to create
an operational, autonomous cybernetic control system when he built his two robots Elmer and
Elsie. These machines could already perform homing as well as different forms of photokinesis
(Walter, 1950). In the following the ecological perspective had been widened most notably by
the work of Braitenberg (1984) on his ”vehicles” and for invertebrates by Webb (2002).

In most of the older work typical feedback loop control systems had been built, which do
not adapt but instead react to a stimulus by ways of reflex-like behaviour. Stable feedback loop
control is in itself a difficult problem in particular when there are multiple inputs and outputs. It
is however known that even very simple animals can learn and adapt to new situations. Hence
we are now faced with the augmented problem of how to combine Control with Learning in
a stable way. Specifically we are confronted with the question how animals arrive at useful,
reproducible and, hence, stable behavioural patterns, while they are at the same time able
to learn ”something new”. Recently Verschure suggested that such systems should contain
several layers for control and learning: At the bottom a ”reactive layer” performing pure reflex-
based control, one above an ”adaptive layer” performing predictive learning much in the sense
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of classical or operant conditioning and finally on top a ”contextual layer” for higher level
adaptation (DAC-architecture, (Verschure and Althaus, 2003)). In our study we are concerned
with the first two layers only.

There is another class of learning setups, called feedback-error learning (FEL,(Gomi and
Kawato, 1993; Nakanishi and Schaal, 2004)), which appear to be related to closed-loop ICO.
However, in contrast to ICO learning FEL does not use additional predictive inputs x1, x2, . . .
to compensate for a disturbance. It rather improves the feedback loop itself by using the signals
which are available to the (late) feedback system. A simple example is feedback loop which is
set up as an overdamped system (PI controller) so that the reaction of the loop to a disturbance
or a change in the setpoint leads to a low pass filtered impulse response of the system. With
the help of FEL the reaction could be made faster to by adding an adaptive controller which
receives a copy of the disturbance itself or the output of the feedback controller. Because we
have got an overdamped system, FEL would learn to become the derivative of the disturbance.
In other words, FEL would adaptively learn to add the “D” to a PI controller. ICO or ISO
learning, however, are fundamentally different because they use the derivative as a predictor to
learn another predictive input which is then used to eliminate the disturbance and eventually
eliminates the feedback loop itself. FEL on the other hand does not replace the feedback loop
by a forward controller but rather improves the performance of the feedback controller as such.

In all such architectures, however, one must ask how in the process of learning synaptic
weights are stabilised in conjunction with behavioural success. Stability in our approach rests
on the assumption that the reflex eliciting signal (x0) really represents an error signal. Hence,
ICO-learning stabilises as soon as this error signal is eliminated as has been rigorously shown
in (Porr and Wörgötter, 2006). On the behavioural side this, however, means that the reflex has
been functionally eliminated and has now been successfully replaced by an earlier anticipatory
action. This property allows controlling the homeostasis of learning and behaviour at the same
time, which is more difficult to achieve with most other architectures.

In this study we were concerned with designing simple chained architectures of our learn-
ing modules. This was motivated by the fact that the sensor information in animals internally
progresses along many stages until a motor output is generated. It is unknown, how such com-
plex sensor-motor loops maintain behavioural stability, let alone behavioural stability during
changing synaptic strengths between these different stages. Our approach is to some degree
related to reinforcement learning, not so much to machine learning methods like Q-learning
(Watkins, 1989; Watkins and Dayan, 1992), but rather to Actor-Critic loop architectures (Wit-
ten, 1977; Barto et al., 1983; Barto, 1995), which have been employed in simulated neural
systems. Indeed, if one uses the x0 signal as a reward one can create a structural similarity
between some of these algorithms and our ICO-rule (for a detailed comparison see (Wörgötter
et al., 2007)). Also, we note that the strict state- and action space tiling used in traditional
Q-learning approaches has in some approaches been replaced by more adaptive self-defining
processes, which span the state- and action space through exploration (Jodogne et al., 2005;
Agostini, 2004) making these algorithms better compatible to neuronal architectures.

Indeed, some Actor-Critic algorithms have been also used to guide the learning of biologically-
inspired agents (Montague et al., 1995; Suri and Schultz, 1998; Schultz and Suri, 2001; Niv
et al., 2002) but – to our knowledge – it has not been attempted to chain Actor-Critic loops so
far. Apart from the fact that there is no generic “recipe” existing, the problem may be even
more fundamental. Actor-Critic architectures usually rely (in their Critic) on the TD-algorithm
(Sutton, 1988; Sutton and Barto, 1998) to assess the value of an action of the Actor. The predic-
tion error δ in TD-learning equals zero as soon as the output v accurately estimates the future
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expected reward r(t + 1) using: δ(t) = r(t + 1) + v(t + 1)− v(t). To fulfil this convergence
condition, the output v needs to take on a certain value (output control). In any single loop ar-
chitecture, outputs will be fairly directly transferred to inputs by ways of the environment (e.g.
Fig. 3). In a nested or chained loop, however a problem may arise. To guarantee the conver-
gence of each individual stage of the chain its output needs to be directly conveyed backward to
compare it to the reward, which, necessarily is an input to the regarded stage. Effectively this
amounts to some kind of error back-propagation, a commonly used principle in artificial neural
networks (McClelland et al., 1987), but hard to justify in biological networks, where the role
of internal feedback does not seem to be related to any error back-propagation mechanism. Ar-
chitectures based on our correlation based learning rule(s) perform strict input control, because
they converge as soon as the error signal of the reflex, x0, equals zero, regardless of the value
of the output. This condition, hence, does not require error back-propagation and may prove
to be easier to handle for the design of more complex nested of chained loops as compared to
Actor-Critic architectures (Wörgötter et al., 2007).

Hence, one starting point for this study was the assumption that input control should allow
designing more complex structures with predictable stability properties. Therefore, here we
have for the first time implemented a simple layered structure and obtained stable behaviour in
a closed loop scenario. While the two chained architectures are still rather simple, we believe
that this is nevertheless an important step towards more advanced networks of correlation based
learning units. Furthermore, we conclude that chained architectures can be employed in order
to obtain better behavioural performance as compared to the simple architecture where learning
fails because of weak correlations.
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