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on using anticipation to extend the human body by tools.

Keyword list: Vision, Tactile Sensing, Object-Action Associations



IST-FP6-IP-027657 / PACO-PLUS

Page 2 of 10

Public

Table of Contents
1. I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. H   S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3. P-A A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 A G R   C-  C S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 A  G  O   R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4. L O-A R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.1 L C  P A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.2 L R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5. T  E   B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6. L  W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9



IST-FP6-IP-027657 / PACO-PLUS

Page 3 of 10

Public

1. Introduction

A summary of our work on the learning of attribute-action relations is described in this deliverable. Extended
descriptions are given in a set of accepted [A, C] or submitted [G] publications as well as technical reports
[B, D, E, F] which are attached.

In section 2, we briefly describe the further developed hardware set-up used at UniKarl and SDU in particu-
lar in terms of more sophisticated tactile sensing. By this set-up, we provide the basis for the multi-sensorial
information that is needed and used in the context of the attribute–action relations being developed in partic-
ular in the context of WP4 and WP8. In section 3, we describe work on predefined part-action associations
(in the following called ’reflexes’) that are used in the bootstrapping process of the system (see also De-
liverable D8.1.4). This work has been published in [A, C]. We have done first steps in the direction of
learning more refined behaviour based on these reflexes. Most importantly, we are now able to generate
large data sets with labelled data consisting of successful and un-successful grasps and associated feature
combinations (see [F]). In section 4, the learning of object-action associations is described. As pointed out
also in WP8, we see it as a relevant feature of our approach that learning is taking place on rather different
levels of the processing hierarchy. In this context, we present work on learning on a very low level, where
the consequences of a simple poking action on the pose of a rigid object become learned. We also give an
example for learning within an embodied system which takes place on a symbolic level in terms of acquiring
rules (see also WP5). A very relevant object in the context of PACO-PLUS is a tool since a tool requires to
reason not only about the consequences of the robot’s actions on objects but on the extension of the body by
tools and the extended action options that come with that. In section 5, we describe our more preparational
and theoretical work on the integration of tools into the concept of a body. The work described here is or
will be relevant for the demos described in WP8 where they serve as sub-modules of the cognitive system
we are aiming it.

2. Haptic and tactile Sensing

In the context of WP4, we mainly work within two hardware platforms, one at SDU and one at UniKarl.
Both platforms deliver haptic and tactile feedback which is used to learn object-action relations. Although
both platforms are being equipped with a robot and gripper, an (active) stereo system as well as force-torque
sensors and tactile sensors based on micro-joystick technology, the SDU platform has a much lower degree
of complexity since there is no active camera steering but a fixed camera robot setting. Also the SDU system
has a very precise 6DoF industrial robot with a two finger gripper compared to a redundant pair of human
like arms with a five finger hand used at UniKarl. The role of these two different platforms within PACO-
PLUS are clearly defined. Because of the reduced complexity in the SDU system, it is easier to perform
longer action sequences, to test complex architectures and to make use of or rely on more precise information
for actions such as grasping and learning. However, research done initially in the SDU environment finally
has to be transferred to the UniKarl platform as being done in the context of planning already.

On both platforms, progress on tactile and haptic sensing has been achieved over the last year. The SDU
system is now equipped with a force-torque sensor at the wrist by which information about collisions can
be detected and a withdraw action can be performed before too strong forces build up that would lead to
an emergency stop or the destruction of objects. Furthermore, weight measurements as well as information
about openness and closedness of objects can be detected haptically. In addition, after having evaluated
the potential of the micro-joystick based technology for tactile sensing (see [D]), we have been building
a prototype for a finger fully equipped with tactile sensors (see figure 1(a)). The five finger hand used at
UniKarl is equipped with the very same tactile sensors as used in the SDU system (see figure 1(b)).



IST-FP6-IP-027657 / PACO-PLUS

Page 4 of 10

Public

(a) (b)

Figure 1: (a) Rendered design of the new finger developed at SDU. The finger is meant for a two finger
gripper and is covered with sensors on five sides. (b) Humanoid robot at UniKarl.

3. Part-Action Association

We have worked on three different part–action associations, two being connected to contour structures (sec-
tion 3.1) and one being connected to dense shape representations (section 3.2). This work has been described
in more detail in [A, F, B, C].

3.1 A Grasping Reflex based on Co-planar and Circular Structures

We make use of two part-action association which are used as initial reflex-like behaviour in the complete
system (see deliverable D8.1.4). One association (see figure 2(a)), which has already been worked on over
the last year is based on co-planar pairs of contours. The potential of this grasping reflex has now been
thoroughly evaluated in [F] where we could show, that even in complex scenes a large amount of objects
can be grasped by these simple mechanisms (see figure 2(b,c)). To be able to deal with objects that have a
3D circle as a parts (as many objects have in a kitchen scenario), we also defined a part action association
(see figure 3). Work on this, including the part extraction mechanism, is described in [B]. First steps in the
area of improving these reflexes by learning are described in Deliverable D8.1.4.

(a) (b) (c)

Figure 2: Co-planar pairs of contours predict groups. (a) The four different elementary grasping actions
defined based on a pair of co-planar groups. (b) Robot scene before the grasping procedure has been applied.
(c) Scene after all graspable Objects have been removed by the system.
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(a) (b) (c) (d)

Figure 3: Grasp types. They are defined object centric and based on the upper circle.

3.2 Associations of Grasps to Objects using dense Representations

Robot grasping capabilities are necessary to actively execute tasks, modify scenarios and thereby reach
versatile goals. These capabilities also include the generation of stable grasps to safely handle even objects
unknown to the robot. In this paper, we follow the idea that the key to this ability is not primarily to select
a grasp depending on the identification of a selected object, but on its shape. To approach this goal, [C]
presents an algorithm that efficiently wraps given 3D data points of an object into primitive box shapes
by a fit-and-split algorithm, based on Minimum Volume Bounding Boxes. Box shapes are not able to
approximate arbitrary data in a precise manner, but it is shown that they give efficient clues for planning
grasps on arbitrary objects, even more on object parts. Keeping in mind that it is not necessary to find the
very best grasp, but one out of those that are stable, this seems reasonable. Additionally, the part-describing
boxes allow for grasp semantics that might be mapped to boxes in the set, e.g. “approach the biggest part
for a good grasp to stably move the object” or “approach the smallest part for a good grasp to show a most
unoccluded object to a viewer.” The description of an object by a shape-base part representation, which is
claimed to be necessary for this kind of task-dependent grasping, is thereby made available (see figure 4).
A more detailed description can be found in [C].

Figure 4: Minimum Volume Bounding Boxes and associated grasps

4. Learning Object-Action Relations

We addressed learning of object–action associations on a rather low level, where the effect of a poking
action on an object becomes predicted (described in section 4.1) as well as on a rather symbolic level where
abstract rules become learned (as described in section 4.2).
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4.1 Learning Consequences of Poking Actions

Assuming that the robot can control its arm, it can start using it to act in the environment. The robot can make
the initial object-action associations by observing the outcome of exploratory actions on objects. One of the
most basic types of interaction with an object is poking, which can be defined as a short term pushing action.
In the study in [E] we implemented an exploratory behaviour in which the robot randomly or systematically
pushes an object from various sides and in different directions. The resulting object motions were identified
and the robot used this data to associate the parameters of poking actions with the actual object movement.
A neural network with two hidden layers was utilised to represent and learn these associations.

Finally, we showed how the acquired knowledge can be used to move the object in the desired direction by
poking using feedback control (see figure 5).

Figure 5: Execution of the pushing action (blue line desired object motion, red line actual object motion,
green line pusher movement)

4.2 Learning Rules

In conjunction with WP5, we are developing methods for acquiring STRIPS/LDEC-like rules and plans
defined as a set of preconditions, a sequence of one or more actions. The preconditions are a set of necessary
conditions or perceptions that must be observed before the rule can be applied, and the expected outcome is
a series of effects that will be obtained after the execution of the rule. The action sequence may consist of
a single elementary action in the simplest rules (the cause-effect relation for that action) or a list of actions,
each one expressed in turn as a cause-effect. The rules so formed are behaviours that can be memoized,
Explanation-Based Learning-style, when the obtained sequence is frequent or expensive to calculate, and
used as planning operators [6], [7], [9]. They are used in a decision making platform [1] in which the rules
are acquired from natural human instructions about cause-effect relations in currently observed situations,
minimising complicated instructions and explanations of long-run action sequences and complete world
dynamics. Plans can also in principle be constructed automatically by the PKS planner, partly developed
in PACO-PLUS under WP5. The process of learning these operators from interaction with the world is
investigated elsewhere in WP5 [5].
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5. Tools as Extensions of the Body

Embodied cognition suggests that complex cognitive traits can only arise when agents have a body situated
in the world. When discussing the aspects of embodiment and situatedness from the perspective of linear
systems theory one can treat bodies as dynamic, temporally variable entities, which can be extended (or
curtailed) at their boundaries. In a set of experiments we could show how acting agents can, for example,
actively extend their body for some time by incorporating predictably behaving parts of the world and how
this affects the transfer functions. These studies suggest that primates have mastered this to a large degree
increasingly splitting their world into predictable and unpredictable entities. We argue that this kind of
temporary body extension may have been instrumental in paving the route for the development of higher
cognitive complexity as it is reliably widening the cause-effect horizon about the actions of the agent.

(a) (b) (c)

Figure 6: Systems theoretical representation of temporary embodiment.

Figure 6(a) depicts a situated agent (human) facing a few disturbances. In the process of grasping an object
the human will — if successful — be able to make the grasped object fully (or at least very) predictable
to her. Hence, an entity that had been a disturbance (of — say — her visual input space) will first become
a predictable entity P2 (figure 6(b)), where the human will then be able to temporarily integrate this entity
into her body (figure 6(c)). The division operation is mathematically fully correct in this case as long as we
talk about linear transfer functions. An extention to more realistic non-linear cases would require a more
elaborate mathematical treatment, which, however is not of interest for the main part of our discussion here.
The remaining aspects P1 of the world cannot be integrated as they might, for example, be too unpredictable
or too far away or from the agent’s currently existing body. The idea that humans (and monkeys) indeed
perform temporary bodily integration is supported by experimental results that over time cortical receptive
fields are extended representing the tip of a stick, which a monkey had to use to obtain food for an prolonged
period of time [8]. Hence a long duration, where the processes depicted in figure 6 had taken place, has in
this case even led to a long-lasting plastic change of the nervous system of this agent (monkey).

The apparently strange notion of temporary bodily integration becomes much more digestible if one thinks
of an advanced robot that has grasped a pair of pliers and can handle it now with high precision and dexterity.
What would prevent us — the robot’s designers — from using a few screws to permanently attach these
pliers to the body of the robot this way making the temporary bodily integration a permanent one?

In the following we will describe a set of experiments performed with a simple industrial robot (Stäubli,
Switzerland) demonstrating how the principle of temporary bodily integration can be implemented in a
machine in a simple algorithmical way to provide some support to this idea.

To this end we assume a few things for our machine to be innate:

A A visual representation exists by which a scene can be decomposed into simple 3-D entities, which
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Figure 7: Temporary embodiment experiment (for explanation see text).

we call primitives (see figure 7A especially also the inset; for technical details see [4]). Notions of
distance (metric) exist therein.

B The machine “knows” that coherently moving primitives belong together. This is known as the rigid
body motion principle (see [2]) and corresponds to the prominent Gestalt law of Common Fate.

C Through this, the robot has learned about its own body (gripper). This can be achieved by a purely
correlation based learning process where the robot has learned to associate coherent motion in the
visual field to the fact that there has been a motor command, which the machine has used to perform
a movement. We assume that the process of knowing its own body is basically completed; but that
this process keeps on running in the background to safeguard against incompleteness and errors in the
body representation.

D The machine can move its arm and it has also a certain drive to move its arm around (without which
nothing would ever happen!)

E The machine can push things around by making (visually measured) contact to entities in the scene,
which do not belong to the machine. Measurement relies again on the 3-D primitives for which the
concept of distance exist.

F A grasping reflex can also be performed with some success, triggered by certain geometrical constel-
lations between primitives from the world ([A]). It can feel a successful grasp (haptic sensors) and
it knows that it cannot perform another grasp without first letting go. Like babies, it, however,
rather likes to hold on to a grasped entity. After some longer time it might however get bored
and then it releases the object (also similar to small children).
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G It has an exploration drive by which it will first try to grasp a thing and if this fails (measured by the
haptic sensors at the hands), it will try to push it instead. This exploration is triggered by novelty and
will start as soon as something new (new primitives) are discovered in the scene.

These rather basic sub-procedural components are enough to drive the required process. Figure 7A shows
the body-representation of the robot as viewed by itself. All black-grey1 primitives have been learned
earlier (process C) to belong to its body. In the following we will for simplicity use the primitive type
“black-gray” like a mental concept to graphically depict if a primitive is deemed to belong to the robot. If
an object enters the visual scene the robot will try to grasp it (process G). If unsuccessful it will push it
around (process E). This is shown for a not-graspable, upside down, green cup in figure 7B, where three
movement stages are shown (figure 7B1-B3). If a grasp is successful (figure 7C), it will move the object
(process D) like the spoon in figure 7C, where we show seven snapshots of movement stages. At first it will
realize that the object is represented by many primitives which belong together (process B). This, we had at
some point called “Birth of an Object” as it represents a step where the physical “object-ness” of otherwise
purely visual entities (the primitives) can be ascertained ([3]). If the machine does not accidentally drop the
object but instead moves it for a longer time it will realize that the movement of these primitives will (albeit
in a complicated geometrical way) be related to its own motor actions (process C). As it does not know
better it will update its body-image based on this sensor-motor correlation and extend it to now include the
coherently and predictively moving object (process C). This is shown in figure 7C by the gradual spread of
the black-grey primitives along the spoon until the whole spoon is being re-coloured. Again we emphasise
that this is just a graphical representation of the spreading inclusion of the spoon into the body image of
the robot. If a new entity will enter the visual field now, sub-process G is triggered again. It feels reluctant
to let go (process F) and, thus, another grasp is inhibited (also F), hence sub-processes G,E will lead to a
pushing action now (figure 7D). As a consequence this agent, based on very primitive sub-processes, begins
to perform an interaction between a very simple “tool” that extends its body (until it drops it) and the world.

Figure 7 shows the complete experiment as performed with our robot. Clearly there are many more rather
technical details that we had to take care of until the robot actually could do all this (see [A] as well as [3]
for details), but the complete sequence as such does not require an other component beyond those (A-G)
listed above.

6. Links to other Workpackages

Deliverable D4.1.2 is linked to and makes use of work made in a number of workpackages. It is linked to the
software and hardware integration issues dealt with in WP1. In Deliverable D8.1.4 a number of sub-modules
are used that have been developed in WP4, most notably the two grasping reflexes and the integration with
the higher level planning system (see WP5).
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Summary. One of the main challenges in the field of robotics is to make robots ubiquitous.
To intelligently interact with the world, such robots need to understand the environment and
situations around them and react appropriately, they need context-awareness. But how to equip
robots with capabilities of gathering and interpreting the necessary information for novel tasks
through interaction with the environment and by providing some minimal knowledge in ad-
vance? This has been a longterm question and one of the main drives in the field of cognitive
system development.
The main idea behind the work presented in this paper is that the robot should, like a human
infant, learn about objects by interacting with them, forming representations of the objects
and their categories that are grounded in its embodiment. For this purpose, we study an early
learning of object grasping process where the agent, based on a set of innate reflexes and
knowledge about its embodiment. We stress out that this is not the work on grasping, it is
a system that interacts with the environment based on relations of 3D visual features gener-
ated trough a stereo vision system. We show how geometry, appearance and spatial relations
between the features can guide early reactive grasping which can later on be used in a more
purposive manner when interacting with the environment.

1 Introduction

For a robot that has to perform tasks in a human environment, it is necessary to be able to
learn about objects and object categories. It has been recognized recently that grounding in
the embodiment of a robot, as-well as continuous learning is required to facilitate learning of
objects and object categories [21, 4]. The idea is that robots will not be able to form useful
categories or object representations by only being a passive observer of its environment. Rather



2 Aarno et al.

a robot should, like a human infant, learn about objects by interacting with them, forming
representations of the objects and their categories that are grounded in its embodiment.

Central to the approach are three almost axiomatic assumptions, which are strongly cor-
related. These also represent the building blocks of our approach toward creating a cognitive
artificial agent:

• Objects and Actions are inseparably intertwined; Entities (”things”) in the world of a robot
(or human) will only become semantically useful ”objects” through the action that the
agent can/will perform on them. This forms so-called Object-Action Complexes (named
OACs) which are the building blocks of cognition.

• Cognition is based on recurrent processes involving nested feedback loops operating on,
contextualizing and reinterpreting object-action complexes. This is done through actively
closing the perception-action cycle.

• A unified measure of success and progress can be obtained through minimization of con-
tingencies which an artificial cognitive system experiences while interacting with the en-
vironment or other agents, given the drives of the system.

To demonstrate the feasibility of our approach, we aim at building a robot system that step
by step develop increasingly advanced cognitive capabilities. In this paper, we demonstrate
our initial efforts towards this goal by designing a scenario for manipulation and grasping of
objects.

One of the most basic interactions that can occur between a robot and an object is for the
robot to push the object, i.e. to simply make a physical contact. Already at this stage, the robot
should be able to form two categories: physical and non-physical objects, where a physical
object is categorized by the fact that interaction forces occur. A higher level interaction be-
tween the robot and an object would exist if the robot was able to grasp the object. In this
case, the robot would gain actual physical control over the object and having the possibility to
perform controlled actions on it, such as examining it from other angles, weighing it, placing
it etc. Information obtained during this interaction can then be used to update the robots rep-
resentations about objects and the world. Furthermore, the successfully performed grasps can
be used as ground truth for future grasp refinement, [4].

In this paper, we are interested in investigating an initial “reflex-like” grasping strategy
that will form a basis for a cognitive robot system that, at the first stage, acquires knowledge
of objects and object categories and is able to further refine its grasping behavior by incorpo-
rating the gained object knowledge, [1]. The grasping strategy does not require a-priori object
knowledge, and it can be adopted for a large class of objects. The proposed reflex-like grasping
strategy is based on second order relations of multi-modal visual features descriptors, called
spatial primitives, that represent object’s geometric information, e.g. 3D pose (position and
orientation) as well as its appearance information, e.g. color and contrast transition etc. [9],
see Fig. 1. Co–planar tuples of the spatial primitives allow for the definition of a plane that
can be associated to a grasp hypothesis. In addition, these local descriptors are part of semi-
global collinear groups [18]. Furthermore, the color information (by defining co–colority in
addition to co–planarity of primitive pairs) can be used to further improve the definition of
grasp hypotheses. In this paper, we employ the structural richness of the descriptors in terms
of their geometry and appearance as well as the structural relations co–linearity, co–planarity
and co–colority to derive a set of grasping options from a stereo image.

We note that the purpose of this work is not to develop yet another grasping strategy for a
specific setting, but rather to provide low-level grasping reflexes that can be used to generate
successful grasps on arbitrary objects. These grasping reflexes are part of a larger framework
on cognitive robotics where a robot is equipped only with a set of innate grasps which are used
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Fig. 1. Illustration of the vision module. a) and b) shows the images captured by the left and
right cameras (respectively); c) and d) show the primitives extracted from these two images; in
e) a detail of the primitive extraction is shown; f) illustrates the schematic representation of a
primitive, where 1. represents the orientation, 2. the phase, 3. the color and 4. the optical flow.
g) from a stereo–pair of primitives (πi,π j) we reconstruct a 3D primitive Π , with a position
in space Λ and an orientation Θ ; h) shows the resulting 3D primitives reconstructed for this
scenario.

to develop more complex object manipulation abilities through interaction and reinforcement
so that 1) more complex feature relations become associated to more precise and successful
grasps, and 2) object knowledge becomes acquired and used to further refine the grasping
process. We also have to stress out that no scene segmentation is performed, since the system
does not even have a concept of an object to start with. In short, the contributions of our work
are the generation of a set of grasp suggestions on unknown objects based on visual feedback,
grouping of visual primitives for decreasing the size of the grasps and evaluation of grasps
using the GraspIt! environment, [11].

In this work, “kitchen-type” objects such as cups, glasses, bowls and various kitchen uten-
sils are considered. However, our algorithm is not designed for specific object classes but can
be applied for any rigid object that can be described by edge–like structures.

This paper is organized as follows. In Section 2, we shortly review the related work and in
Section 3 give a general overview of the system. Details about extraction of spatial primitives
are presented in Section 4 and elementary grasping actions defined in Section 5. Results of the
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experimental evaluation are summarized in Section 9 and plans for future research outlined in
Section 10.

2 Related Work

The idea to learn or refine grasping strategies is not new. Kamon et al. combined heuristic
methods with learning algorithms to learn how to select good grasps [7]. Rössler et al. used
two levels of learners to learn local and global grasp criteria [19], where the local learner
learns about the local structure of an object and the global learner learns which of the possible
local grasps are best given the object.

There has been a large amount of work presented in the area of robotic grasping during the
last two decades [2]. However, much of this work has been dealing with analytical methods
where the shape of the objects being grasped is known a-priori. This work, referred to as
analytical methods, has focused primarily on computing grasp stability based on force and
form-closure properties or contact-level grasps synthesis based on finding a fixed number of
contact locations with no regard to hand geometry, [2],[3]. This problem is important and
difficult mainly because of the high number of DOFs involved in grasping arbitrary objects
with complex hands. Another important research area is grasp planning without detailed object
models where sensor information such as computational vision is used to extract relevant
features in order to compute suitable grasps, [5, 20, 14]. In this paper, we denote this approach
as sensor-driven.

Related to our work, we have to mention systems that deal with automatic grasp synthesis
and planning, [12],[17],[13],[15]. This work concentrates on automatic generation of stable
grasps given assumptions about the shape of the object and robot hand kinematics. Example of
assumptions may be that the full and exact pose of the object is known in combination with its
(approximate) shape, [12]. Another common assumption is that the outer contour of the object
can be extracted and a planar grasp applied, [13]. Taking into account both the hand kinematics
as well as some a-priori knowledge about the feasible grasps has been acknowledged as a
more flexible and natural approach towards automatic grasp planning [16],[12]. [16] studies
methods for adapting a given prototype grasp of one object to another object. The method
proposed in [12] presents a system for automatic grasp planning for a Barrett hand [6] by
modeling an object as a set of shape primitives, such as spheres, cylinders, cones and boxes
in a combination with a set of rules to generate a set of grasp starting positions and pregrasp
shapes.

One difference between the analytical and sensor-driven approaches is that the former
tend to use complex hands with many DOFs, while the latter use simple ones such as paral-
lel yaw-grippers. One reason for this is that if the reconstruction of the object’s shape is not
very accurate, using a complex gripping device does not necessarily facilitate grasping per-
formance. For sensor-driven approaches it is also very common to perform only planar grasps
where all the contacts between the fingers and the object are confined to a plane. As an ex-
ample, objects are placed on a table and grasped from above. This simplifies both the vision
problem, since only the outer boundary of the object in the image plane has to be estimated,
as well as the grasp planning by constraining the search space.

The main differences of our work compared to the abovementioned work are the follow-
ing:
• We rely on 3D information based on three dimensional primitives extracted online. This

allows us to compute arbitrary grasping directions compared to only planar grasps con-
sidered in, e.g. [13].
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• The structural richness of the primitives (geometric and appearance based information,
collinear grouping) allows for an efficient reduction of grasping hypotheses while keeping
relevant ones.

• Our system focuses on generating a certain percentage of successful grasps on arbitrary
objects rather than high quality grasps on a constrained set of objects. We will show that
with our representations we are able to extract a sufficient number of successful grasping
options to be used as initiator of learning schemes aiming at more sophisticated grasping
strategies.

3 System Overview

The work presented in this paper serves as a building block for the development of a cognitive
robot system. The robot platform considered is comprised of a set of sensors and actuators.
The minimum requirements necessary to realize the work presented in this paper is that the
sensors are able to deliver a set of visual primitives (section 4) and the configuration of the
actuators. The required actuator is a manipulator, comprised of a robotic arm and a gripper
device. In this context the term sensor is not necessarily related to a real physical sensing
device, but rather an abstract measurement delivered to the system, possibly after performing
computations on data sampled from a physical sensor.

The complete system is outlined in Fig. 2. In this paper we are interested in developing
grasping reflexes. A grasping reflex is triggered by the vision system. The vision system con-
tinuously computes the spatial primitives described in section 4 which are feed as sensor input
to the set of reflexes and to the cognitives system. If the grasping reflex has not been inhibited
by the cognitive system and the sensor stimuli is strong enough, i.e. there are sufficiently many
spatial primitives visible, the grasping reflex is performed. This reflex behavior computes a set
of possible grasps and tries to perform them. Each grasp evaluated results in a reinforcement
signal which can be used by the cognitive system to update its representation of the world. The
following two sections describe the spatial primitives and the rules for generating the grasping
actions.

Fig. 2. System overview

4 Spatial Primitives

The image processing used in this paper is based on multi-modal visual primitives [10, 9, 18].
First, 2D primitives are extracted sparsely at points of interest in the image (in this case con-
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tours) and encode the value of different visual operators (hereby referred to as visual modali-
ties) such as local orientation, phase, color (on each side of the contour) and optical flow (see
Fig. 1.d, 1.e and 1.f). In a second step, the 2D primitives become extended to the spatial prim-
itives used in this work. After finding correspondences between primitives in the left and right
image, we reconstruct a spatial primitive, (see Fig. 1.g) that has the following components,
(for details see [8, 18]):

Π = {Λ ,Θ ,Ω ,(cl ,cm,cr)},
where Λ is the 3D position; Θ is the 3D orientation; Ω is the phase (i.e., contrast transition);
and, (cl ,cm,cr) is the representation of the color of the spatial primitive, corresponding to the
left (cl ), the middle (cm) and the right side (cr).

The sparseness of the primitives allows to formulate three relations between primitives
that are crucial in our context:

• Co–planarity:
Two spatial primitives Πi and Π j are co–planar iff their orientation vectors lie on the same
plane, i.e.:

cop(Πi,Π j) = 1−|projΘ j×vi j
(Θi ×vi j)|,

where vi j is defined as the vector (Λi −Λ j), and proju(a) is defined as:

proju(a) =
a ·u
‖ u ‖2 u. (1)

The co–planarity relation is illustrated in Fig. 3(a).
• Collinear grouping (i.e., collinearity):

Two spatial primitives Πi and Π j are collinear (i.e., part of the same group) iff they are
part of the same contour. Due to uncertainty in 3D reconstruction process, in this work,
the collinearity of two spatial primitives Πi and Π j is computed using their 2D projections
πi and π j . We define the collinearity of two 2D primitives πi and π j as:

col(πi,π j) = 1−
∣∣∣∣∣sin

(
|αi|+

∣∣α j
∣∣

2

)∣∣∣∣∣ ,
where αi and α j are as shown in Fig. 3(b), see [18] for more details on collinearity.

• Co–colority: Two spatial primitives Πi and Π j are co–color iff their parts that face each
other have the same color. In the same way as collinearity, co–colority of two spatial
primitives Πi and Π j is computed using their 2D projections πi and π j . We define the
co–colority of two 2D primitives πi and π j as:

coc(πi,π j) = 1−dc(ci,c j),

where ci and c j are the RGB representation of the colors of the parts of the primitives πi
and π j that face each other; and, dc(ci,c j) is Euclidean distance between RGB values of
the colors ci and c j . In Fig. 3(c), a pair of co–color and not co–color primitives are shown.

Co–planarity in combination with the 3D position allows for the definition of a grasping
pose; Collinearity and co–colority allows for the reduction of grasping hypotheses. The use of
the relations in the grasping context is shown in Fig. 4.
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Fig. 3. Illustration of the relations between a pair of primitives. (a) Co–planarity of two 3D
primitives Πi and Π j . (c) Co–colority of three 2D primitives πi,π j and πk. In this case, πi and
π j are cocolor, so are πi and πk; however, π j and πk are not cocolor. (b) Collinearity of two
2D primitives πi and π j .

P

li

lj

Fig. 4. A set of spatial primitives on two different contours li and l j that have co–planarity,
co–colority and collinearity relations; a plane P defined by the co–planarity of the spatial
primitives and and an example grasp suggested by the plane.
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(a) EGA1 (b) EGA2 (c) EGA3 (d) EGA4 (e) EGA5

Fig. 5. Elementary grasping actions, EGAs.

5 Elementary Grasping Actions

Coplanar relationships between visual primitives suggests different graspable planes. Fig. 4
shows a set of spatial primitives on two different contours li and l j with co–planarity, co–
colority and collinearity relations.

Five elementary grasping actions (EGA) will be considered as shown in Fig. 5. EGA1 is
a “pinch” grasp on a thin edge like structure with approach direction along the surface normal
of the plane spanned by the primitives. EGA2 is an “inverted” grasp using the inside of two
edges with approach along the surface normal. EGA3 is a “pinch” grasp on a single edge
with approach direction perpendicular to the surface normal. EGA4 is similar to EGA2 but its
approach direction is perpendicular to the surface normal. Also it tries to go in “below” one
of the primitives. EGA5 is wide grasp making contact on two separate edges with approach
direction along the surface normal.

The EGAs will be parameterized by their final pose (position and orientation) and the
initial gripper configuration. For the simple parallel jaw gripper, an EGA will thus be defined
by seven parameters: EGA(x,y,z,γ,β ,α,δ ) where p = [x,y,z] is the position of the gripper
“center” according to Fig. 6; γ, β , α are the roll, pitch and yaw angles of the vector n; and δ
is the gripper configuration, see Fig. 6. Note that the gripper “center” is placed in the “middle”
of the gripper.

Fig. 6. Parameterization of EGAs.
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The main motivation for choosing these grasps is that they represent the simplest possible
two fingered grasps humans commonly use. The result of applying the EGAs can be evaluated
to provide a reinforcement signal to the system. The number of possible outcomes of each of
the EGAs are different and will be explained below.

For all of the EGAs the possibility of an early failure exists. That is, the EGA fails before
reaching the target configuration. This will result in a reinforcement R f e. Furthermore, it is
possible for all EGAs to fail a grasping procedure.

For EGA1, EGA3 and EGA5, a failed grasp can be detected by the fact that the gripper is
completely closed. This situation will result in a reinforcement R f l .

For EGA1 and EGA3, the expected grasp is a pinch type grasp, i.e. narrow. Therefore,
they can also “fail” if the gripper comes to a halt too early, that is δ > ∆min. This will result in
a reinforcement R f t .

EGA2 fails if the gripper is fully opened, meaning that no contact was made with the
object. This gives a reinforcement R f h.

To detect failure of EGA4, a tactile sensor is required on the side of the “fingers”. If, after
positioning and opening the gripper, there is no contact between the object and the tactile
sensor, the EGA has failed. This results in a reinforcement R f c.

If none of the above situations is encountered, a positive reinforcement Rg is given, and
the EGA is considered successful.

6 Computing Action Parameters

Let Γ = {Π1,Π2} be a primitive pair for which the coplanar relationship is fulfilled. Let Γi be
the i:th pair and p the plane defined by the coplanar relationship of the primitives of Γi. Let
Λ (Π) be the position of Π and Θ (Π) be the orientation of Π . The parameterization of the
EGAs is given with the gripper normal n and the normal of the surface between the two fingers
a as illustrated in Fig. 6. From this, the yaw, pitch and roll angles can be easily computed.

For EGA1, there will be two possible parameter sets given the primitive pair Γ =
{Π1,Π2}. The parameterization is as follows:

pgripper = Λ (Πi)

n = ∇(p)

a = perpn(Θ (Πi))/ ‖ perpn(Θ (Πi)) ‖ for i = 1,2

where ∇(p) is the normal of the plane p and perpu(a) is the projection of a perpendicular to
u. That is perpu(a) = a−proju(a), where proju(a) is defined according to (1).
For EGA2, there is only one parameter set.

d = Λ (Π2)−Λ (Π1)

pgripper = Λ (Π1)+d/2

n = ∇(p)

a = n×d/ ‖ n×d ‖
For EGA3, there will be two possible parameter sets for i = 1, j = 2 and i = 2, j = 1.
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d = Λ (Π j)−Λ (Πi)

n = d/ ‖ d ‖
pgripper = Λ (Πi)

a = n×∇(p)

For EGA4, there will be two possible parameter sets for i = 1, j = 2 and i = 2, j = 1. Where ε
is a step size parameter that will depend on the gripper used.

d = Λ (Π j)−Λ (Πi)

n = d/ ‖ d ‖
pgripper = Λ (Πi)−∇(p) · ε
a = n×∇(p)

EGA5 will have the same parameters as EGA2 except that the gripper opening will be δ =‖
Λ (Π2)−Λ (Π1) ‖ +∆ .

7 Limiting the Number of Actions

For a typical scene, the number of coplanar pairs of primitives is in the order of 103 − 104.
Given that each coplanar relationship gives rise to 8 different grasps from the five different
categories, it is obvious that the number of suggested actions must be further constrained.
Another problem is that coplanar structures occur frequently in natural scenes and only a
small set of them suggest feasible actions, e.g. objects placed on a table create a lot of 3D line
structures coplanar to the table but can not grasped directly by a grasping direction normal to
the table. In addition, there exist many coplanar pairs of primitives affording similar grasps.

To overcome some of the above problems, we make use of the structural richness of the
primitives. First, their embedding into collinear groups naturally clusters the grasping hy-
potheses into sets of redundant grasps from which only one needs to be tested. Furthermore,
co–colority, gives an additional hypothesis for a potential grasp.

8 Using Grouping Information

From the 2D primitives (before stereo reconstruction) collinear neighbors can be found. The
collinear neighbors can be mapped to corresponding 3D primitives. These small neighbor-
hoods form the set of small groups, {g1,g2, ...,gN}. The large groups, {G1,G2, ...,GM}, are
formed by the grouping of the small groups such that if Πi and Π j are part of group gx and
Π j and Πk is part of group gy then gy and gx is part of the same large group Gz. Using this
grouping information it is possible to add additional constraints on the generation of EGA s.

First, all primitives that are not part of a sufficiently large group Gi are discarded. Sec-
ondly, the relations co–planarity and co–colority between small groups of primitives are com-
puted such that primitive Πi ∈ gx and Π j ∈ gy are only considered to have a co–planarity or
co–colority relation if all primitives in gx are coplanar or cocolor w.r.t all primitives in gy.
Finally, it is possible to constrain the generation of EGAs to only one EGA of each type for
each large group.
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Fig. 7. Two example scenes designed for testing and a selection of the generated actions.

Fig. 8. Examples of tested grasps on a plate (from left): successful grasp using EGA5, and a
few early failures using EGA1, EGA3 and EGA5, res5respectively.

9 Experimental Evaluation

Fig. 8, Fig. 9 and Fig. 10 show some of the grasps generated for the scenes evaluated here.
Fig. 7 shows visual features generated by the stereo system and a selection of generated ac-
tions. Fig. 8 shows a simple plate structure for which the outer contour is generated since the
object is homogeneous in texture. Fig. 9 shows a scene with a single, but a more complex
object than the previous one. Fig. 10 shows two scenes with two (cup and knife) and three
objects (box, cup and bottle9.

On each of the scene, after the spatial primitives have been extracted, elementary actions
shown in Fig. 5 are tested. There are few reasons for which a certain grasp may fail:

• The system does not have the knowledge of whether the object is hollow or not, so testing
EGA2 will results with a collision and thus failure.

• Since no surface is reconstructed, EGA1 will fail for hollow objects which are grasped
from “below”.

• If the hand, during the approach, detects a collision on one of the fingers, the grasping
process is stopped. In reality, this grasp may happen to be successful anyway if the object
is moved so that it is centered between the fingers.

Table 1 summarizes the results for the generated success rate regarding a number of suc-
cessful grasps given no knowledge of the object shape. We note that the results are a summary
of an extensive experimental evaluation since, given different types and combinations of spa-
tial primitives all generated actions had to be evaluated. It can be seen that for a scene of low
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Fig. 9. Examples of tested grasps on a cup (from left): a successful grasp using EGA1, and a
few early failures using EGA1, EGA1, EGA2 and EGA3, respectively.

Scene gr pl+gr col+gr gr+pl+col

Plane 90% (9/10) 67% (4/6) 86% (6/7) 80% (4/5)

Cup 21% (14/66) 27% (10/37) 27% (13/49) 29% (7/24)

Cup/Kn 20% (9/45) 9% (3/32) 26% (9/35) 15% (3/20)

3 objects 6%(27/434) 7% (7/98) 9% (12/139) 9% (9/53)

Table 1. Experimental evaluation of the grasp success rate where the following notation is
used: pl (co-planarity), gr (grouping), cl (co-colority) and (succesfull/tested) grasps.

complexity (plate) the average number of successful grasps is close to 80%. For more com-
plex scenes this number is dependant on the number and type of objects. It is also important to
note not only the percentage but the number of evaluated grasps. Although, in some cases, the
success rate is lower when primitives are integrated, there are much fewer hypotheses tested.
These results should also be considered together with the results presented in Table 2 where
we show how the integration of grouping, co-colority and co-planarity affects the number
of generated hypotheses (affordances). Another thing to point out related to Table 1 is that
most of the unsuccessful grasps happened due to an “early failure” such as that a contact was
detected before the grasp was executed. Again, this failure may in some cases result with a
successful grasp anyway. Another big source of failure was that there was nothing to lift, i.e.
EGA3 could not have been applied.

Scene (no gr) (no gr)+pl (no gr)+col (no gr)+pl+co gr gr+pl gr+col gr+pl+coll

Plane 46 224 35 608 38 512 30 224 80 48 56 40

Cup 172 224 96 112 89 392 56 120 528 296 392 192

Cup/knife 269 360 140 920 139 136 79 104 360 256 280 160

3 objects 927 368 303 960 315 336 166 008 3472 784 1112 424

Table 2. The number of generated action hypotheses where the following notation is used: no
gr (no grouping), pl (co-planarity), gr (grouping), cl (co-colority).
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Fig. 10. Examples of successful grasps with two and three objects.

10 Conclusions

Robots should be able to extract more knowledge through their interaction with the environ-
ment. The basis for this interaction should not be a detailed model of the environment and
lots of a-priori knowledge but the robot should be engaged in an exploration process through
which it can generate more knowledge and more complex representations. In this paper, we
have presented one of the building blocks necessary in such a system.

In particular, we have designed an early grasping system, based on a set of innate reflexes
and knowledge about its embodiment. We relied on 3D information based on primitives ex-
tracted online and showed how the structural richness of primitives can be used for an efficient
reduction of grasping hypotheses while keeping relevant ones. Rather than dealing with high
quality grasps on a constrained set of known objects, we have demonstrated that the system
is able of generating a certain percentage of successful grasps on arbitrary objects. This is
important for our future research that will develop complex learning schemes aiming at more
sophisticated grasping strategies and knowledge representation.
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FP6-2004-IST-4-27657.
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Emre Başeski, Dirk Kraft, and Norbert Krüger
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Abstract. In this work, we approach the problem of 3D circle detection
in a hierarchical representation which contains 2D and 3D information in
the form of multi-modal primitives and their perceptual organizations.
We use the information on different levels of the representation hierarchy
in terms of semantic reasoning on higher levels leading to hypotheses that
then become verified on lower levels by feeback mechanisms. The effects
of uncertainties in visually extracted 3D information can be minimized
by detecting a shape in 2D and calculating its dimensions and location in
3D. Therefore, we use the fact that the perspective projection of a circle
on the image plane can be approximated as an ellipse and we create 3D
circle hypotheses from 2D ellipses and the planes that they lie on. Af-
terwards, these hypotheses are verified in 2D, where the orientation and
location information is more reliable than 3D. The algorithm is applied
in a robotics application for grasping cylindrical objects.

1 Introduction

Circles are important structures in machine vision since they are a common fea-
ture for natural and human-made objects and they give more information than
points and lines about the position and the pose of an object. In 3D vision, there
are various ways of obtaining edge-like 3D entities (sparse stereo) from a stereo
camera setup. Once the sparse stereo data is grouped with respect to a percep-
tual organization scheme, certain structures can be extracted from individual
or combinations of these perceptual groups. Both, in dense and sparse stereo
the correspondence finding phase in 3D reconstruction reduces the reliability of
the information. Therefore, while detecting a certain structure like a 3D circle
by using this kind of information, one needs to take into account the noise and
uncertainty of the information.

The algorithms that are used to detect 3D circles can be grouped into three
categories. The first category consists of voting algorithms like the Hough trans-
form [1]. Due to the size of the parameter space, voting algorithms require much
more memory and computational power than other algorithms. The second cate-
gory contains analytical algorithms which use the geometric properties of circles
(e.g., [2]). For laser-range data, this kind of algorithms run fast and are robust



because of the high-reliability of the information. Stereo vision on the other
hand, introduces too many outliers and uncertainties that make the geometrical
properties unstable. The last category involves the fitting algorithms that are
traditionally based on minimizing a cost function which depends on a distance
function that measures errors between given points and the fitted circle ([3–5]).
The fitting process can be done either in 3D or in 2D. If it is done in 2D, the
optimal plane for the given points is calculated and the points are projected onto
that plane. If the fitting is done in 3D, the minimization starts with an initial
estimate and tries to converge to the optimal circle. To guarantee convergence,
a good initialization is required. This can be done by starting with multiple
initializations, which decreases the computational efficiency drastically. One can
reduce the parameter space as in [3] but the noisy nature of stereo vision data
decreases the probability of convergence. Therefore, although fitting in 2D is a
decoupled solution (plane fitting and curve fitting are handled separately), it is
more advantageous in terms of efficiency and reliability for noisy data.

In this article, an algorithm which is based on fitting in 2D is presented. Note
that, the common practice for such approaches is using only 3D information and
its projection onto 2D. The main difference of our approach is, instead of using
only 3D information, the representation hierarchy is used for different operations.
Furthermore, there is a verification process, which is also done using different
levels in the representation hierarchy.

In this work, the hierarchical representation presented in [6] is used. An
example is presented in Fig. 1 which shows what kind of information exist in
different levels of the representation. At the lowest level of the hierarchy, there is
the image with its pixel values (Fig. 1(a)). At the second level, there exists the
filtering results (Fig. 1(b)) which give rise to the multi-modal 2D primitives at
the third level (Fig. 1(c)). At the third level, not only the 2D primitives but also
2D contours (Fig. 1(d)) are available that are created by using the perceptual
organization scheme in [7]. The last level contains 3D primitives and 3D contours
(Fig. 1(e-f)) created from 2D information of the input images.
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Fig. 1. Different type of information that is available in representation hierarchy (a)
Original image (b) Filtering results (c) 2D primitives (d) 2D contours (e) 3D primi-
tives (f) 3D contours



Since the reliability and the amount of data decreases as the level of rep-
resentation hierarchy increases ([8]), lower levels should be used to verify the
operations done in higher levels. For example, localization of a shape in 3D can
be checked in 2D, once the perspective projection of the shape is known. Note
that, there are more primitives and the orientation and location information is
more reliable in 2D.

A part based object representation allows the association of actions to these
parts. This leads to a transferability of actions from one object to another — if
actions are learned from actual experience — and a possibility to define general
actions for that specific part. Circles can be seen as one such part. We will be
using them to define grasps that are working on cylindrical objects.

The rest of the article is organized as follows: In Sect. 2, the circle detection
algorithm is introduced and some evaluation results on different scenarios are
discussed. The experiments done on different objects in a grasping scenario where
3D dimension and location play an important role are presented in Sect. 3.

2 Circle Detection

The algorithm can be summarized in four steps as ellipse hypotheses creation,
verification of these hypotheses, creating circles by transferring the verified hy-
potheses into 3D and verifying the created circles in 2D. The key idea is, 2D
information is more reliable than 3D but we need 3D information to find orien-
tation, radius and location of a circle. The verification is done in 2D so that the
effect of the 3D information’s low reliability can be minimized.

2.1 Computing Ellipse Hypotheses

Because of the correspondence problem in the 3D reconstruction process, the
information in 2D can not be transferred to 3D completely. Therefore, contours
in 2D contain more primitives than corresponding 3D contours and a 2D con-
tour can contain projections of more than one 3D contour. These facts are the
motivation to use 2D contours to search for 2D ellipses in the image. Another
important fact is that, a single 2D contour may not be big enough to compute
the ellipse that we are searching for. In Fig. 2(c) and (d), the ellipses fitted to
contours in Fig. 2(b) are shown. Since the green contour is not big enough, the
ellipse fitted to that contour is not the desired one.

Having too small data sets for fitting is a common problem originating from
perceptual organization. To overcome this difficulty, a merging mechanism has
been proposed in [9] which is based on proximity. Two curve segments are merged
if the distance between their closest end points is smaller than a certain value
(Fig. 2(e)). The first step of the algorithm starts with merging the 2D contours
by using the proximity criterion. This merging operation creates a new set of 2D
contours which contain the old 2D contours and their combinations.

Let Ci be the set of 3D contours whose projections on the image plane are
contained in the 2D contour ci. Then, for the 3D contour Ci, P · Ci ∈ cj iff
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Fig. 2. (a) Original image (b) Two contours on the circle (One is green and the other
is white) (c) Fitted ellipse to the green contour in (b) (d) Fitted ellipse to the white
contour in (b) (e) Two curves can be merged if min(d1,d2) is small enough

Ci ∈ Cj (P is the projection matrix). Note that when two 2D contours are
combined, it is represented as ci + cj = c+k and the set of 3D contours whose
projections on the image plane are contained by the combination is represented
as Ci + Cj = C+k .

The ellipse hypotheses ei that the 3D circles are based on are created from
the combined contours where c+i is the 2D combined contour to which ei is fitted.
The ellipse fitting is done using the algorithm in [10] which is an ellipse specific
least-squares fitting method. The fitted ellipses are represented using the general
ellipse equation given in (1).

ax2 + 2bxy + cy2 + 2dx+ 2fy + g = 0 (1)

2.2 Verification of Ellipse Hypotheses

Since we use the merged contours, the fitting procedure creates a lot of false
ellipses as well as true ones. Therefore, not all the fitted ellipses are really in the
scene. A true ellipse is shown in Fig. 3(c) which is fitted to the combination of
the two red contours in Fig. 3(b) and a false ellipse is shown in Fig. 3(d) which is
fitted to the combination of the bottom red and the green contour in Fig. 3(b).

(a) (b) (c) (d)

Fig. 3. (a)Input image (b)2D contours (c) A true ellipse (d)A false ellipse

The elimination of false ellipses is done by finding the significance [11] of
the ellipses. The percentage of covered length of ei is calculated from all 2D
primitives (represented by πj) that satisfy the following equations:

‖πj − ei‖ ≤ α1 (2)
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where α1 and α2 are thresholds, (2) is the distance between πj and ei, (3)
is the difference between the slope of ei at (xj , yj) and the orientation of πj

(represented by θj) and (xj , yj) is the coordinate of the closest point on ei to
πj . If πj satisfies (2) and (3), its patch size (the diameter of the patch covered
by the primitive) is added to the total covered length of ei. If the percentage of
total covered length of ei with respect to its perimeter is higher than a threshold,
namely α3, the ellipse is qualified as a true ellipse. The true ellipses for some
scenes are shown in Fig. 4 where α1 = 1 pixel, α2 = 10◦ and α3 = 60%.

Fig. 4. Some true ellipse examples

2.3 Computing 3D Circle Hypotheses

Due to the fact that the perspective projection of a circle on the image plane can
be approximated as an ellipse, it is possible to reconstruct the 3D circle, once
the plane that the circle lies on is known. Therefore, at this point, to create 3D
circles, the only further information we need is the plane pi on which the circle
that will be created from ellipse ei lies. After calculating pi, camera geometry can
be used to find all the parameters of the 3D circle whose perspective projection
is ei. Since we know the 2D contour c+i which gave rise to ei, it is possible to
use the 3D contours C+i whose projections are contained by c+i to fit pi. This
operation gives the normal vector of the 3D circle as it is parallel to the normal
vector of pi. What is missing for the 3D circle is the center and the radius in 3D.
For an ellipse represented as in (1), the center of the ellipse (x, y) is calculated
as ( cd−bf

b2−ac ,
af−bd
b2−ac ).

Let (xi, yi) be the center of ei. Then, the intersection of pi and the line passing
from the camera center and P+[xi yi 1]T gives the center of the 3D circle where
P+ is the pseudo-inverse of the projection matrix P . The procedure is illustrated
in Fig. 5(a). We use the same methodology to calculate the radius of the circle.
Take a random 2D primitive πj ∈ c+i . Let [Xj Yj Zj ] be the intersection of pi

and the line passing from the camera center and P+[xj yj 1]T . The distance
between [Xj Yj Zj ] and the center of the circle gives the 3D radius. The 3D
circles calculated in the this step can be represented in parametric form as:

R cos(t)u +R sin(t)(n× u) + c (4)



where u is a unit vector from the center of the circle to any point on the cir-
cumference; R is the radius; n is a unit vector perpendicular to the plane and c
is the center of the circle.

Some results are presented in Fig. 5(b-c). Note that more than one combined
contour can represent the same ellipse and they produce correct circles as well as
some false ones because of the 3D reconstruction uncertainties. The false circles
are eliminated in the next step.

(a) (b) (c)

Fig. 5. (a)Calculation of the center of 3D circle (b-c)Projection of 3D circles on the
image plane before verification

2.4 Final Selection of Circle Hypotheses

As the last step, our aim is to find which 3D circle is the best for ellipses that
have been represented by more than one combined contour. Let E i be the set
of ellipses that are similar. It is impossible for them to have the same curve
parameters so we can measure the similarity between two ellipses as a cost
function depending on the distance between their centers, the difference of their
perimeters and orientations. The main idea of the last step is to calculate the
significance of ellipses which are projections of circles created from the ellipses
in set E i. We do the evaluation in 2D since the amount and the reliability of data
in this dimension is higher than 3D. To find the ellipse which is the perspective
projection of a 3D circle, we can pick 5 points of the circle on the image plane
and use the implicit equation of the conic through 5 points as in (5).∣∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣∣ = 0 (5)

The 5 points can be created from (4) for t ∈ {0, 80...320}. Equation 5 gives
the generic equation of an ellipse as in (1). Therefore, we find the significance
of these projected ellipses by using all 2D primitives πj that satisfy (2) and (3).
Some results are presented in Fig. 6



Fig. 6. 3D circle detection results on different scenarios. (White ellipses are the pro-
jections of 3D circles onto the image plane)

2.5 Problems

Although the algorithm is stable on tilted, partially covered and cluttered cir-
cles, perceptual organization can create problems in case of good continuation
between circular and non-circular parts. Figure 7(b) illustrates a case, where
the red 2D contour combines a circular and a non-circular part. In such cases,
the remaining circular part (e.g., green contour in Fig. 7(b)) may create a valid
ellipse hypothesis but transferring this hypothesis to 3D is heavily dependent
on the plane that is fitted to the 3D points and usually this situation leads to
incorrect 3D circles as shown in Fig. 7(c).

Fig. 7. (a)Original image (b) 2D contours corresponding to (a) (c) Detected 3D circle



3 Application in a Grasping Scenario

The algorithm described in the previous section is applied in a robot grasping
application. In this section we describe the setup and use of this application to
evaluate the circle detection.

3.1 System Description

The robotic system used consist of a six degree of freedom industrial robot
(Stäubli RX-60B), a two finger parallel gripper (Schunk PG 70) and a Point Grey
BumbleBee2 stereo camera (see Fig. 8(a)). The camera is calibrated relative to
the robot coordinate system. Therefore the output of the above algorithm can
be directly used for the computation of the grasping position.

(a) (b)

zG

xG

yG

(c)

Fig. 8. (a) Robot system consisting of six degree of freedom industrial robot, two finger
gripper and two stereo camera systems (The lower camera systems was used for this
work). (b) Grasp at the brim of the cylindrical object. (c) Gripper coordinate system.

3.2 Grasp Definition

For this work we selected one of the grasps defined in the grasping application
to evaluate the quality of the circle detection. The cylindrical object is grasped
on its brim (see Fig. 8(b)). The position of the grasp is expressed similar to
the parametric form in (4). From this observation directly follows that there
is actually not one possible grasp, but a one dimensional manifold of grasps
(varying the grasp position around the circumference of the circle). Additionally
the grasping depth h can be chosen according to the requirements of the scene.
The position p of the grasper can therefore be defined as:

p = R cos(t)u +R sin(t)(n× u) + c− nh . (6)

Figure 8(c) shows the position and orientation of the grasper coordinate
system defined at the end of the fingers. The grasper needs to be aligned in the
following way: zG = −n and yG = cos(t)u + sin(t)(n × u). While the gripper
opening can be defined as d = max(2R, dmax).



3.3 Evaluation

Figure 9 shows a number of scenarios where the gripper is moved to the grasping
position computed based on the circle information (h = 2 cm, t was used in a
standard configuration except when this would have lead to a collision). The
different setups show that our system is able to cope with different levels of
complexity.

Fig. 9. Detected circles and applied grasps. The circles were drawn into the images and
the occluded parts were corrected afterward to improve the readers scene understand-
ing. The scenes are of different complexity, starting out with single objects, going to
objects included in each other, multiple (and more complex) objects and finally tilted
single objects.



4 Conclusion

We have discussed a 3D circle detection algorithm which makes use of different
aspects of 2D and 3D information for hypothesis generation and verification.
To be able to cope with the uncertainties of sparse stereo data, 3D circles are
localized in 3D by considering 2D hypotheses and verified in 2D, where the
information is more reliable. The potential of the approach has been shown on
a grasping application for different scenarios. As a future work, the problem
of combining circular and non-circular parts will be handled by splitting 2D
contours with respect to junctions and 3D structure of the contour.
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Minimum Volume Bounding Box Decomposition for
Shape Approximation in Robot Grasping

Kai Huebner, Steffen Ruthotto and Danica Kragic

Abstract— Thinking about intelligent robots involves con-
sideration of how such systems can be enabled to perceive,
interpret and act in arbitrary and dynamic environments.
While sensor perception and model interpretation focus on the
robot’s internal representation of the world rather passively,
robot grasping capabilities are needed to actively execute tasks,
modify scenarios and thereby reach versatile goals. These
capabilities should also include the generation of stable grasps
to safely handle even objects unknown to the robot. We believe
that the key to this ability is not to select a good grasp depending
on the identification of an object (e.g. as a cup), but on its shape
(e.g. as a composition of shape primitives). In this paper, we
envelop given 3D data points into primitive box shapes by a
fit-and-split algorithm that is based on an efficient Minimum
Volume Bounding Box implementation. Though box shapes are
not able to approximate arbitrary data in a precise manner, they
give efficient clues for planning grasps on arbitrary objects. We
present the algorithm and experiments using the 3D grasping
simulator GraspIt! [1].

I. INTRODUCTION

In the service robot domain, researchers and programmers
provide each robot with manifold tasks to do in order to
aid and support, e.g. clearing a table or fill a dishwasher
after lunch. The knowledge about such aims might be either
hard-coded or learned in a more intelligent manner, e.g. by a
person teaching the robot how to clear a table. Such scenarios
are known as Learning- or Programming-by-Demonstration
applications. However, whether in an office, in health care
or in a domestic scenario, a robot has to finally operate
independently to satisfy various claims. Thus, the handling
of objects is a central issue of many service robot systems.
Robot grasping capabilites are therefore essential to actively
execute tasks, modify scenarios and thereby reach versatile
goals in an autonomous manner.

For grasping, numerous approaches and concepts have
been developed over the last decades. Designing grasping
systems and planning grasps is difficult due to the large
search space resulting from all possible hand configurations,
grasp types, and object properties that occur in regular
environments. Early work on contact-level grasp synthesis
focused mainly on finding a fixed number of contact lo-
cations without regarding hand geometry [2]. Considering
specifically object manipulation tasks, the work on automatic
grasp synthesis and planning is of significant relevance [3],
[4], [5]. The main issue here is the automatic generation
of stable grasps assuming that the model of the hand is
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known and that certain assumptions about the object (e.g.
shape, pose) can be made. Taking into account both the hand
kinematics as well as some a-priori knowledge about the
feasible grasps has been acknowledged as a more flexible
and natural approach towards automatic grasp planning [4].
It is obvious that knowledge about the object shape, as also
the task on hand, is quite meaningful for grasp planning [6].

This is important for our scenario, in which we aim at
providing a robot actuator system with a set of primitive
actions, likepick-up, pushor erect an arbitrary object on a
table. For performing such basic actions, an object has to
be modeled from 3D sensory input, e.g. from range or dense
stereo data. However, we state the question up to which detail
this is necessary in terms of grasping.

II. MOTIVATION

Modeling range data is a crucial, but also difficult task
for robot manipulation. The source data offered by range
sensors or dense stereo camera systems is a more or less
distorted and scattered cloud of 3D points of the scenario. A
higher-level representation of these points as a set of shape
primitives (e.g. planes, spheres or cylinders) obviously gives
more valuable clues for object recognition and grasping by
compressing information to their core. Most approaches that
consider this problem are likewise bottom-up, starting from
point-clouds and synthesizing object shapes by using su-
perquadrics (SQs). Superquadrics are parametrizable models
that offer a large variety of different shapes. Considering the
problem of 3D volume approximation, only superellipsoids
are used out of the group of SQs, as only these represent
closed shapes. There is a multitude of state-of-the-art ap-
proaches based on parametrized superellipsoids for modeling
3D range data with shape primitives [7], [8], [9], [10].

Assuming that an arbitrary point cloud has to be ap-
proximated, one SQ is not enough for most objects, e.g. a
screw or an office chair (see Fig. 1). The more complex
the shape is, the more SQs have to be used to conveniently
represent its different parts. However, good generality is not
possible with few parameters for such cases [7]. Besides
the advantages of immense parametrization capabilities with
at least 11 parameters, intensive research on SQs has also
yielded disadvantages in two common strategies for shape
approximation. The first strategy is region-growing, starting
with a set of hypotheses, theseeds, and let these adapt to
the point set. However, this approach has not proved to be
effective [8] and suffers from the refinement problem of
the seeds [10]. The second strategy uses a split-and-merge



technique. Splitting up a shape and merging parts again is
more adapted to unorganized and irregular data [8].

Independent of the strategy used, the models and seeds,
respectively, have to be fitted to the 3D data. This is usually
done by least square minimization of an inside-outside fitting
function, as there is no analytical method to compute the
distance between a point and a superquadric [9]. Thus, SQs
are though a good trade-off between flexibility and compu-
tational simplicity, but sensitive to noise and outliers that
will cause imperfect approximations. This is an important
issue, as our work is oriented towards the use of dense stereo
accompanied by highly distorted and incomplete data.

We observed that modeling 3D data by shape primitives
is a valuable step for object representation [11]. Sets of such
primitives can be used to describe instances of the same
object classes, e.g. cups or tables. However, it is not our
aim to focus on such high-level classifications or identifi-
cation of objects, but on grasping. We moreover approach
a deeper understanding of objects by interaction instead of
observation for that purpose, e.g., if there is an object that
can be picked up, pushed and filled, it can be used as a
cup. Processing an enormous number of data points takes
time, both in approaches that use the raw points for grasp
hypotheses and in those that approximate as good as possible
by shape primitives. In this context, a question remains:
how rudimentary can a model of a thing be in order to be
handled successfully and efficiently?While comparable work
is placed mostly at extrema of this scale, e.g. by using pairs
of primitive feature points [12] or a-priori known models for
each object [11], we are interested in looking into which
primitive shape representations might be sufficient for the
task of grasping arbitrary, unseen objects.

We believe that a mid-level solution is a promising trade-
off between good approximation and efficiency for this pur-
pose. Complex shapes are difficult to process, while the sim-
ple produce worse approximation. However, we can access
valuable methods to handle approximation inaccuracies for
grasping like haptic feedback, visual servoing and advanced
grasp controllers for online correction of grasps. We prefer
general fast online techniques instead of pre-learned offline
examples, thus the algorithm’s efficiency is the more impor-
tant issue. Unknown objects are hardly parametrizable but
need real-time application for robot grasping. A computation
in terms of minutes for a superquadric approximation is
therefore not feasible.

We adopt these motivations to propose an algorithm based
on boxes as a mid-level representation. In our approach,
we combine different incentives on simplicity of boxes,
efficiency of hierarchies and fit-and-split algorithms:

1) We aim for simplicity stating the question if humans
approach an apple for grasping with their hand in
another way as they approach a cup, or a pen in another
way as a fork? While there are surely differences in
fine grasping and task dependencies, differences in
approaching these objects seem quite marginal.

2) Computational efficiency ofhierarchies was pointed
out in several other approaches that compose models

with use of superquadric primitives [7], [9], [13].
3) While seed growing as a bottom-up strategy has several

drawbacks, and a split-and-merge strategy both needs
top-down (split) and bottom-up (merge),fit-and-split
algorithms are purely top-down and thereby iteratively
implementable in a one-way hierarchical manner.

Following our primary incentive, we chose boxes as a very
simple and roughly approximating representation.

III. ALGORITHM

A. Computing Bounding Boxes

The algorithm of minimum volume bounding box compu-
tation proposed by Barequet and Har-Peled [14] will form
the base for our approach. Given a set ofn 3D points, the
implementation of the algorithm computes their Minimum
Volume Bounding Box (MVBB) inO(n log n + n/ε3) time,
where ε is a factor of approximation. The algorithm is
quite efficient and parametrizable by several optimizations.
Performing the computation on an arbitrary point cloud, a
tight-fitting, oriented MVBB enclosing the data points is
produced (see the example in Fig. 1).

B. Decomposition of MVBBs

Based on this algorithm, we aim at iteratively splitting
the box and the data points, respectively, such that new
point sets yield better box approximations of the shape.
Iterative splitting of a root box corresponds to the build-up
of a hierarchy of boxes. Gottschalket al . [15] present the
OBBTree (Oriented Bounding Box Tree) for this purpose,
where the goal is efficiently collision detection between
polygonal objects. The realization of the splitting step is
quite straightforward: each box is cut at the mean point
of the vertices, perpendicular to the longest axis. This is
done iteratively, until a box is not dividable any more.
Similar work on division of polygonal structures for grasping
has been proposed by others [16], [17]. In our case, these
strategies are suboptimal or less applicable. Splitting into
many small boxes is against our aim of approximating a
shape with as few boxes as possible. Additionally, though
the MVBB algorithm is efficient, a fitting step after each
splitting consumes valuable computation time. Finally, in our
application both the splitting at the mean point is not optimal
and we can not access polygonal structures, but point clouds
only. Thus, another heuristic to find a “good” split is needed.

Fig. 1. Left: Examples of range data approximated by sets of superquadrics
[8]. Right: The Stanford bunny model and the root MVBB of its vertices.
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Fig. 2. (a) A mean cut of the bunny model. (b) We restrict to box parallel
cutting planes. (c) A good cut parallel to the root MVBB planeB.

Therefore, we will have to define what a “good” split is.
Fig. 2(a) shows a mean cut, which obviously is not good
for our task. It does not improve the approximation with
boxes of both new halfs, but is also not intuitive in terms
of dividing the bunny in semantic parts, e.g. head and body.
Even with planar cuts, finding the best intuitive one would
correspond to an extensive search and comparison of a lot of
planes, differing in position and orientation. Therefore, we
decide to test only the planes parallel to the parent MVBB,
like Fig. 2(b) and (c) show. As a measure of a good split, we
can consult the relation of the box volume before and after
the splitting: a split of the parent box is the better, the less
volume the two resulting child MVBBs will include. This is
intuitively plausible, as shape approximation is better with
highly tight-fitting boxes.

C. Computing the Best Split

As motivated, we just test planes parallel to the three box
surfaces for the best splitting plane. Each MVBB has six
sides, whereof opposing pairs are parallel and symmetric.
Inbetween each of these pairs, we can shift a cutting plane.
Fig. 2(b) depicts this restriction on a splitting parallel toA,
shifted by a distancea, andB by b andC by c, respectively.
A computation of new MVBBs for each value of thesplit
parametersa, b and c would take a lot of computational
effort. Therefore, we estimate the best cut by first projecting
the data on 2D grids which correspond to the surfacesA,
B andC. The bunny sample data projections onto the three
surface grids of the root MVBB are shown in Fig. 3, reducing
the problem of splitting a 3D box by a surface-parallel plane
to splitting a 2D box by an edge-parallel line. For the sake of
efficiency, it is thereby abstracted from the real 3D volume
of the shape. The figure shows that there are six valid split
directions left, two for each of the surfacesA, B andC.

As mentioned above, we define the best split as the one
that minimizes the summed volume of the two partitions.
Thus, we now test each discretized grid split along the six
axes, using the split parameters. We define a split measure
θ(F , f , i) with F ∈ {A,B,C} being the projection plane
to split, f being one of the two axes that spanF , and i
as the grid value on this axis that defines the current split.
Consequently, we have six possible split measures

θ1(A, c, i1), i1 ∈ N<cmax , θ2(A, b, i2), i2 ∈ N<bmax ,

θ3(C, a, i3), i3 ∈ N<amax , θ4(C, b, i4), i4 ∈ N<bmax ,

θ5(B, a, i5), i5 ∈ N<amax , θ6(B, c, i6), i6 ∈ N<cmax (1)

Fig. 3. Bunny sample projections onto the three faces of the root box (Fig.
1) according to the face-parallel cutting scheme in Fig. 2(b).

to compare. Their minimum gives reason to the best split.
The minimization of eachθ(F , f , i) is implemented as
follows. For eachi that cutsF perpendicular tof in two
rectangular shapes, we compute the two resulting minimum
grid areas by lower and upper bounds. Thei that yields the
minimum value is the best cut ofF along f . θ(F , f , i)
is computed as the fraction between the whole projection
rectangular and the sum of the two best cut rectangles.
Though this is a very approximative method, it is quite
fast, as rectangle volume and bounds are easy to generate.
The best bunny cuts for which rectangular volume and the
corresponding valuesθ1...6 are minimal are shown in Fig. 4.

D. Building a Fit-and-Split Hierarchy

According to the best splitθ∗, which would beθ1 or
θ2 in this exemplary case, the original point cloud can be
divided into two subsets of the data points. These can be
used as inputs to the MVBB algorithm to produce two child
MVBBs of the root MVBB. In this way, the complete fit-and-
split method can iteratively be performed. It is important to
note that by MVBB re-computation, the MVBBs will greatly
differ in orientation and scale from the box cuts in Fig. 4.

Additionally, the previous step of cutting along one of the
six directions is just equal to computing an approximative
gain value, for the purpose of efficiency. As an iteration
breaking criterion, we now subsequently test the real MVBB
volume gain Θ∗ of the resulting best split measureθ∗.
Therefore, we compute the gain in volume defining

Θ∗ =
V (C1) + V (C2) + V (A\P)

V (P) + V (A\P)
, (2)

whereA is the complete set of boxes in the current hierarchy,
P is the current (parent) box,C1, C2 are the two child boxes
produced by the split, andV being a volume function.

We decide further process on two constraints. First, if the
gain is too low, a split is not valuable. For this purpose,
we include a threshold valuet. The precision of the whole
approximation can be parametrized by simply preventing a
split if Θ∗ exceedst. Second, we do not preserve boxes in
the hierarchy that include a very low number of points. By
this process, noise in the point data can be handled.

It might also be important in this context that in Fig. 4,θ6

would intuitively be a probably valuable next cut below the
bunny’s ear. However, the best split computation presented
(Section III-C) will not find this cut. Finding this cut is not
that simple, especially when distorted, sparse and insecure
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Fig. 4. Best cuts along the six box directions and cut positionsi marked by triangles. The corresponding volume valuesθ(F , f , i) are presented below.

data is provided. An add-on for the solution of this problem
would therefore be more complex and time-consuming. The
bunny is a very ideal model, as it is artificial, complete, and
data points are very dense. As it is our aim to evaluate our
algorithm also on real sensory data, we can not assume such
ideal conditions and do not handle such situations presently.

IV. EXPERIMENTS

A. MVBB Splitting Evaluation

In the following, we present some experiments for the
proposed fit-and-split algorithm. For all experiments, we
fix the two original MVBB approximation parameters (see
[14]). The grid parameter defines orientations that induce
bounding box approximation in an exhaustive way, so we
keep it small at 3. We decide to sample sets of 200 points,
so even very large point clouds are reduced and efficiently
handled. We found that these settings provide a good trade-
off between quality and efficiency of each split for our
application. The main parameter that we are going to change
in the experiments is the gain thresholdt.

We evaluate the behaviour of the algorithm on several
types of input data by taking both ideal point clouds emerg-
ing from complete and unnoisy simulative vertice models
(4 models) and real laser scan excerpts (5 scans) as input
data. The latter is therefore incomplete and noisy, but at least
regular due to the scan sampling. One sample is produced
from a stereo vision system that offers three-dimensional
points by disparity, including incomplete, noisy and irregular
data. Fig. 5 shows these samples divided with different
gain thresholdst ∈ {0.90, 0.94, 0.98}. The corresponding
overview on point sets, computation time and number of
boxes for the groups is given in Tab. I.

B. MVBB Grasping Evaluation

The best way to find a good grasp is said to be grasp
candidate simulation [4], [9]. Milleret al . have simulated
pre-models and shape primitives using their public grasp
simulation environmentGraspIt! [4]. So we also base our
evaluation on model-based grasping inGraspIt!.

The first iteration, performed as proposed in Section III-
D, yields the root node of the box tree. The root box has
six faces, each of which we use for four grasp hypotheses
parallel to its spanning edges. For symmetric grippers these
could be reduced to two grasp hypotheses, but as we will use

an asymmetric 5-finger hand model [18] in our simulation,
we take these four. After the grasps on the root box have
been performed, we apply the decomposition algorithm to
produce MVBB approximations with gain parameters 0.90,
0.94 and 0.98 for the pure model data, Fig. 5(a)-(c), only. All
faces are then collected from a final approximation, before
occluded and ungraspable ones are removed. The applied
grasping method is simple here: each initial position is set
to a constant distance from the face’s center aligned to its
normal, i.e. the approach vector is the negative face normal.
The hand is set to an intuitively good pose to have a large
opening angle towards the object. We let the hand approach
along the normal until a contact is detected. After contact,
the hand retreats a small distance before we call GraspIt!’s
auto-grasp function which uniformly closes the fingers of
the hand. When all fingers are in contact with the object, we
evaluate the two standard grasp quality measures that come
with GraspIt!: ε, a worst-case epsilon measure for force-
closure grasps, andV , an average case volume measure [1].

To compare the grasps that we get from this sequence,
we compute a random “spherical” grasp evaluation for each
model. Initial hand positions are placed on a sphere, with the
approach vector oriented towards the object’s center of mass
and two spherical coordinates and a hand orientation angle
configuring the hand’s pose (discretized by steps of 10 deg).

We find that geometrical detection of blocked faces re-
duces the number of graspable faces drastically. Each spher-
ical evaluation includes 22104 grasps. Referring to the grasp
quality comparison between spherical and box evaluation for
our models (Fig. 6), a1 resulted from a test of onlyf=6 valid
face grasps from thet =0.94 decomposition. Same pairs for

TABLE I

STATISTICS OF THE EXPERIMENTS PRESENTED INFIG. 5.

Model #points
#boxes—sec

(t=0.90)
#boxes—sec

(t=0.94)
#boxes—sec

(t=0.98)
Mug 1725 2—4 3—7 5—11
Duck 1824 3—7 5—9 9—14
Homer 5103 4—10 5—13 7—16
Bunny 35947 2—5 4—11 11—30

Stapler 313 2—2 2—2 2—2
Puncher 449 3—3 3—3 4—3
Can 1266 2—4 5—8 9—10
Phone 1461 3—5 4—5 9—12
Laptop 4199 3—7 4—8 6—15

Can2 9039 2—7 7—20 16—46



(a) Mug (model): MVBBs (2,3,5) produced witht=0.90, 0.94, 0.98. (b) Duck (model): MVBBs (3,5,9) produced witht=0.90, 0.94, 0.98.

(c) Homer (model): MVBBs (4,5,7) produced witht=0.90, 0.94, 0.98.

(d) Bunny (model): MVBBs (2,4,11) produced witht=0.90, 0.94, 0.98.

(e) Stapler (scan): MVBBs (2,2,2) produced witht=0.90, 0.94, 0.98.

(f) Puncher (scan): MVBBs (3,4,4) produced witht=0.90, 0.94, 0.98. (g) Notebook (scan): MVBBs (3,4,6) produced witht=0.90, 0.94, 0.98.

(h) Phone (scan): MVBBs (3,3,9) produced witht=0.90, 0.94, 0.98. (i) Can (scan): MVBBs (2,5,9) produced witht=0.90, 0.94, 0.98.

(j) Can2 (stereo): MVBBs (2,7,16) produced witht=0.90, 0.94, 0.98.

Fig. 5. Examples of box decomposition using different gain thresholdst=0.90, 0.94, 0.98, where numbers in brackets correspond to numbers of boxes.
(a)-(d) are complete, dense and unnoisy 3D models. (e)-(i) result from incomplete, dense and less noisy, but manually pre-segmented range scans. (j) is
produced by an incomplete, sparse and noisy, automatically pre-segmented stereo disparity point cloud.

the other depicted samples are: b1=(16,Root), b2=(32,0.94),
c1=(48,0.98) and c2=(22,0.90). Concluding, the box decom-
position effectively produces very few hypotheses which
still feature good grasp quality. Note that only force-closure
grasps (ε > 0) are drawn in Fig. 6.

V. DISCUSSION AND CONCLUSION

In our approach, we combined motivations known from
the shape approximation and grasping literature. We prune
the search space of possible approximations by rating and
decomposing bounding boxes. Related work uses more com-
plex superquadrics as approximation elements and confirm
that grasp planning on finer components is likely to find
better grasps than returning the first stable grasp [9]. This

intuitively corresponds to the “grasping-by-parts” strategy.
This strategy also underlies the presented approach of MVBB
decomposition. In this paper, we proposed MVBBs as an
efficient and valuable box decomposition on a fit-and-split
strategy. As the presented approach is hierarchical, it is also
possible to use dependencies between boxes and granularities
of different hierarchical levels for shape approximation.
Thus, the processing of shape approximation can be con-
trolled and run parallel to the execution of a grasp.

The trade-off of our approach is higher efficiency and
simplicity for the price of precise shape approximation.
However, we claim that exact approximation may not be
necessary for grasping tasks. A wider evaluation of this claim
will be one of our next steps. Our approach is therefore



grounded on box representation and decomposition with an
efficient splitting criterion. The resulting box representation
offers fast computational techniques for common problems,
e.g. collision detection, neighborhood relations, etc., valuable
for efficient further analysis. This analysis will become
important for a next step towards grasping objects. Managing
valid grasps will not only be dependent on the box faces, but
also on the whole constellation of boxes.

Another issue in this context will be task dependency.
A grasp might depend on different types of tasks, e.g. to
pick up a cup and place it somewhere else might yield a
different grasping action as to pick it up to show it or hand
it over to someone. Such grasp semantics might be mapped
to boxes in the set, e.g. “grasp thebiggest boxfor a good
grasp to stably move the object”, “grasp thesmallest boxfor
a good grasp to show a most unoccluded object to a viewer
/ a camera” or “grasp theoutermost boxfor a good grasp
to hand over to another human / another robot”, where the
latter are said to be quite valuable for applications that are
based upon interacting with objects before the exploration
and recognition stage. Future work will focus on how the
presented box representation provides a good and easy-to-
use interface to such applications.
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Abstract— In robotic applications tactile sensor systems serve
the purpose of localizing a point of contact and measuring
contact forces. We have investigated a novel variant of a
classic tactile sensor, the Force Sensing Resistor (FSR), which
is commonly used in cursor navigation technology. We show
the potential of this sensor for active haptic exploration.
More specifically, we present experiments and results which
demonstrate the extraction of relevant object properties such
as local shape, weight and elasticity using this technology.

An interesting aspect of this sensor is that beside a localiza-
tion of contact points and measurement of the contact normal
force also shear forces can be measured which is relevant for
surface normal estimation and weight measurements. Scalable
tactile sensor arrays have been developed with this sensor which
can be arranged as tiles on a surface, e.g. a manipulator.

I. INTRODUCTION

By means of tactile sensing haptic information about an
object is acquired during a physical contact between sensor
and object. Tactile sensors offer exciting possibilities for use
in mechatronic devices and measuring instruments in many
areas of science and engineering (see, e.g., [1]).

In this work, we introduce a tactile sensor framework
for grasp control and haptic exploration with different robot
platforms (e.g., with an industrial robot equipped with a two-
jaw gripper and with the humanoid robot platform ARMAR-
III [2]) that deploys technology commonly used for cursor
navigation on, e.g., laptops. The sensor system is based
on available touch sensors involving FSR-technology [3] to
acquire the directional contact force vector and the contact
location. This type of sensor has originally been developed
as cursor navigation input device for hand-held devices. It
is therefore low cost and off-the-shelf available. Also, the
sensors only need few additional electronic components for
embedded integration and there are sufficiently versatile to
be applied to manipulators of different geometries.

A comprehensive overview about tactile sensing technol-
ogy can be found in [1], and more recently in [4] and [5].
It is distinguished between intrinsic sensors, which measure
forces internal to the manipulator mechanics, e.g. via load
cells at actuation joints, and extrinsic tactile sensors. The
latter ones measure forces applied to the manipulator surface
and can be found as distributed individual sensors or as
dense sensor arrays, which can locate the point of contact
on the sensor surface. The contact force itself is derived

indirectly by measuring capacity or resistance of the physical
sensing element. In Force Sensing Resistors (FSR) [6], a
piezoresistive material is used, which varies its electrical
resistance in response to an applied mechanical load. Further,
there exist also some sensor designs which determine contact
force by measuring deformations of the sensor surface with
optical sensors [7], [8].

For the purpose of grasp control and shape exploration,
measurement of the directional force vector (normal force
and shear) and of the contact location is required [9]. The
first type of information is usually obtained through load cells
in manipulator joints, but it is not possible to also determine
the point of contact in multi-contact situations with this type
of sensor. For this purpose additional extrinsic tactile sensor
arrays are required. New sensor designs for determining both
types of information equally are under investigation [10],
[11] but have not been shown in an robotic application
yet. Further, the latter sensors currently do not provide the
dynamic range required in standard robotic grasping or haptic
exploration.

We see the technology developed in the context of cursor
navigation as an interesting option also for tactile sensing due
to its low cost, richness of information (position, normal and
shear force) and its modularity. We show the potential of this
sensor for active haptic exploration. In particular, we present
experiments and results which demonstrate the extraction of
relevant object properties such as local shape, weight and
elasticity with this technology.

This paper is structured as follows. In the next section the
relevant details of the tactile sensor system are described.
This includes a description of the sensor characteristics and
the proposed calibration method. In section III, we present
experiments on the extraction of haptic object properties
such as local shape, weight and elasticity. Finally we give a
conclusion and an outlook on our future work in section IV.

II. TACTILE SENSOR SYSTEM

The sensing element of our tactile sensor system is the
MicroNav cursor navigation sensor from Interlink Electronics
[12], which is a four-quadrant FSR sensor. Fig. 1(a) depicts
the layout of this sensor element with its four subsensors,
labeled N , E, S, W in correspondence to the compass
orientations. The sensor element comes in a Surface Mounted



(a) MicroNav sensor
layout.

(b) Integrated quadruple sensor array mod-
ule and 1 Euro coin.

Fig. 1. Tactile sensor.

Device (SMD) package with dimensions 10×10×1.4 mm,
the solderable contacts are situated at the bottom side.

The electrical integration is realized with a voltage divider
circuit and an Analog-Digital-Converter (ADC) for acquir-
ing the measurement signal as proposed in [6]. Fig. 1(b)
shows our realization of a four sensor array module. The
sensor module has 16 independent tactile sensing points.
By arranging several modules in a dense matrix structure a
spatial resolution of 5 mm can be achieved. A microcontroller
with integrated ADC, RS232 communication and CAN bus
interface is located at the bottom side of the circuit board.
With the CAN bus it is possible to interconnect up to 256
individual array boards for realizing a modular tactile sensing
system, while the standard RS232 interface is suitable for
easily connecting a sensor module to a standard PCs serial
interface.

The sensing plane of the MicroNav is not supposed to be
actuated directly but needs an elastic actuation tip, which
both protects the sensor surface and distributes an applied
force across the element. For the setup and experiments
described we used a rubber actuation tip similar to the
reference design [12], see Fig. 2(a).

Fig. 2(b) shows an individual MicroNav sensor embedded
in the silicon rubber actuation tip of a finger in an anthro-
pomorphic hand [13] for the humanoid robot ARMAR-III, a
configuration which is still under investigation.

Characteristics of the sensor

Although FSR sensors are not recommended for preci-
sion measurement devices due to their production tolerance
ranging from 15% - 25% and their long term settling charac-
teristics, it is possible to calculate a contact force value from
the resistance measurement using a calibration procedure.

It should also be noted that FSRs need a minimum force
applied for sensing, the so called break force, which limits
the measurement range at the lower end. The exact value
depends on mechanical characteristics of the sensor and may
be adjusted by design of the actuation tip. A typical value
for the sensor used is about 0.2 N.

In our calibration setup a single sensor element was
mounted to one finger of the parallel gripper of an industrial
robot arm. While moving the sensor perpendicular towards
the sensitive measurement area of a digital scale, which was
used for force measurement here, simultaneous readings of
force and sensor output at different pressure levels could be
acquired in a measurement sequence.

(a) Sensor array with actuation tips mounted to
a gripper.

(b) Single sensor integrated in the finger tip of an
anthropomorphic robot hand.

Fig. 2. Different applications of the sensor.

An exemplar measurement of all four subsensors is shown
in Fig. 3. It shows that the relationship between force and
conductivity of a sensor is not completely linear over the
measured range. In the low-force range it is possible to
approximate the relationship using a first order function. This
will not give the same accuracy as a more complex function
but still the result is sufficient for our application of tactile
object exploration as we will mainly operate the sensor in
this measurement range. It should be noted that since the
characteristics of FSR sensors usually differ from part to
part, individual calibration is required in general to achieve
maximum accuracy.1

Because of the intended application measurement val-
ues above 4 N will be disregarded in the following. The
remaining datapoints were approximated to a straight line
using least-squares estimation as illustrated in Fig. 3. It
was found sufficient for the application to use a common

1Note that the graph representing the W sub-sensor in Fig. 3, is growing
clearly faster than the remaining three sub-sensors. Further investigation
revealed, that this effect comes from a tangential force component acting
upon the sensor tip, which in turn leads to a torque applied to the sensing
area. In the future, this problem could be eliminated by reducing height and
rotational elasticity of the actuation tip.
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Fig. 3. Measured conductance from all sensors during linearization
experiment. Red=N , Blue=S, Green=E, Purple=W

force-conductance relationship for all sensors during our
experiments and not to apply individual calibration.

III. EXTRACTION OF HAPTIC OBJECT PROPERTIES

For evaluation of the sensor system described above we
have performed experiments related to the exploration of
various haptic object features. For the experiments one tactile
sensor array module was mounted on each finger of the
parallel gripper of a Stäubli Scara series 6 axis industrial
manipulator. For the surface exploration experiments de-
scribed in Sections III-A and III-B only one finger of the
gripper was used, while both fingers were in operation for the
experiments in Sections III-C and III-D involving grasping.
A dedicated control program on a PC was implemented for
each experiment.

The measurement from a sensor element is a four dimen-
sional force vector

−→
S consisting of the force measurements

from each subsensor

−→
S =


n
s
w
e

 .

From this we define a contact force vector

−→
P =

(
n− s
w − e

)
· 1

|−→S |
.

A. Surface normals with single Sensors

The knowledge of the surface normal is an important
information in addition to point of contact and force ampli-
tude since it allows for characterizing the shape of objects
more precisely. It gives also important information about the
stability of a grasp and how to align the grasping device
optimally to the object.

In the following experiment we studied the performance
of a single MicroNav sensor to acquire the orientation of
a touched surface, which is directly related to the contact
normal force vector.

Instead of describing the contact surface orientation by its
normal vector we chose to describe it by two angles, the

tilt angle α and the roll angle β, which allows for easier
interpretation and qualification of the measurement results.

Fig. 4(b) shows the definition of the tilt angle. A tilt angle
of α = 0 means the sensor is normal to the surface it is in
contact with, and a positive tilt angle means the sensor is
tilted towards the N direction. Fig. 4(c) shows the direction
of the roll angle. A roll angle of β = 0 gives a positive tilt
in the N direction, β = π

2 gives a tilt in the W direction and
so on.

Applying ranges of α ∈ {−π2 ,+π
2

}
and β ∈ {0, π}

all possible orientations of a surface relative to the sensor
actuation tip can be represented.

Movement

(a)

S

E

W

N
Tilt Angle

Positive Tilt

Negative Tilt

(b)

N

E

W2 PI
1

3
2

PI

0

PI

S

(c)

Fig. 4. (a) Direction of the robot movement in the experiments. (b) Surface
orientation defined by tilt angle α. (c) Surface orientation defined by roll
angle β.

Now all combinations of the following roll and tilt angles
were tested by touching a table surface within the workspace
of the robot arm:

α ∈
{

0,
1
32
π,

2
32
π,

3
32
π,

4
32
π,

5
32
π,

6
32
π

}
β ∈

{
0,

1
6
π,

2
6
π,

3
6
π

}
Every pair of angles was tested six times to collect

information about mean value and standard deviation. A
graphical representation of the results is shown in Fig. 5,
where the

−→
P -components are drawn versus the applied tilt

angle.
The results show that the components of

−→
P from the

sensor measurement depend on both the roll and the tilt
angle. From the measurements the applied tilt angle can
be derived up to a value of about 0.4 rad (22◦) without
becoming ambiguous.
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Fig. 5. Results from surface normal experiment using the MicroNav sensor.
Mean values of ~P shown for the tested tilt angles. The tilt angle is given
in radian. Red=North/South axis, Blue=East/West axis. (a) For a roll angle
β = 0. (b) For a roll angle β = 1

6
π. (c) For a roll angle β = 2

6
π. (d) For

a roll angle β = 3
6
π.

B. Active Surface Exploration

Further, we wanted to investigate the performance of the
sensor in shape extraction from haptic data. For this purpose
we derived a shape exploration algorithm from the contour
follower proposed in [14]. The details of the algorithm are
given in the appendix .

For the experiment, a bowl (see Fig. 6) was placed upside
down and fixed within the workspace so the robot could press
a finger with the sensor array against the surface without
moving the bowl. Initially, the controller program needs to
be provided with location and orientation of a point on the
surface of the bowl as starting point.

(a)

15cm

10cm

10cm

(b)

Fig. 6. a) The plastic bowl used in the exploration experiment. b) The
dimensions of the bowl.

During the exploration it was visible that the robot prop-
erly aligned the sensor array with the surface. The points
found during the exploration movement are illustrated in
Fig. 7.

C. Weight

The goal of another experiment was to examine whether
the sensor array modules could be used to acquire the weight
of an object when grasped by a robot gripper. During the
experiment the robot gripper was moved to the specified
location of a cup on a table and established a grasp around

(a)

(b)

(c)

Fig. 7. Surface points found during the exploration of the bowl. The center
of the cross marks the position. The red line marks the surface normal. a)
Robot finger and exploration data as displayed in the control software during
exploration. b) Surface points and normals seen from top view. c) Surface
points and normals seen from the front.

it. The exploration procedure realized in the control program
was to close the fingers slowly until the sensors could
measure a minimum total contact force of 0.5 N from each
sensor array, which is enough to provide a stable grasp. From
here the object was slowly lifted 1 cm above the surface. The
two phases of the experiment are illustrated in Fig. 8(a) and
8(b).

During the lifting phase a torque is applied to the actuation
tips by the weight of the object which deforms the elastic
material of the tips until an equilibrium is reached when the
lifted object has completely left the supporting table.

The sensor values were acquired before and after lifting.
The axis through the N - and S-subsensors was aligned to the
lifting direction, therefore the difference of the corresponding
readings d = s−n was evaluated for examining the influence
of the weight on the measurement values. The weight of the
cup was increased during several measurements by filling the
cup with metal items.

The mean difference over the N-S subsensor pairs of



(a) (b) (c)

Fig. 8. Feature extraction experiments with the MicroNav sensor. a) The
object is initially placed on the table. b) In the weight experiment a grasp is
established and the object is lifted. c) In the elasticity experiment the object
is compressed by the fingers.

all sensor elements for all tested weights is plotted in
Fig. 9. The dotted line is a first order approximation to the
measurements minimizing the least squares error. The data
in this experiment was acquired with a single measurement
point for each weight.

For determining the precision we repeated the measure-
ment with a weight of 400 g for 20 times. The standard
deviation of this measurement value was found to be 0.22 N.

Fig. 9. Results of the MicroNav weight experiment

D. Elasticity

In a further experiment we investigated the sensor’s ability
to discriminate different elasticity values of an object. The
same setup as in the preceding experiment was used with a
different haptic exploration procedure.

A plastic cup was used as object under investigation,
which could be squeezed by the gripper at different heights
measured from the cups’ bottom, see Fig. 8(c). Naturally,
a plastic cup is more rigid close to the cup bottom than to
the edge at the top. When pinched at the top, the profile of
the plastic cup is deformed from a circular towards an oval
shape.

The control program closed the parallel gripper slowly
with a constant velocity and stopped when a certain force
threshold was exceeded. This experiment was repeated five
times at different contact locations along the body of the
cup. A plot of the force measurement versus the distance
decrement between the gripper fingers is shown in Fig. 10.

Fig. 10. Results of the elasticity experiment. Light Blue = grasp located
at the top, Red = grasp located at the bottom, Other colors = grasp located
in between

The plot exhibits a linear relationship which can be inter-
preted as accordance to Hooke’s Law. The spring constant
increases linear to larger values for locations closer to the
cup bottom, which is reflected in the increasing slope of the
plotted lines.2

To measure the precision of the elasticity measurements
we evaluated the results of multiple measurements (11 times
at the top and 16 times at the bottom). The distance traveled
by the gripper fingers to reach a threshold force of 5 N is
illustrated in Fig. 11. The results for the two measurement
points clearly separate. This shows that it is possible to
acquire local elasticity of an object using the developed
procedure with a parallel gripper.

Fig. 11. Results of the MicroNav elasticity repeatability experiment. Red
dots mark the measurements at the top of the cup. Blue dots mark the
measurements at the bottom of the cup.

IV. CONCLUSIONS

In this work, we have investigated the potential of a sensor
for the purpose of tactile sensing, which has been designed
originally in the context of cursor navigation technology.
The fact that this sensor is manufactured in mass production
makes it cheap (less than 10 Euros per piece) and very robust.
In contrast to most existing tactile sensors, it measures not
only normal forces but also shear forces which is relevant for
a number of applications such as weight measuring, slippage

2Note that the lines in Fig. 10 intersect with the x-axis at different
coordinates as the diameter at the top edge of the cup is with 59 mm little
larger compared to the the bottom with 57.5 mm.



detection, grasp optimization, etc. Also, individual sensors
can be mounted in a very modular way to equip rather
different grasping devices with tactile sensors. In addition, a
high temporal resolution, a decent spatial resolution as well
as a wide measurement range are interesting features of this
sensor. We have demonstrated the potential of this sensorial
framework for three different applications: Surface explo-
ration, weight measurement and elasticity measurement.

As a summary, we believe that the sensors are an inter-
esting alternative to existing tactile sensor systems due to
the richness of information they provide, their low price and
their modularity.
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APPENDIX

Our algorithm for shape exploration comprises three
phases which are repeated in cyclic sequence:

1) Move robot finger in direction n̂, normal to the sensor
array, towards the object to be explored and stop
when contact is detected, i.e. when the sensor readings
exceed a given force threshold.

2) The sensor array must now become aligned with the
tangential plane of the surface. During this phase two
independent control loops are in operation. For this
purpose only the average force readings of each of the
four sensor elements are considered. The average force
value fm is calculated as the mean value of all four
subsensors for each sensor element respectively. The
center point of contact −→p can be calculated from the
geometry of the sensor array and the force readings.
First, a constant total force fc, which is measured as
the sum of the contact force values, must be maintained
in order to keep the applied force of each individual
sensor within a specified range. Using a PI velocity
controller with coefficients a1, a2 this gives

en = fd − fc
vn = a1en + a2

∫
en

with fd as desired total force and vn the velocity
command in direction normal to the sensor array. This
velocity is submitted to the robot arm controller.
A second controller is required for performing the
alignment of the sensor array to the surface normal by
rotating around the array center point. The control error−→er is defined as the distance from the contact point
location to the center of the sensor array −→pc . The sensor
array is then rotated around the axis perpendicular
to the normal vector n̂ and −→er with angular velocity
θ̇. The corresponding PI controller with coefficients

b1, b2 is
−→er = −→p −−→p c
θ̇ = b1‖er‖+ b2

∫
‖er‖ .

When en and ‖er‖ are minimal, the values of pc and
n̂ are stored as surface point and normal for this step
of the algorithm.

3) The finger is removed from the surface, so that it just
releases contact and then moved a short distance in
direction tangential to the previously acquired normal
vector. From here the algorithm starts again at step 1.
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Pushing, poking, rolling, etc. are examples of nonprehensile manipulation of objects, 
i.e. object manipulation without a grasp. This kind of object manipulation is used 
when an object can slip or roll, when an object is too large or too heavy, when an 
object is out of robot workspace etc. Here we focus on poking as a representative 
type of nonprehensile manipulation. Poking can be defined as a short term pushing 
action. Conceptually, our goal is to investigate how to acquire useful action 
knowledge by observing the results of exploratory actions on objects. For this 
purpose we study how poking behaviour can be obtained both when the agent 
randomly pokes the object in different directions and when the agent systematically 
generates the exploratory pushes to acquire a sufficient amount of examples.  
 
When poking an object, the object motion depends on the object’s shape, weight 
distribution, and on the support friction forces. A lot of work has already been done in 
the field of mechanics on controllability and planning of poking. Obviously, poking 
could easily be implemented by assuming a proper representation for the physics of 
the task, but such an approach relies on a priori knowledge about the action and 
therefore does not solve the complete learning problem. However, without having 
physical model of the object and the task, the robot has to experiment with different 
poking actions on the object. This should enable the robot to acquire knowledge from 
experimentation and human demonstration in the same way as infants do. 
 
Our work can be divided in two parts. First, the robot needs to learn how an object 
moves when it is poked from a certain position and from a certain direction. This can 
be accomplished by experimenting with different poking actions, in which the robot 
pushes the object several times from different directions and at different locations on 
the object boundary. During this process the agent builds a knowledge base, which 
describes the relationship between the point and angle of push on the one side  and 
the actual object movement on the other side. In the second part, the acquired 
poking knowledge is used to control the object, i. e. to push the object along a 
prespecified trajectory.  
 
We started by implementing a simulation environment that enables us to study 
learning and to verify the acquired behaviors. We based our dynamic simulation on 
ODE (Open Dynamics Engine) library, whose main purpose is to model rigid body 
dynamics. In our simulation, a pushed object is defined as a planar polygonal object. 
We have modelled one-point pushing actions by a finger, where a finger is modelled 
as a cylinder. Figure 1 shows the implemented simulation environment: the 
polygonal object, the pusher, the direction of the pushing movement (green line) and 
the resulting object movement (red line). 
 
Simulated learning is realized as follows: the robotic finger performs random (or 
systematic) poking actions. It performs pokes from different angles and at different 



points on the polygon’s edge. The system saves points and angles of pokes and the 
actual directions of object movement. The obtained knowledge has been 
represented using neural network with two hidden layers. Three different neural 
networks were used to represent all three directions of movement (two translational 
and one rotational). Figure 2 shows the response of the object movement in one of 
the translational directions with respect to the angle and point of contact. The figure 
left shows the actual movement and the figure right shows the model learned by a 
neural network. 
 
 

 
 

Figure 1: Learning of the pushing behavior by exploration 
 
 
 

 
Figure 2: Example of the learned pushing action for x direction 

(left – actual, right – neural network model) 
 



After the learning phase is completed, the agent can use the acquired knowledge to 
control the object, i.e. to move the object so that it follows a prescribed trajectory.  
The network has two inputs (point of contact and angle of the pushing action with 
respect to the normal of the boundary at the point of contact) and three outputs (both 
translational and the rotational movement). Depending on the desired outputs, we 
need to find the inputs that produce a suitable movement. Since the inverse system 
is underdetermined, we have to find the optimal angle and point of push considering 
other conditions. We have minimized the norm of the error between the predicted 
and the desired movement. Alternatively, we could ignore the rotational part of 
motion or we could control the object in such a way to achieve the maximum stability 
of the pushing action.  
 
After we have defined the desired motion and the system has found the angle and 
the point of contact, the robot pushes the object. Figure 3 shows the simulation of 
the pushing behavior. Here, the blue line shows the desired motion and the red line 
shows the actual motion. Note, that only the direction is important and not the 
amplitude. We can see that the object motion is close to the desired one. 
 

 
 

Figure 3: Execution of the pushing action (blue line – desired object motion, red line 
– actual object motion, green line – pusher movement) 

 
Accurate learning of pushing actions can take a very long time. However, the robot 
can start using the learned action knowledge even if the learning process has not yet 
been performed in its entirety. Already after a few explorative poking actions, the 
agent learns a rough approximation of the relationship between poking and object 
motion. This initial knowledge can be used for a rather rough control of the object by 
poking. Next, while controlling the motion the robot can update its knowledge base 
by observing the actual movement of the object. Thus the relationship between the 
desired and the actual object motion gradually becomes more precise and the 
control of the pushing direction gets better. 



 
Learning of poking actions is not accurate enough to be useful without the feedback 
loop. To push the object along the desired trajectory, it is necessary to modify the 
point and angle of poke with respect to the actual object motion. We use vision for 
this purpose. We are currently working on first real robot experiments. 
 
Up to now, we haven’t made any generalization of the acquired knowledge. A new 
object would require us to repeat the learning process. Our future plan is to learn 
more general models, which will be useful for larger classes of objects. Additionally, 
to make the learning of poking actions more successful, human instructor can 
demonstrate the most representative pokes (e.g. perpendicular pokes from a few 
different sides). 
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Chapter 1

Introduction

This master theses was completed at the Cognitive Vision Lab, at University
of Southern Denmark (SDU). The report presents a novel approach to robotic
grasping of unknown objects. It is a guided grasping procedure that is trig-
gered by a stereo visual information. The visual information is processed using
the Early Cognitive Vision framework [KLW04] to produce an unique image
representation that allows for prediction of objectness. The grasping procedure
is a part of a larger cognitive system, where acquiring the physical control over
an object is a necessary requirement for learning of an object representation
[KBP+].

1.1 Problem statement

In accordance with the idea that embodiment and physical interaction with
the environment is a precondition for developing cognition, this work attempts
to develop an integrated robot-vision system that performs initial exploration
of unknown surroundings.

The theses has following subgoals:

� The realisation of an integrated robot-vision system that implements the
early grasping re�ex,

� Achieving unsupervised exploration using force torque sensor as an active
collision detector,

� The experimental evaluation of the early grasping re�ex method in a real
environment.

1



2 CHAPTER 1. INTRODUCTION

1.2 Outline

The report has the following structure. Chapter 2 gives an overview of the
relevant work in the area of grasping unknown objects, followed by an in-
troduction to the approach presented in theses. The hardware and software
setup, and the design of the controll application are described in Chapter 3.
Chapter 4 presents The Early Cognitive Vision framework and is followed by
Chapter 5 that de�nes the grasping re�ex. Active collision detection with force
torque sensor is described in Chapter 6. Results of experimental evaluation
are presented in Chapter 7. Finally, a conclusion is made in Chapter 8.



Chapter 2

Grasping unknown objects

This Chapter presents a view of the current research in the area of robotic
grasping and introduces the grasping approach presented in this work.

2.1 Robotic grasping

Robotic grasping is currently very active research area. Grasping is a key
asset for the next generation of service-orientated robots. Another key asset
is �exibility - the robots should be able to work in unknown and unstruc-
tured environments, be able to grasp and manipulate di�erent objects, deal
with uncertainties, work fast, autonomous, safe, reliable, and colaborate and
communicate with humans in some intuitive way.

Research in grasping is not new and a signi�cant amount of theoretical knowl-
edge is already available. Analytical approaches [Pet], [BFH04] model inter-
action between a gripper and an object to investigate properties of the grasp.
When contact points between the robot hand and the object are determined
and coe�cient of friction between the two materials is known, it is possible to
calculate a wrench space - 6D space of forces and torques that can be applied
by the grasp. A force-closure grasp can resist all object motions provided that
the gripper can apply su�ciently large forces.

Grasp planning is a complex problem. Robot hands often have many de-
grees of freedom and search space o� possible grasp con�gurations is big.
Analytical approaches are therefore usually used together with heuristic al-
gorithms. Heuristically-based grasp generators often include some grasp pre-
shape [MKCA03], [Ayd95] types based on human grasping behaviour.

Knowledge based algorithms use the domain speci�c and a-priori knowledge
to reduce the complexity. This knowledge can include workspace constraints,
hand geometry, task requirements, perceptual attributes and so on. Other

3
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approaches use learning [PMAJ04], [CPG00], or mimic human pick and place
behaviour and learning path [WFG].

2.2 Grasping unknown objects

The research in grasping unknown objects is still at the beginning and varies in
respect to complexity. Still most of the projects share this common structure.

� Detecting relevant world features through sensors

� Construction of an approximate object/world model

� Determination and ranking of grasping possibilities

� Execution of the best candidate grasp

The complexity of a system depends on choice of sensors, diversity of admit-
ted objects, the scene con�guration, kind of a-priori knowledge allowed and
sophistication of the algorithms used. Some projects are focused on working
with the limited set of objects or object types. When generic model knowledge
is present, the problem is reduced to object recognition of pose estimation.

A number of early projects used visual sensor and a simple gripper with with
2 or 3 �ngers [TB94], [BLTK93], [CFMP03]. 2D contour of an object was
a relevant feature and grasp planning and quality evaluation was based on
approximating the centre of mass of the object with the geometrical centre
of the contour. The camera was usually positioned above the scene, point-
ing vertically down and in some cases several object contours were captured
from di�erent angles. Most contemporary vision based approaches assume a
simple situation where the scene consists of one object placed against a white
background, so that segmentation problem is minimal.

Most newer projects use a range scanning sensors, [TK02], [Ade95], [WJLC05].
It is an apparent choice, since they provide detailed geometrical model of an
object. When detailed 3D model is available the grasp planning doesn't di�er
a lot from the case of grasping known objects.

A research group at Stanford university developed a method for grasping novel
objects without the need for building any object model, [SDK+06]. A learning
algorithm is used to �nd the best contact place for grasping an object as a
function of an image. The algorithm is trained via supervised learning, using
synthetic images as training set. From two or more images that each have their
marked �good grasping points� system performs approximate triangulation -
to derive 3D position of the grasping point.
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2.3 Introduction to grasping re�ex

The system presented in this thesis is designed to explore and interact with
unknown environment using the minimal amount of a-priori knowledge. The
initial information about the world is acquired through stereo vision sensor.
The visual information is processed by the Early Cognitive Vision algorithms
(Chapter 4) and the acquired world representation triggers a re�ex like grasping
behaviour of the robot. Early grasping re�ex is initial behaviour of a developing
cognitive agent.

The premature knowledge of the world is poor and unprecise and cognitive
categories of the system are not jet developed. Segmentation of the scene is
therefore not possible. Grasping re�ex is an autonomous exploration strategy
where system produces grasping hypotheses and then tests them by carrying
out grasping attempts, in a �trial and error� fashion. The autonomous op-
eration is achieved with help of active collision detection with a force torque
sensor mounted the robot wrist in a protected environment. The results of
such exploration are later used for constructing the �rst objects models and
represent a basis for development of increasingly complex cognitive categories.
The active segmentation is thus achieved through embodied interactions with
environment.

The system aims at generating certain percentage of successful grasping hy-
potheses on arbitrary objects, rather than high quality grasps on a constrained
set of objects. In contrast to other approaches that utilise visual sensors, the
method described in this report is based on 3D visual representations and
grasping is not limited to certain directions. At later stages, that go beyond
this report, the system will include tactile sensing and visual attention mech-
anisms.
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Chapter 3

System overview

This Chapter gives a description of the hardware and software elements used
in the setup. It also introduces the structure of the grasping procedure and
outlines the control application.

3.1 Hardware

The hardware setup consists of a Staubli RX60 six degrees of freedom industrial
robot arm, a static Bumblebee2 colour stereo camera, a FTACL 50-80 Schunk
Force Torque sensor mounted at the robot's wrist and a PowerCube 2-�nger-
parallel gripper mounted on the Force Torque sensor, (Figure 3.1). The angular
resolution for the six rotational joints of the robot is given in Table 3.1. The
�oor is covered with �exible foam layer.

The control application is run on a PC machine under Linux operating sys-
tem. The system uses Modbus interface to communicate to Staubli robot
and RS232 serial communication to communicate to the gripper and the force
torque sensor. A �rewire interface connects the camera to a Windows PC ma-
chine that exchange information with the control application through TCP/IP
connection.

angular resolution (◦10−3) 0.724 0.724 0.806 1.177 1.953 2.747

Table 3.1: The angular resolution for the six rotational joints of the Staubli
RX60 robot. The position repeatability is ± 0.02 millimetres.

7
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Figure 3.1: Hardware setup elements

3.2 Software

The implementation is based on two distinct software environments CoViS and
RobWork. CoViS is a cognitive vision system that is modelling early cognitive
functions of biological visual systems, (Chapter 4). It is being developed by
the Cognitive Vision Group [CoV] at the University of Southern Denmark.
RobWork is a framework for simulation and control of robotics with emphasis
on industrial robotics and their applications, [RW]. RobWork environment
integrates the Orocos Real-Time Toolkit (RTT), a C++ framework for imple-
mentation of (realtime and non-realtime) control systems, [RTT]. Covis and
RobWork communicate to each other using a TCP/IP connection.

The image representation reconstructed from CoViS is given in the reference
frame of the camera. In order for this data to be used by the robot it has to
be transformed into the robot coordinate frame. This is achieved through a
robot-camera calibration procedure described in [Kra06], [KW04].

Additionally CoViS provides a visualisation environment WandererX that dis-
plays early cognitive vision image representation. A WandererX plugin for
displaying grasping hypotheses was developed as a part of this theses.
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3.3 Exploration Cycle

This section brie�y describes dynamics of one exploration cycle and gives ap-
proximate execution times for di�erent steps. In detail description of the state
machine will be presented in Chapter 5. One exploration cycle contains fol-
lowing steps:

� The stereo camera captures the images

� Covis processes images and produces a scene representation (Chapter 4)

� The acquired scene representation is used for computing grasping hy-
potheses (Chapter 5)

� Scene representation and grasping hypotheses (GHs) are loaded into Rob-
Work, where motion planning for grasps is done

� The robot tries to perform certain number of grasping actions

� Actions are accompanied with active collision detection using the force
torque sensor (Chapter 6). In case of collision the robot stops, �backs
o�� to the start position and continues with performing next grasping
action.

� When all scheduled actions are performed the system starts from the
beginning by taking images of a new scene.

image capturing < 1 second
image processing 60 seconds
generation of grasping hypotheses 2 seconds
processing of grasping hypotheses 3 seconds
grasping attempt execution 30 seconds

Table 3.2: The approximate run times for di�erent elements that comprise one
exploration cycle. These times vary greatly depending on the complexity of
the scene.

3.4 Control application

The control application is implemented using the Orocos Real-Time Toolkit
(RTT) library and RobWork. It is an extension of the previous application
developed for the Cognitive Vision Group by [Kjæ07]. Figure 3.2 outlines
the design. The added features are force and torque sensor, active collision
detector, and a new state machine that implements grasping re�ex exploration
cycle and is introduced in Chapter (Chapter 5), (Figure 5.5).
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Figure 3.2: Simpli�ed control structure used in application, adapted from
[Kjæ07]



Chapter 4

Visual representations

In this Chapter the Early Cognitive Vision framework is introduced. The
Chapter starts with describing multi-modal primitives as basic elements of the
cognitive vision image representation. The de�nitions of co-colourity and co-
planarity relations between primitives follow. After that the construction of a
3D contour is explained. Last section gives de�nition of similarity between 3D
contours.

4.1 Multi-modal primitives

The early cognitive vision system extracts multi-modal visual features descrip-
tors from stereo images [KLW04]. These visual features are called primitives
and give a geometric and appearance based representation of a scene. They
are edge descriptors that are extracted sparsely at the points of interest. 2D
primitives describe local image patches using di�erent visual modalities such
as position of the centre of the patch, orientation of the edge, phase of the
signal at this point, colour on both sides of the edge and the local optical
�ow (Figure 4.1) f. The information contained in 2D primitives is then used
for stereo matching (Figure 4.1) g. Resulting 3D primitives can be de�ned as
follows:

Π = {Λ, Θ, Ω, (cl, cm, cr)}
where Λ is the 3D position, Θ is the 3D orientation, Ω is the phase (i.e.,
contrast transition), and (cl, cm, cr) is the representation of the colour of the
spatial primitive, corresponding to the left (cl), the middle (cm) and the right
side (cr).

Primitives contain information that allows for the de�nition of di�erent a�n-
ity relations between them such as relations of proximity, collinearity, co-
circularity and co-planarity. They can be de�ned on the 2D and/or the

11
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Figure 4.1: Fig. 1. Illustration of 2D and 3D primitives acquired from the
vision module. a) and b) show the images captured by the left and right
cameras (respectively); c) and d) show the 2D primitives extracted from these
two images; in e) a detail of the primitive extraction is shown; f) illustrates the
schematic representation of a primitive, where 1. represents the orientation,
2. the phase, 3. the colour and 4. the optical �ow. g) from a stereo-pair of
primitives (Πi, Πj) a 3D primitive Π is reconstructed, with a position in space
Λ and an orientation Θ; h) shows the resulting 3D primitives reconstructed for
this scenario, From [ASK+07].
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3D level and are systematically listed in [KPK07]. Multi-modal a�nity re-
lations combine constrains of individual relations to achieve perceptual group-
ing, [PWK06]. Furthermore, it is possible to establish second order relations
between di�erent derived perceptual groups.

Contours represent a simple form of grouping primitives. Relations of co-
planarity and co-colourity between contours suggest edges that likely belong
to the same object or even the same surface in an unknown scene, and such
contours are therefore used for constructing grasping hypotheses. The de�ni-
tions of co-planarity and co-colourity from [ASK+07] are repeated here for the
convenience of the reader, followed by a formal description of 2D and 3D links
and 3D contours.

4.2 Co-colourity relation

Figure 4.2 illustrates the co-colourity relation. The co-colourity is computed
on 2D level and is true if the sides of the two primitives Πi and Πj that are
facing each other have the same colour.

coc (πi, πj) = 1− dc(ci, cj) (4.1)

where πi and πj are the 2D projections of Πi and Πj, ci and cj are the RGB
representation of the colours of the facing parts, and the Euclidian distance
between RGB values of the colours ci and cj is marked with dc(ci, cj).

Figure 4.2: Co-colourity of three 2D primitives πi, πj and πk. In this case πi

and πj are co-colour, so are the πj and πk. πi and πk are not co-colour, From
[ASK+07].

4.3 Co-planarity relation

The co-planarity relation (Figure 4.3) between two spatial primitives Πi and
Πj is de�ned as follows. Let Λ be a 3D position of a primitive and Vij mark a
vector connecting the two primitives positions (Λi − Λj). If proju(a) stands
for
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proju(a) =
a · u
‖u ‖ 2

u (4.2)

then the co-planarity relation can be expressed as:

cop (Πi, Πj) = 1− |projΘj×Vij
(Θi ×Vij) | (4.3)

Figure 4.3: Co-planarity of two 3D primitives, [ASK+07].

4.4 2D and 3D links, 3D contours

� A 2D primitive is linked to its neighbour primitive if the "good con-
tinuation" constrain is satis�ed, i.e. if they are close enough (proxim-
ity), collinear or co-circular, and similar in colour, phase and optic �ow,
[PWK06].

� Two 3D primitives are connected by a 3D link if their corresponding 2D
primitives in the left and right image share 2D links.

� 3D contours are formed from 3D links by relation of transitivity, i.e. if a
is linked to b, and b to c, then a is linked to c.

Two 3D contours are similar when they are both co-planar and co-colour in
the same time. As mentioned above, similar contours are used for constructing
grasping hypotheses in an unknown scene. However, extension of co-colourity
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and co-planarity relations from 3D primitives to 3D contours is not straight-
forward. The de�nition of similarity used in this work is supported by two
algorithms. The �rst one orders primitives inside a contour based on their po-
sition (Figure 4.4), and the second is creating associations between primitives
of two ordered contours based on their corresponding placement.

Ordering primitives in a contour is accomplished on 2D level in these two steps:

1. The algorithm picks an element e0 randomly and sorts the other elements
based on their distance to e0, where the distance is Euclidean 2D distance
between the centres of the two elements. This step creates only a semi-
ordered contour since the beginning or the end of the group is not known.
It guarantees to put the most distant element to the end.

2. Repeat step (1) by setting e0 to the end of the semi-sorted contour.

Two contours Ci and Cj that have Ni and Nj elements are associated in the
following way [Kal08]:

1. The two ordered contours are adjusted so that their beginnings, ends
and direction of ascend are matching.

2. If Ni equals Nj, the elements are associated in one-to-one manner.

3. If one of the contours, lets say Ci, have smaller number of elements, its
elements are associated to approximately Cj/Ci elements of the larger
contour Cj, respecting the order.

The similarity of two contours is then de�ned through similarity of their asso-
ciated primitives:

If Ns is the number of similar associated primitives, and Nt is the total number
of associated primitives then two contours are similar when Ns/Nt is larger
than a threshold value.
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Figure 4.4: Top: A left image from a pair of images captured by the stereo
camera. Bottom: Ordered 3D contours extracted from the same scene. Red
dots indicate the �rst primitive in a contour, green the middle, and blue the
last primitive in the contour.



Chapter 5

Grasping re�ex

Grasping re�ex is a low-level procedure that allows for robot manipulator to
grasp unknown objects. As explained in Chapter 4, the early cognitive vi-
sion system extracts multi-modal visual feature descriptors from stereo images
[KLW04]. Multi-modal a�nity relations between primitives support percep-
tual grouping [PWK06]. Second order relations of co-planarity and co-colourity
between contours indicate possible co-planar edges originating from the same
object, or even the same surface in a scene.

Figure 5.1: Elementary grasping actions (EGAs), adapted From [ASK+07].
The red points indicate 3D primitives that have been reconstructed from stereo
image. They appear in pairs, and represent the pair of contours that are
connected by relations of co-planarity and co-colourity. In case of EGA 1 and
2 orthogonality to the line connecting the two primitives is required. EGA
types 3 and 4 will each generate two actions, one for each parent primitive.

Grasping re�ex is based on four basic grasping actions that can be performed
on a pair of such edges using a simple parallel gripper. In early cognitive vision
edges are represented as 3D contours. As described Chapter 4, 3D contours
are sets of the linked 3D primitives. For each of the two similar 3D contours,
one representative 3D primitive is chosen. The two primitives are called parent
primitives and they carry the information about respective contour's position

17
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and orientation. Figure 5.1 shows the four types of elementary grasping actions
(EGAs) de�ned by the two parent 3D primitives. It is important to notice that
in a real scene only some of the four suggested grasps would make sense. For
example, if an object on the scene is not a concave object only grasp of type
EGA 1 can be successfully performed, provided that other parameters �t.
Since the information provided by initial image representation is not su�cient
to determine which of the grasping actions are suitable, the system will suggest
grasps of all four EGA types. Suggested grasping actions are therefore called
grasping hypotheses. The term is also appropriate because grasping actions
can fail because of other factors even if the assumed action was reasonable.

The chapter starts by giving mathematical formulation of elementary grasping
actions in Section 5.1. After that, Section 5.2 describes in detail algorithm for
generating grasping hypotheses for a full scene, the way hypotheses are ranked,
processed and performed, and the possible outcomes of a grasping attempts.

5.1 Elementary Grasping Actions (EGAs) de�-

nition

The de�nition of EGAs presented in this work is based on the previous work
by [ASK+07] and is slightly modi�ed. Two parent primitives generate up to
6 elementary grasping actions and they belong to one of the four EGA types
(Figure 5.1). Their mathematical de�nition is based on the following set of
parameters that are shared for all four grasp types (Figure 5.3):

� Position and orientation of the common plane de�ned by co-planar parent
primitives. It is given by position Pp and np orientation of the plane
normal

� Direction connecting the parent primitives - D

� distance between parent primitives - dp

� individual primitives orientations Θi and Θj

The grasp itself is de�ned with position and orientation of the the tool ex-
pressed in the Robot's Base reference frame, (Figure 5.2) and with initial
�nger distance d. The position is de�ned as a 3D position of the Tool Centre
Point (TCP) reference frame. TCP is positioned between gripper �ngers, the z
distance of the TCP from the gripper �nger's ends gives how �deep� the grasp
is. Orientation is given by two TCP main axis directions, which is enough to
de�ne the desired rotation of the TCP frame expressed in the Robot's Base
frame, the third direction is then calculated as the cross product of the other
two. Z axis of TCP frame ZTCP is parallel to the gripper's �ngers, XTCP axis
connects the �ngers, and YTCP = ZTCP ×XTCP .
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Figure 5.2: The Figure shows the Tool Centre Point (TCP) reference frame, it
is given in respect to the robot's base (RB) frame. The position and orientation
of the TCP reference frame is used when de�ning elementary grasping actions.

common plane de�nition

If a pair of primitives is represented with {Πi, Πj}, and position and normalised
orientation of a primitive Π are respectively represented with Λ(Π) and Θ(Π)
then it can be calculated:

D =
Λ(Πj)− Λ(Πi)

‖Λ(Πj)− Λ(Πi) ‖

ni = Θ(Πi)×D (5.1)

nj = Θ(Πj)×D

where D is the direction of the vector connecting the two primitives, ni and
nj are the normals to the planes that each of the primitives de�nes in relation
to the vector connecting them (Figure 5.3a). The two planes are combined to
form one common plane p de�ned by the position Pp and the direction np of
its surface normal.

Pp = Λ(Πi) +
Λ(Πj)− Λ(Πi)

2

np 1/2 = ± ni + sw · nj

‖ni + sw · nj ‖ (5.2)

sw =

{ −1 if ni · nj < 0
1 otherwise
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Switch factor ("sw")

The two line segments generating a grasp are generally not perfectly co-planar
(Equation 4.3, Figure 5.3(a)). It follows that ni and nj de�ne two di�erent
planes (Equations 5.1). For generating elementary grasping actions, one plane
is used. Equation 5.2 acts as an averaging operator for the two planes. The
switch factor assures that the averaging is optimal. Since both ni and nj are
orthogonal to D, the role of the switch factor can be illustrated in 2D. It is
important to mark that the directions of the surface normals are arbitrary, as
line segments orientation vectors have arbitrary directions and because they
are depending on the relative orientation to the connecting direction D. Fig-
ure 5.3(b) shows the case where normals point in similar directions, and the
addition of the two normals will correctly determine a plane in between the two
planes. In the case where derived normals point in the opposite directions and
an addition is performed, the resulting plane will be orthogonal to the optimal
solution, 5.3(c). The two normal vectors have to be subtracted instead.

Figure 5.3: Calculation of the common plane between two co-planar 3D primi-
tives (Equation 5.2). Figures (b) and (c) illustrate the use of the switch factor.
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Choosing normal direction

The plus-minus sign on the righthand side of the Equation 5.2 indicates that
the direction of the normal of the averaged plane is arbitrary. The early grasp-
ing re�ex is a guess on how to grasp the two co-planar edges (Figure 5.1).
Each of the two corresponding 3D contours give one representative 3D prim-
itive, and they are used for calculation of the common plane and the other
grasp parameters. It is important to know which direction of the plane normal
to use in order to predict meaningful grasps. The initial scene representation
doesn't provide this information. Nevertheless, it is intuitively clear to the
human viewer why the top side of the box on Figure 5.1 (EGA1) should be
grasped from above. This observation can be expressed mathematically. The
normal of the visible side of a surface always forms an obtuse angle to the
vector originating from the point of view and pointing to the surface normal.

Figure 5.4: Choosing the correct surface normal. n1, n2, and n3 are outward
surface normals marking the sides of the cube visible on the illustration. r1,
r2 and r3 are camera rays, vectors originating from the marked point of view
and pointing to the surface normals.

n1, n2, and n3 are normals of three cube surfaces (Figure 5.4). Directions
chosen are ones that would create correct grasping hypotheses. However, only
the surfaces 2 and 3 are visible from the marked point of view. r1, r2 and r3 are
camera rays. If a surface normal and a ray pointing from the camera to that
plane form an obtuse angle (n · r < 0), the surface is visible from the camera.
If the angle is acute (n · r > 0) the surface is not visible from the camera.
When this observation is turned around, it follows that visible surfaces should
adopt the direction of the normal that forms an obtuse angle to the camera
ray in order to give expectable grasps. This is not an optimal solution because
surfaces that are not visible from the camera's point of view can still display
some edges. In the given example (Figure 5.4) the cube's invisible surfaces can
display up to two edges. Those edges also suggest grasping hypotheses. Still,
in the majority of cases determining a normal direction in this way is better



22 CHAPTER 5. GRASPING REFLEX

then having two possible normal orientations as this would produce two sets of
grasping hypotheses, and many more wrong hypotheses altogether. The same
reasoning is applicable in EGA2 and EGA3 (Figure 5.1) cases, when grasping
co-planar edges of a concave object. EGA3 type of grasp doesn't depend on
plane normal direction. Another aspect of this observation concerns camera
placement. Visible features of objects should be the ones reachable by the
manipulator.

EGAs mathematical formulation

EGA 1 is a grasp where the gripper aims at holding a whole object, the �ngers
of the gripper are initially wide open and the object is grasped at its full
width by closing �ngers, (Figure 5.1 EGA 1). The position of the origin of
TCP - PTCP equals the position of the common plane (de�ned as a middle
point between the parent primitives). Gripper's ZTCP direction is aligned
with common plane direction, but has the opposite sign. The XTCP direction
(direction connecting �ngers) is identical to the direction of the line connecting
parent primitives. Initial �nger distance d should be bigger then distance
between parent primitives dp, so that grasping position can be approached
without colliding with the object. It is limited by the maximum �ngers opening
distance dmax.

PTCP = Pp

ZTCP = −np (5.3)

XTCP = D

dp < d ≤ dmax

where Pp is position of the common plane normal, np is the normal and D is
the direction of the connection line between primitives. The XTCP could have
opposite direction as well (−D), as the gripper has 180◦ symmetry around z
axis in respect to grasping. This fact will be taken into account later when
deciding optimal grasp robot con�gurations, (Section 5.2).

EGA 2 is a grasp that is designed for concave objects, it has same position
and orientation as EGA 1 but the initial �nger distance is zero and �nger are
opened in order to grasp an object, (Figure 5.1 EGA 2).

PTCP = Pp

ZTCP = −np (5.4)

XTCP = D

d = dmin
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Since the grasping tool is a simple parallel gripper EGA 1 and 2 grasps will be
successful only when parent primitives individual orientations are co-planar
and orthogonal to the line connecting them, meaning that the two parent
co-planar contours should be parallel and the two representative primitives
should be opposite to each other. If this is not the case the grasp is unstable
or not possible. The parent primitives are co-planar and the orthogonality to
the connecting line is de�ned as in Equation 5.5, where C is a positive real
number smaller then one.

|Θ(Πi) ·D| < C ∧ |Θ(Πj) ·D| < C (5.5)

EGA 3 type of grasp is also designed for a concave object, where concavity is
placed between two de�ning edges. The gripper tries to grasp an object by
holding one if its sides, (Figure 5.1 EGA 3). As there are two parent primitives
(two edges), two grasping actions will be generated for the same parent prim-
itives pair. PTCP is coinciding with position of the parent primitive. ZTCP

direction is the same as in EGA 1 and 2 cases, but YTCP is used as other de�n-
ing direction and is based on the individual orientation of the parent primitive.
This is why for EGA 3 grasps the orthogonality to the connecting line is not
a requirement. YTCP direction is calculated as normalised projection of the
primitive direction to the common plane.

The projection as of a direction vector a to a plane s is calculated by projecting
the vector to the plane normal ns and then subtracting that projection an from
the original direction vector. Normalised projection is labelled with âs.

an = (a · ns) · ns

as = a− an (5.6)

âs =
as

‖ as ‖

Normalised projection of the primitive's orientation to the common plane p is
marked with Θ̂(Πi)p. Initial �nger distance is decided so that the gripper �nger
that is placed on the inner side of the edge has equal distance to both parent
edges, it is a function of partent primitives distance dp and �nger thickness ft.
If dp − ft > dmax then d is reduced to dmax.

PTCP i = Λ(Πi) , i = (1, 2)

ZTCP = −np (5.7)

YTCP = Θ̂(Πi)p

d = min( dp − ft, dmax )
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where Πi is one of the two primitives, Λ(Πi) is the position of the primitive
and Θ(Πi) is the orientation of the primitive.

In EGA 4, the gripper is trying to grasp a surface de�ned by two parent
primitives, (Figure 5.1 EGA 4). Two grasps are possible, one from the each
parent. The distance between parent primitives can not be used for deter-
mining initial �nger distance, and the value is assigned as constant. For most
objects, approaching the grasp is easiest when gripper has maximum opening
initially, but for smaller objects this might lead to collision of the gripper �n-
ger with the other edge. As for EGA 3 grasps PTCP matches the position of
the parent primitive. The computation of the orientation includes all three
directions XTCP , YTCP , and ZTCP . XTCP equals to Θ̂(Πi)p, YTCP is ±np and
ZTCP = XTCP ×YTCP . Compact de�nition of EGA 4 is

PTCP i = Λ(Πi) , i = (1, 2)

XTCP = ±np (5.8)

YTCP = Θ̂(Πi)p

d = constant

The correct sign in front of the normal np insures that ZTCP has such orien-
tation that would make the gripper �ngers point to the surface between two
parent primitives. It is chosen in the following way. Let us assume the solution:

XTCP = np

YTCP = Θ̂(Πi)p

ZTCP = XTCP ·YTCP

If ZTCP ·D > 0 (in case of primitive i), or ZTCP ·D < 0 (for primitive j), where
D is the direction of the vector connecting two parent primitives, de�ned as
in Equation 5.1, Figure 5.3a, then solution above is accepted. If ZTCP ·D < 0
(primitive i), or ZTCP ·D > 0 (primitive j), the opposite sign of the normal is
chosen and the ZTCP is recalculated:

XTCP = −np

ZTCP = XTCP ·YTCP

5.2 Grasps generation, processing and testing

Figure 5.5 shows the state diagram for the grasping re�ex procedure. Grasp-
ing hypotheses generation starts with acquiring stereo images of a scene and
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Figure 5.5: State diagram for grasping re�ex exploration.
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producing a cognitive vision image representation. Position and orientation of
the 3D primitives is smoothed [PWK06]. From image representation number
of 3D contours are extracted and ordered, where a 3D contour contains mini-
mum three 3D primitives. All 3D contours are then compared with each other
for similarity and a list of pairs of similar contours is made. For each simi-
lar contour a representative 3D primitive is chosen as a corresponding middle
primitive.

3D positions of both representative primitives in a similar contour pair have
to be inside a certain region of interest before the pair is excepted as a parent
primitives pair for generating grasping actions. This region of interest is de-
�ned as a bounding box in front of the robot and is used to exclude contours
originating from robot's or background features.

One pair of parent primitives can produce at most six grasping hypotheses,
one for each EGA1 and EGA 2 and two for each EGA 3 and EGA 4 type of
grasp. The number of produced hypotheses depends on di�erent conditions.
EGA 1 grasp will be produced if parent primitives are orthogonal to the line
connecting them (Equation 5.5), and if distance between parent primitives dp

is inside limits:

5mm ≤ dp ≤ 58mm

Parent primitives with distance smaller than the lower limit are most likely
belonging to the same edge. The upper limit equals to the maximum �nger
distance (68mm) minus 10 mm. This means that the gripper �ngers have
minimum 5 mm distance (on each side) to the object during approaching.

EGA 2 grasp is produced if parent primitives are orthogonal to the connecting
line and if parent primitives distance satis�es following conditions:

50mm ≤ dp ≤ 108mm

Lower limit means that the opening between two parent primitives has to be
at least the width of two �ngers (2 x 20mm) plus 10 mm so that the gripper
can approach initial position. If the distance is bigger then two �ngers width
plus the maximal distance between �ngers, the outer sides of �ngers can not
reach the edges of the object and can therefore not apply any force.

In case of EGA 3 there is only one lower limit that assures that one �nger
can �t the opening of the concave object. There is no upper limit to parent
primitives distance. The lower limit equals to one �nger width plus 10 mm.

30mm ≤ dp
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EGA 4 will not make sense unless the parent primitives belong to two distinct
co-planar parent contours, that de�ne and bound a surface:

5mm ≤ dp

Grasp reachability and collision checking

Not all of the grasping hypotheses produced by the image representations are
reachable by the robot. Staubli RX60 robot has six degree of freedom, which
means that six independent joint angles have to be speci�ed in order to fully
describe robot's con�guration [Stä05]. Because of many degrees of freedom, a
speci�c position and orientation of the gripper can be achieved with more than
one robot con�guration. A problem of �nding all possible sets of joint angles
that lead to speci�c tool position and orientation is called inverse kinematics.
A closed form Pieper's [Cra89] solution is available for Staubli RX60 robot and
is used in this work.

Even when a grasp is reachable by the robot, it might be inaccessible be-
cause some part of the robot's body, (including the force torque sensor and
the gripper mounted on the robot's wrist), might collide with environment or
with itself. Initial knowledge of the environment is limited to knowledge of
robot's own geometry and the position of the ground plane. Additional infor-
mation becomes available when vision system produces image representation
from pair of stereo images. 3D contours from image representation corespond
to edge features in the scene. RobWork simulation environment uses geomet-
ric and kinematic model of the robot, and geometric models of the �oor and
3D contours to check if certain robot con�gurations are collision free, using
PQP (Proximity Query Package) [LGLM99] collision detection strategy. 3D
contours are sets of 3D primitives. Each 3D primitive is modeled as a small
cube (Figure 5.7).

Choosing grasping hypotheses

All grasping hypotheses from all similar contour pairs in a certain region of
interest compose a full set of grasping hypotheses produced from the image rep-
resentation. The size of the set usually varies from several to several thousand
grasping hypotheses, depending on the scene complexity and the quality of the
reconstruction. When a grasping attempt is performed, a robot is a�ecting the
environment and it is possible that the scene will change, and thus some of
the grasping hypotheses will no longer be valid. The system will therefore,
after a few grasping attempts, start a new cycle of capturing images, extract-
ing image representation and generating grasping hypotheses is started. In
order to increase e�ectiveness of exploration it is necessary to carefully chose
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Figure 5.6: The top �gure shows the image capture by the left camera taken
during one of the experiments (Chapter 7.1). Middle and bottom �gures are
taken from WandererX visualisation environment. The middle image shows
several grasping hypotheses. The bottom �gure shows one grasping hypothe-
ses that was successfully performed in experiment, together with the parent
primitives and contours. The details of the parent contours are magni�ed.
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Figure 5.7: Robwork simulation environment shows 3D models of Staubli robot
and �oor. Additionally, the information about 3D edges in the scene is provided
by the vision system, where the original scene is the same as on Figure 5.6.
The 3D contours are composed of 3D primitives, which are modeled as small
cubes.

few grasping hypotheses that will be tested before a new cycle begins. This is
done by ranking derived grasping hypotheses based on di�erent criteria.

Grasping hypotheses can be ranked based on position and orientation of the
gripper. For example, if in a complex scene a grasp is positioned higher then
others, there is a bigger chance that the object to be grasped is free and not held
down by other objects, and that the approaching the object is easier. Another
basis for ranking can be the con�dence of 3D reconstruction [PKB+08], the
amount of similarity (co-planarity and co-colourity) between parent contours,
size of the parent contours or the amount of orthogonality to the connecting
line between parent primitives (for EGA 1 and 2 types of grasps). Besides
ranking, the choice of grasping hypotheses to be performed in one cycle can
be based on grasps diversity, or can include some randomness.

As the grasping hypotheses set can contain several thousands elements, the
system is not checking all of them for reachability and collision. In current
implementation, the system instead starts by taking one by one grasps from
top of the ranked set. If a grasp can be performed it is saved on the list of the
grasps to be tested, othervise the algorithm proceeds to the next grasp on the
list. When certain number of usable grasps is found the system proceeds to
testing phase.

Individual grasp analysis and testing

Figure 5.8 shows how a grasp is performed. The gripper �ngers are �rst set
to the correct initial distance and the robot performs a movement from its
initial �home� con�guration to the �approach� con�guration. In �approach�
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con�guration, the tool has the same orientation as in the grasping stage, and
the �nal grasping con�guration can be reached with a linear movement of the
tool. After robot moves from the �approach� to the �grasp� con�guration,
the gripper closes (or opens) �ngers to grasp an object. This is followed by
�unapproach� movement of the robot, where tool is moved back to the approach
position, and �nally the robot moves to its initial con�guration.

Figure 5.8: Left Figure shows �home� robot con�guration - the default con-
�guration robot has before and after performing a grasp. Middle and right
Figures are examples of �approach� and �grasp� con�gurations.

A grasp can not be performed unless a collision free con�gurations can be found
for both approach and grasp position of the tool. Both approach and grasp tool
position/orientation can be reached with up to 8 di�erent joint con�gurations.
It is necessary to chose the optimal pair of approach-grasp con�gurations. The
approach and grasp con�guration have to match so that a linear movement of
the tool between the two is possible.

The gripper has a (180◦) symmetry around its z axis in respect to grasping,
which means that additional con�gurations are available. These additional
solutions are added to the solutions derived from inverse kinematics. This
is important because gripper body's geometry is not symmetrical and some
grasps that cause collision in original con�guration could be collision free when
the gripper is rotated 180◦ around its z axis.

If more than one pair of approach-grasp con�gurations are available, the system
will give advantage to con�gurations that are closer to the �home� con�gura-
tion. Since �home� is an �elbow up� con�guration, (Figure 5.9), the �elbow up�
con�gurations are favoured. Con�gurations closer to the �home� con�guration
are performed faster and are less prone to collision.

Grasp planning doesn't end when collision free robot con�gurations are found
for approach and grasp case. The robot still has to move from the initial to the
approach position and from the approach to the grasp position. During this
movement the robot has to pass through number of di�erent con�gurations,
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Figure 5.9: Two di�erent robot con�gurations lead to the same tool position.
The left image shows �elbow down� and the right image �elbow up� con�gura-
tion.

and it is necessary that those con�gurations are also collision free. The com-
putation of the collision free paths is called motion planning. This work uses
the RRT-connect (Rapidly-exploring Random Trees) motion planner [KL00].

The motion planner is used to calculate collision free path from �home� to
�approach� position. If both �approach� and �grasp� robot con�gurations are
collision free, the system assumes that the linear path between them is also
collision free and this part of the path is not planned. The calculated �home -
approach� path is also used when the robot moves in the opposite, �approach -
home� direction, weather after performing a grasp or after a collision has been
detected.

Although some collisions can be avoided by planning, they will still happen
because the system is dealing with unknown scenes, and the motion planner
is working with incomplete information. Apart from the robot and the �oor
models, the only information available to the planner are sparsly reconstructed
contours that outline the objects on the scene. The surfaces are �invisible� for
the planner. In order to protect the robot and environment, and in order
to provide basis for autonomous exploration without human supervision, the
system is equipped with force torque sensor that acts as an active collision
detector. It is able to detect collision between the gripper and the surrounding
and it is described in detail in Chapter 6.

The force torque collision detector is active during robot's home-approach
and approach-grasp movements. Due to the nature of the collision checking
method, it is not possible to check for collision in other situations. However,
this is usually su�cient. If a collision is detected, the robot will stop and
move backwards using the same path as for forward movement, until it reaches
�home� position. The system will then proceed with testing next grasping
hypotheses if any, or start a new vision processing cycle.

Grasp attempt outcome

The system is able to detect four di�erent outcomes of testing a grasping
hypotheses. This is done by monitoring the distance between gripper �ngers.
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If gripper �ngers had to be closed in order to grasp an object (EGA 1, 3
and 4), then a successful grasp can be detected if �nal distance between
�ngers, when the robot has returned to its initial position, is bigger then zero.
If gripper was opened to grasp an object (EGA 2), then a successful grasp is
detected when �nal �nger distance is smaller than maximal distance. It follows
that zero �nal distance between �ngers for EGA 1, 3 and 4, and maximal
�nal distance between �ngers for EGA 2 indicates an unsuccessful grasp.
If distance between �ngers indicated a successful grasp just after grasping
and indicates unsuccessful grasp when robot reaches �home� position, then a
grasp is characterised as unstable. The two movements - unapproaching" and
"going home", that follow the grasping attempt, lift the object and serve as a
primitive test of the quality of the grasp. The fourth outcome of the grasping
attempt is collision detected. From a general point of view, unsuccessful,
unstable and collision outcomes all fall under unsuccessful category.

In cases of unsuccessful or collision outcomes, the system continues testing
remaining scheduled grasps if any, or starts a new image processing cycle oth-
erwise. In case of a success the robot moves the tool to a position above a
storing box and releases the object. Since successful grasps always, and unsta-
ble almost always change the scene, the system after performing them cancels
any remaining grasp tests and proceeds directly to a new image processing
cycle.



Chapter 6

Force Torque sensor

This chapter describes the FTACL 50-80 Schunk force torque sensor and ex-
plains how it is used for active collision detection during grasping procedure.

6.1 FTACL 50-80

The FTACL 50-80 is a combination of mechanical �exibility (springs displace-
ment) and an optoelectronic position measurement system for all six degrees
of freedom. It measures the full six components of force and torque and out-
puts the measured values in SI units in a 1kHz cycle. It doesn't require any
calibration procedure. In addition it measures total (static and dynamic) ac-
celeration and provides information of sensor displacement during operation
[Sch]. It operates in temperature range of 5 − 55 [�] and supports standard
interfaces (CAN, DeviceNET, RS232 and RS485). The sensor is shown on
Figure 6.1 and overload limits are given in Table 6.1.

Figure 6.1: FTACL 50-80 Force Torque sensor manufactured by Schunk. Di-
ameter of the sensor is 164 [mm].
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Fx, Fy, Fz 300 [N]
Tx, Ty 7 [Nm]
Tz 15 [Nm]

Table 6.1: Operating limits for FTACL 50-80 sensor. Forces or torques out of
permitted limits can permanently damage the sensor.

6.2 Active collision detection using the force

torque sensor

In this project the Force Torque sensor is used for active collision detection.
The sensor is mounted between the wrist and the tool of the robot (Figure
3.1), and it measures forces or torques acting on the tool. In order to de-
tect collision it is necessary to separate the force and torque originating from
gravitational force acting on the dead load, (empty gripper, upper part of the
sensor and mechanical adapter connecting the gripper and the sensor), from
any external contact force. In other words, if the di�erence between current
measured force and torque values and the predicted values originating from
gravitation is within certain limits, then it can be concluded that no forces
apart from gravity are acting on the tool. Although the sensor provides infor-
mation about acceleration forces, as well as information about small o�sets to
position and the orientation of the tool that arise from measurement itself, the
satisfactory results were obtained without including the mentioned corrections
into calculus.

Fm(Fxm, Fym, Fzm) and Tm(Txm, Tym, Tzm) mark the measured output from
force torque sensor, and similarly the Fg and Tg mark the e�ect of the gravity
on the dead load. Fd and Td are the di�erences between the two:

SFd = SFm − SFg, (6.1)

STd = STm − STg (6.2)

collision =

{
true if ‖Fd ‖ > Lforce

∨ ‖Td ‖ > Ltorque

false otherwise
(6.3)

where Lforce and Ltorque are the total force and the total torque collision lim-
its. The index S indicates that all calculations and measurements are in the
reference frame of the sensor S.



6.2. ACTIVE COLLISION DETECTION USING THE FORCE TORQUE
SENSOR 35

According to [Cra89], the following equations are applied for transforming force
and torque from one coordinate system to another:

AF = ARB · BF (6.4)

AT = APBorg × ARB · BF+ ARB · BT (6.5)

where A and B are the two coordinate systems, and APBorg is the position of
the origin of coordinate system B expressed in A.

In Equations 6.1 and 6.2, SFm and STm are known from measurement and SFg

and STg have to be predicted for each tool orientation. The World coordinate
system has been de�ned so that direction of the gravitational force is along
negative Z axis. The gravitational force that acts on the dead load expressed
in the coordinate system of its centre of mass is:

CMFg = CMRW · WFg (6.6)

WFg = fg · (0, 0,−1)T

where fg is the weight of the dead load, index CM the Centre of mass reference
frame, index W the World reference frame and CMRW symbolises the rotation
of the Centre of mass reference frame in respect to the World reference frame.

Using Equations 6.4 and 6.5 the gravitational force and torque can be expressed
in the reference frame of the sensor. Having in mind that there is no rotation
between S and CM reference frames and that no torque is present in the CM
reference frame, following expressions are derived:

SFg = CMFg = SRW · WFg (6.7)

STg = SPCMorg × CMFg + I · CMTg = SPCMorg × SFg (6.8)

Rotation SRW changes with time, as manipulator moves, and is available from
forward kinematics of the robot when its con�guration is known. SPCMorg

is the position of the centre of mass of the dead load expressed in the Sensor
reference frame. Position of the Centre of mass and the weight of the dead load
are the two unknown values. They are measured using following calibration
procedure adopted from [Kra06].
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Figure 6.2: Three tool positions used for the calibration procedure.

The empty gripper is positioned into three di�erent stable orientations (Fig-
ure 6.2) and the output of the sensor is recorded. For each orientation several
measurements are made to minimise the in�uence of noise. The three orien-
tations were chosen to capture the position of the centre of mass in all three
dimensions. The weight of dead load is extracted in the following way:

fg =
1

3

3∑
i=0

√
f 2

ix + f 2
iy + f 2

iz (6.9)

Calculation of the centre of mass begins with Equation 6.8. The cross product
is then rewritten in terms of matrix multiplication:

STg = SFg · SPCMorg (6.10)

SFg =

 0 fzg −fyg

−fzg 0 fxg

fyg −fxg 0


Since three calibration orientations are used, Equation 6.10 is overdetermined.
It is solved with least squares solution, that tries to minimises the Euclidean
norm of the residual ‖SFg · SPCMorg − STg‖, [MWR].

6.3 Collision Limits

The collision limit values (Equation 6.3) were attained through experiments.
The aim was to �nd the values that would be sensitive to collision, but high
enough not to react to the acceleration, the deacceleration and the noise. Fol-
lowing values were found to be optimal:
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Lforce = 15N

Ltorque = 0.5Nm

Figure 6.3 shows the di�erences between measured and calculated total force
and total torque as a function of time for a sample grasp attempt that resulted
in a collision. During �rst three seconds the robot is not moving and the
orientation of the tool is constant. A small peek in the total force di�erence is
detected in the moment when movement starts. It is caused by the acceleration
and it stays within collision limits. The second peek, visible on both graphs,
coresponds to the detected collision with an object. The shape of the graph
in the area where collision happens indicates that it happens during the linear
movement of the tool from the approach to the grasp position.
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Figure 6.3: The graph shows the total measured and the total calculated
forces (top) and torques (bottom), and the di�erences between measured and
calculated values as a function of time for a sample grasping attempt where a
collision happened.



Chapter 7

Evaluation

The evaluation presented in this work is designed as an exploratory case anal-
ysis. It is a �rst experimental evaluation carried out for this system. Since
grasping re�ex is a novel and complex procedure, any testing at this stage
gives new insights and improvements are made daily. A systematic quanti-
tative analysis would therefore be premature. This evaluation is designed to
illustrate di�erent aspects of system's behaviour, its capabilities and weak-
nesses. It is divided into two sections.

Figure 7.1: O�ce and toy kitchen objects used in evaluation. Objects are of
mostly uniform colours, and their size and the shape is suitable for grasping
with the parallel jaw gripper.

In the �rst Section 7.1, a test scene contains a single object and the robot
attempts to remove it from the scene using the grasping re�ex. Fourteen
objects used in the evaluation are shown on Figure 7.1. The size and the shape
of the objects is chosen so that grasping is possible with di�erent di�culty.
Objects are of uniform colours.

Second group of experiments are performed on �ve complex scenes containing
the same objects, Section 7.2. For each scene two experiments are made. In
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�rst the robot is programmed to perform random grasping actions, with no
guidance from vision system, and in second the robot is using the grasping
re�ex. The goal is to remove as many objects as possible from the scene.

In �nal Section 7.3 the results of the experiments are discussed.

Exploration parameters

It is possible to make some adjustments to the �ow of the exploration procedure
with several paremeters. As explained in Chapter 5.2, grasping hypotheses
within one set can be ranked according to di�erent criteria. In this evaluation
adopted ranking criteria is the amount of the verticality of the grasp, or more
precisely:

RS = ZTCP · −ZW

where ranking score RS is in interval [-1,1], ZTCP is the orientation of the Z
axis of the TCP frame expressed in the World reference frame, and ZW is the
(0, 0,−1)T vector. The grasps where the gripper �ngers are pointing vertically
down have the highest rank.

The maximal number of grasping attempts that is performed in one exploration
cycle is 5. Grasp are chosen as described in Chapter 5.2, i.e. as �rst �ve best
ranked grasps where both approach and grasp con�gurations are collision free,
and a collision free path between home and approach con�guration exists.
Many grasping hypotheses will be discarded because of collision with the �oor
before they are performed. In order to attain more grasping possibilities, the
the position of the �oor surface has been lowered by 1 cm in the 3D model of the
World. The system relies on the force torque sensor active collision detection
to prevent damages. The TCP reference frame is positioned 18 millimetres
from the �nger ends, which means that grasps are 18 millimetres deep.

The parameters of the vision system used for extracting image representation
are standard parameters, and the minimum number of primitives in a 3D
contour is 3. The area of interest for parent primitives is a bounding box
X[250, 1000], Y [−1000, 1000] and Z[−228, 500] (millimetres).

7.1 Simple scenes - grasping re�ex

Each of the fourteen objects has been presented to the system in several dif-
ferent positions and orientations. Experiments performed with the �rst object
are described with most detail. Other experiments are given brie�y unless they
illustrate an aspect that has not jet been described.
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Object 1

Three experiments were performed with object 1, (Figure 7.2). In the �rst
one the object was successfully grasped in the �rst attempt with grasp of
EGA 3 type. Figure 7.3 shows the good grasping hypotheses in WandererX
visualisation environment together with the other three grasping hypotheses
generated by the same two contours. One contour originates from the handle
and other one from the body of the object.

In the second experiment the �rst grasping attempt, of EGA 3 type, again
gave good results. This time both edges were originating from the body of the
object (Figure 5.6). The number of generated grasping hypotheses, together
with the number of processed, good, unreachable, those grasping hypotheses
that cause collision and those where the motion planner didn't �nd solution is
listed in Table 7.1.

Figure 7.2: Three experimental situations for object 1. Figure shows original
images used for acquiring image representations, captured by left camera. The
darker area in the middle of all three images is a shadow robot makes when in
initial position.

1 2 3a 3b 3c
number of grasping hypotheses (GH) 66 373 45 55 47

number of processed GHs 12 11 45 55 47
number of accepted GHs 5 5 0 3 0
number of unreachable GHs 7 1 44 45 40
number of GHs in collision 0 5 1 7 7
number of GHs where no path was found 0 0 0 0 0

Table 7.1: The results of processing grasping hypotheses (GHs) in order to
�nd those that can be performed. Columns 1, 2 and 3 stand for the three ex-
periments. In the third experiment the system went through three exploration
cycles (a, b, c).

The ranked list of grasping hypotheses (GHs) is processed top-down. The
processing stops when certain number (5 here) of accessible GHs has been
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Figure 7.3: The top �gure shows the grasping hypothesis of type EGA 3 that
resulted in successful grasping. Parent primitives are also visible. The bottom
images show the other three grasping hypotheses (one EGA 3 and two EGA 4
grasps) generated by the same parent primitives pair.
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found, or when there are no more GHs available (Chapter 5.2). In order to
give a better illustration of the processing outcome, full sets of GHs has been
processed for �rst and second experimental situation, and the results are shown
in Table 7.2.

1 2
number of grasping hypotheses (GH) 66 373

number of processed GHs 66 373
number of accepted GHs 11 37
number of unreachable GHs 46 243
number of GHs in collision 9 93
number of GHs where no path was found 0 0

Table 7.2: The results of processing full sets of grasping hypotheses for �rst
and second experimental situation.

Table 7.3 shows some intermidiate values from the grasping hypotheses gener-
ation program for the same two experiments. Number of contours and similar
contour pairs is derived from the whole image representation. Parent prim-
itive pairs are then assigned. A parent pair is discarded if any of the two
primitives doesn't belong to a certain region of interest. Background features
that originate from the robot and the edge of the ground surface (Figure 7.2)
generate a lot of undesirable similar contours and that is why the number of
discarded parent pairs is high. This however doesn't explain why there is a
signi�cant di�erence between number of good parent pairs and consequently
generated grasping hypotheses in the two cases. This di�erence arises because
the representation of the Object 1 contains less detail in the �rst case, Figure
7.4.

1 2
number of contours 27 30
number of similar contours pairs 201 241
number of parents pairs 17 94
number of discarded parents 184 147

number of GHs 66 373

Table 7.3: The table presents some intermidiate values from grasping hypothe-
ses generation program. The values in column 1 originate from the �rst exper-
iment, and values in column 2 from the second.

In the third experiment no grasps were performed initially. Although 45 grasp-
ing hypotheses were generated, 44 of them were out of robot's reach and one
was causing collision, Table 7.1. The system then repeated the exploration



44 CHAPTER 7. EVALUATION

Figure 7.4: Object 1 on two di�erent image representations, taken from the �rst
and the second experiment. The representation on the left contains somewhat
less detail and gave a smaller number of GHs than the right representation.

Figure 7.5: Three unsuccessful grasping hypotheses generated in the second
cycle of the third experiment. The original scene is the rightmost image of
Figure 7.2. All three hypotheses were generated by shadows.
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Figure 7.6: Two grasping hypotheses of EGA 3 type generated by concentric
neighbour contours.

cycle, i.e. the cycle of capturing new images, producing new image representa-
tion and new set of grasping hypotheses, two more times before execution was
stopped. It is interesting to notice that the three cycles gave slightly di�er-
ent image representations and therefore di�erent sets of grasping hypotheses,
while the scene and the lighting has not been visibly changed and the image
capturing happened in several minutes intervals. In the second cycle, three
grasping attempts were made, all three unsuccessful. Figure 7.5 reveals that
the grasping hypotheses were triggered by contours originating from robot's
and object's shadows. No grasping attempts were made in third cycle.

Table 7.2 shows that the motion planner always �nds the collision free path
between �home� and �approach� con�gurations. This is because the motion
planning task is simple in most cases. The role of the motion planner is to �nd a
collisionfree path for the robot approach movement that takes into account the
3D edges information provided by the vision system. In cases when resulting
path is complicated the robot movements can seem unexpected. Figure 7.6
displays a pair of neighbour concentric similar contours with corresponding
grasping hypotheses.

Object 2

Figure 7.7 shows testing situations for the second object. Outcomes of the
experiments are given in Table 7.4. In the �rst experiment four grasping
attempts resulted in collision before last one succeeded. Figure 7.8 shows
second grasping attempt. The 3D primitive that is representing the contour
is chosen as a primitive in the middle of the contour (Chapter 5). As the
process of 3D reconstruction contains uncertainties, positions and orientations
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Figure 7.7: Test scenes for object 2.

of individual 3D primitives are not always reliable [PKB+08].

In the second testing situation, 9 out of 10 grasping attempts resulted in
collision (7.7, 2). The grasping hypotheses are ranked by orientation of the
tool, and in every new cycle of producing and choosing grasping hypotheses,
the �vertical� grasps are chosen as �rst ones to perform. In this way the
program is caught in a loop because vertical grasps were of EGA 3 and 4 type,
assuming that the the concavity of the object is accessible from the top, and
thus colliding with the top surface. An EGA 1 grasp acting on two top longer
edges of the object could have given good results, but in this case only one of
the two edges was reconstructable. The need for better ranking strategy, and
better strategy for choosing which grasps to perform �rst, becomes apparent.

In the third experiment the reconstruction was very poor, because the object
was far away (Figure 7.7, 3). The process of acquiring image representation
was done two times. First cycle gave 8, and second 4 grasping hypotheses
and only two grasping hypotheses could be performed. In contrast to third,
fourth experiment gave excellent reconstruction. The two reconstructions are
compared on Figure 7.9.

Object 3

The four test scenes for object 3 are shown on Figure 7.10. This object triggers
grasps that are very close to the �oor. The grasp can be successful only if the
gripper is positioned very precisely to reach the object, but not touch the �oor.
While in this situation a more �shallow� position of TCP reference frame is
preferred, in many other cases a �deeper� grasp is better because contact area
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Figure 7.8: The grasping hypothesis that resulted in collision. The detail from
the middle image is shown on the left. The primitives connected with the red
line belong to one of the two 3D contours used for constructing the grasping
hypothesis. The arrow points to the parent primitive that is representing the
contour. The primitive's orientation deviates from the object's edge orienta-
tion, which is re�ected on the resulting grasping hypotheses on the right image
where gripper �ngers are colliding with the edge of the object. The ordering
of primitives in respect to their 3D position doesn't appear correct because of
the chosen point of view.

1 2 3 4
number of grasping attempts 5 10 2 1
number of exploration cycles 1 2 2 1

successful grasps 1 0 0 1
unstable grasps 0 0 0 0
collisions 4 9 0 0
unsuccessful grasps 0 1 2 0

Table 7.4: Experiments results for object 2.
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Figure 7.9: Top: Image representations of scene 3 and 4 (Figure 7.7) in Wan-
dererX visualisation environment. Bottom: corresponding 3D contours in Rob-
work environment, where contours are added to 3D model of the world. This
model is used for motion planning (Chapter 5.2).

Figure 7.10: Test scenes for object 3.
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between gripper and object is bigger and the grasp becomes more stable. The
results of the experiments are given in Table 7.5. In the current system the
depth of the grasp is a constant for all cases.

1 2 3 4
number of grasping attempts 8 1 3 1
number of exploration cycles 4 2 3 3

successful grasps 0 1 0 1
unstable grasps 1 0 0 0
collisions 5 0 0 0
unsuccessful grasps 2 0 3 0

Table 7.5: Outcome of tests on object 3. In the second and fourth scene the
object was successfully grasped with �rst grasping attempts. Those attempts
were, however, generated after two cycles of capturing images for the second
scene, and after three cycles for the fourth scene.

The �ve grasps that are performed in one exploration cycle can sometimes be
too similar. The �rst and second grasping attempt for the �rst scene (7.10, 1)
had following coordinates:

g1 = (332.832, 13.7542,−215.936, 150.408,−4.35508, 95.1484)

g2 = (332.832, 13.7542,−215.936, 148.199,−4.28776, 95.0478)

where the �rst three values are x, y and z coordinates of the position of the
TCP frame in respect to the World frame in millimetres, and the last three
values give XYZ Euler rotation of the TCP frame in degrees. This situation
suggests that a method for choosing grasping hypotheses to be performed in
one cycle should favour diversity.

Figure 7.11 shows a common situation where a grasping attempt moves an
object. When this happens, the remaining grasping attempts of the same
exploration cycle that are performed on the same object might not make sense.
Because of its elasticity a foam �oor often returns objects to its initial position,
making the remaining grasping hypotheses still valid. On the other hand, if
during grasping one gripper �nger touches the object before the other, the
pressure it applies on the object makes the object �slide� into optimal grasping
position when hard �oor surface is used. This is not the case with the foam
surface where elasticity can be a problem. The grasping hypotheses on Figure
7.12 right, resulted in unstable grasp because of the �oor resistance.

Figure 7.13 shows two successful grasping hypotheses. In both cases the object
is grasped by features that are highest above the �oor. Although object was
grasped with one attempt in each case, this successfull grasping hypotheses has
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Figure 7.11: The Figure shows how an object is moved after unsuccessful
graping attempt. Following grasping attempts that are scheduled for execution
before next exploration cycle are not any more valid.

Figure 7.12: Two tested grasping hypotheses from the �rst scene on Figure
7.10. The grasping attempt shown on the left resulted in collision, and the
grasp on the right was unstable.
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been generated in respectively second and third exploration round. In other
words, the �rst scene (scene 2 on Figure 7.10) did not give any acceptable
grasping hypotheses in �rst exploration cycle and the second scene (scene 4
on Figure 7.10) did not give any grasping attempts in �rst two cycles. The
minimal variation in lighting that occur each time images are captured can
produce very di�erent results. The second image on the �gure shows very poor
reconstruction of the handle of the object because its orientation is aligned with
the epipolar line.

Figure 7.13: Two successful grasps from scenes 2 and 4 (Figure 7.10). They
succeeded because the grasped features are slightly above the �oor. The re-
construction of the object's handle on the scene 4 is especially poor because
its horizontal orientation that matches epipolar line.

Object 4

Object 4 test scenes are shown on Figure 7.14. The results of experiments
are given in Table 7.6. In the second experiment the object was successfully
grasped by the black top.

Figure 7.14: Test scenes for object 4.
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1 2
number of grasping attempts 0 1
number of exploration cycles 3 1

successful grasps 0 1
unstable grasps 0 0
collisions 0 0
unsuccessful grasps 0 0

Table 7.6: Experiments results for object 4.

Object 5

Table 7.7 gives results of experiments performed on object 7. The experimental
situations are shown on Figure 7.15.

Figure 7.15: Test scenes for object 5.

1 2 3
number of grasping attempts 1 3 6
number of exploration cycles 1 1 2

successful grasps 1 1 1
unstable grasps 0 0 0
collisions 0 2 3
unsuccessful grasps 0 0 2

Table 7.7: Experiments results for object 5.

Object 6

Object 6 test scenes are shown on Figure 7.16. Although grasp attempts
often move an object, the scene 1 is the �rst case where resulting scene is
explicitly shown (1a) because the majority of the explorations cycles (three)
were performed with the new scene. The results of experiments are given in
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Table 7.8. The image representation of object 6 usually contains only one
contour and no grasping hypotheses can be generated. When the object is
placed in a complex scene it can �borrow� the second contour from another
object.

Figure 7.16: Test scenes for object 6. In the �rst exploration cycle of the
�rst experiment (1) the object was moved by a grasping attempt to a new
position (1a). The three remaining exploration cycles of the �rst experiment
are performed on the scene 1a.

1 2 3
number of grasping attempts 1 0 0
number of exploration cycles 4 1 1

successful grasps 0 0 0
unstable grasps 0 0 0
collisions 1 0 0
unsuccessful grasps 0 0 0

Table 7.8: Experiments results for object 6.

Object 7

Object 7 test scenes are shown on Figure 7.17. The results of experiments are
given in Table 7.9.
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Figure 7.17: Test scenes for object 7.

1 2 3 4
number of grasping attempts 3 0 1 0
number of exploration cycles 3 2 2 2

successful grasps 0 0 0 0
unstable grasps 0 0 0 0
collisions 2 0 0 0
unsuccessful grasps 1 0 1 0

Table 7.9: Experiments results for object 7.

Object 8

Table 7.10 gives results of experiments performed on object 8. The experimen-
tal situations are shown on Figure 7.18. In the �rst experiment a rare EGA 2
grasp succeeded. The grasping hypothesis is shown on Figure 7.19.

1 2 3 4
number of grasping attempts 2 2 5 7
number of exploration cycles 1 1 4 3

successful grasps 1 1 0 0
unstable grasps 0 0 3 1
collisions 1 1 1 3
unsuccessful grasps 0 0 1 3

Table 7.10: Experiments results for object 8.
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Figure 7.18: Test scenes for object 8.

Figure 7.19: A successful grasping hypotheses of EGA 2 type from the �rst
experiment (Figure 7.18 1). In EGA 2 type of grasp �ngers are initially closed.
The grasping is achieved by applying force from inside out.

Object 9

Object 9 test scenes are shown on Figure 7.20. The results of experiments are
given in Table 7.11. It is di�cult to grasp this object using the grasping re�ex.
The object has many edges, but few concavities and it is mostly too wide for
EGA 1 type of grasp. The majority of the grasping hypotheses resulted in
collision.
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Figure 7.20: Test scenes for object 9.

1 2
number of grasping attempts 5 11
number of exploration cycles 1 3

successful grasps 0 0
unstable grasps 0 0
collisions 5 6
unsuccessful grasps 0 5

Table 7.11: Experiments results for object 9.

Object 10

Table 7.12 gives results of experiments performed on object 10. The experi-
mental situations are shown on Figure 7.21.

Figure 7.21: Test scenes for object 10.

Although the grasping hypothesis on Figure 7.22 seems correct, it did not
succeed because the gripper did not reach the object and the �ngers were closed
above the object. The cause of this could be uncertainty of 3D reconstruction
or inaccuracy in robot-camera calibration.
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Figure 7.22: The �gure shows a grasping hypotheses in wandererX visualisa-
tion environment. Although this grasping hypotheses seems reasonable, it did
not succeed because the gripper did not reach the object before grasping the
�ngers.

1 2 3
number of grasping attempts 1 2 3
number of exploration cycles 1 1 3

successful grasps 1 1 0
unstable grasps 0 0 0
collisions 0 0 1
unsuccessful grasps 0 1 2

Table 7.12: Experiments results for object 10.

Object 11

Object 11 test scene is shown on Figure 7.23. Result of experiment is given
in Table 7.13. The system easily produces good grasping hypotheses for this
object, but the force applied by the gripper is not enough to lift the heavy
object, so the object is dropped.

Figure 7.23: Test scene for object 11.
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1
number of grasping attempts 1
number of exploration cycles 1

successful grasps 0
unstable grasps 1
collisions 0
unsuccessful grasps 0

Table 7.13: Experiments results for object 11.

Object 12

Table 7.14 gives results of experiments performed on object 12. The experi-
mental situations are shown on Figure 7.24. The simple shape of this object
makes it easy to grasp. Unfortunately two of four edges that can be grasped
are too thin to be detectable with the gripper. Successful grasps of this object
are sometimes characterised as unsuccessful and sometimes as unstable.

The simple shape of the object also means that few grasping hypotheses are
made. That is why processing of vertically ranked grasping hypotheses have
reached a horizontal grasp in the third experiment. The performed horizontal
grasp of EGA 3 type (Figure 7.25 left) succeeded initially, but was characterised
as unstable.

Figure 7.24: Test scenes for object 12.

Object 13

Object 13 test scene is shown on Figure 7.26. Result of experiment is given
in Table 7.15. Grasps of EGA 1 type are rarely performed because parent
primitives have to be similar (co-planar and co-colour), orthogonal to the line
connecting them, and in the same time at most 58 mm away from each other.
A wrong, but very precise grasping hypotheses of type EGA 4 (Figure 7.27 left)
was observed in the third experiment. Examination of the grasping hypotheses



7.1. SIMPLE SCENES - GRASPING REFLEX 59

1 2 3
number of grasping attempts 1 1 4
number of exploration cycles 1 1 2

successful grasps 0 1 0
unstable grasps 0 0 2
collisions 0 0 0
unsuccessful grasps 1 0 2

Table 7.14: Experiments results for object 12.

Figure 7.25: The grasping hypotheses on the left was successful (object 12,
scene 3), but was registered as unstable because grasped edge is too thin and
gripper �ngers had a zero distance while grasping. The remaining three images
show other grasping hypotheses generated from the same parent contours and
illustrate a good reconstruction. This �gure illustrates well why EGA 1 and
EGA 2 types of grasps demand orthogonality of the parent primitives to the
line connecting them. Neither EGA 1 nor EGA 2 type of grasp would give a
stable grasp in this situation.

set in the WandererX visualisation environment revealed that corresponding
EGA 1 was created (Figure 7.27 right). It was not performed because the ap-
proach con�guration was not reachable by the robot. In the fourth experiment
a successful grasp of EGA 1 type was carried out, (Figure 7.28).
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Figure 7.26: Test scenes for object 13.

Figure 7.27: The wrong EGA 4 hypotheses (left) was performed, whereas
the correct grasping hypotheses of type EGA 1 (right) was not because the
approach con�guration was unreachable by the robot.

1 2 3 4
number of grasping attempts 2 0 2 6
number of exploration cycles 1 1 3 6

successful grasps 1 0 0 1
unstable grasps 0 0 0 0
collisions 1 0 0 4
unsuccessful grasps 0 0 2 1

Table 7.15: Experiments results for object 13.
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Figure 7.28: A successful EGA 1 grasp from the fourth experiment, Figure
7.26, 4.
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Object 14

Figure 7.29: Test scenes for object 14.

1 2 3
number of grasping attempts 6 3 8
number of exploration cycles 3 2 2

successful grasps 1 0 0
unstable grasps 2 0 0
collisions 3 3 8
unsuccessful grasps 0 0 0

Table 7.16: Experiments results for object 14.

7.2 Complex scenes - random grasping and

grasping re�ex

The second group of experiments is performed on �ve complex scenes. For
each scene two kind of experiments are performed. In �rst experiment a 30
random grasping attempts is made. Grasps have a random orientation and
random position inside area of interest inside the bounding box with following
edges X[200, 700], Y[-700, 700], Z[-300, 0] (mm) and are not ranked in any way.
The type of grasp (opening or closing �ngers) is also random, but majority of
grasps is performed by closing �ngers. The 30 grasps are chosen from a larger
set so that they ful�l the same reachability and collisionfree requirements as
in the case of grasping re�ex.

The second experiment for each scene is repeated on the identical scene (scene
was reconstructed), but using the grasping re�ex. The results of the random
grasping and grasping re�ex are roughly compared. The relative success of
the grasping re�ex o� course depend on the number of the attempts taken
into account. The 30 grasping attempts are usually enough for the system to
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perform all possible successful grasps. If the system continues working after
this point, the number of the unsuccessful, collision and unstable outcomes
grows.

Figure 7.30: Complex scene 1. Left image shows the initial scene for both
random grasping and grasping re�ex experiments. The image on the right
shows the scene after 30 grasping attempts with grasping re�ex.

random grasping re�ex
number of grasping attempts 30 30

successful grasps 0 6
unstable grasps 0 5
collisions 3 18
unsuccessful grasps 27 1

Table 7.17: The results of experiments with complex scene 1.

The �rst complex scene is shown on Figure 7.30, left. The corresponding
outcomes of experiments are given in Table 7.17. In a complex scene grasping
hypotheses can be de�ned with edges from two di�erent objects. The de�nition
of co-colourity (Chapter 4) says that two primitives are co-colour if their parts
that face each other have the same colour. The outer colour of edges of the
two objects is usually the colour of the �oor surface and if the two edges are
co-planar in the same time, a grasping hypotheses will be created. In most
cases this is an advantage compared to single object scenes.

When an object is successfully grasped, it becomes attached to the robot's
body and the path robot used for approaching the object might not any more
be collision free. In that case, the attached object will either push the objects
on its way, or the grasp will fail. A way to solve this is to give advantage to
the grasps with higher position as they are less likely to be held down by other
objects.
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The right image on Figure 7.30 shows how the scene looked after 30 grasping
re�ex actions. Most of the remaining graspable objects are out of reach. The
object 12 is still in reach, but is not being grasped. The system is repeatedly
performing grasps on the object 11 with collision outcomes. The blue contours
of that object are nicely reconstructed, and because of their horizontal position
they trigger the vertical grasps that are performed in front of any others. This
one more time indicates that vertical orientation alone is maybe not the optimal
ranking criteria and that the choice of grasping hypotheses to be performed in
one exploration cycle should include grasps diversity.

The results of the experiments on the second complex scene are shown in Table
7.18. The initial scene is shown on Figure 7.31 left, and the �nal scene is shown
on the right. Remaining objects are mostly in tough positions, where concave
features are not accessible. Only two objects were successfully grasped. The
system often performed an unstable grasp of the object 1 by the handle, which
failed because the object was held down by object 11.

Figure 7.31: Complex scene 2. Left image shows the initial scene for both
random grasping and grasping re�ex experiments. The image on the right
shows the scene after 30 grasping attempts with grasping re�ex.

random grasping re�ex
number of grasping attempts 30 30

successful grasps 0 2
unstable grasps 1 5
collisions 4 13
unsuccessful grasps 26 10

Table 7.18: The results of experiments with complex scene 2.

The �rst grasping re�ex in the third complex scene successfully removed two
objects (12 and 7) from the scene. The initial scene is visible on Figure 7.32,
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top left. The bottom image shows the successful grasping hypothesis. The
grasping hypothesis originates from the objects 7 and 13, and the simultaneous
grasping of object 12 together with object 7 was a coincidence.

random grasping re�ex
number of grasping attempts 30 30

successful grasps 0 4
unstable grasps 0 2
collisions 4 12
unsuccessful grasps 26 12

Table 7.19: The results of experiments with complex scene 3.
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Figure 7.32: Complex scene 3. Top: Left image shows the initial scene for
both random grasping and grasping re�ex experiments. The image on the right
shows the scene after 30 grasping attempts with grasping re�ex. Bottom: the
�rst grasping re�ex attempt resulted in simultaneous grasping of two objects.
Although objects 12 and 7 were grasped, the parent primitives (red dots)
indicate that the grasping hypothesis originated from objects 7 and 13.



7.2. COMPLEX SCENES - RANDOM GRASPING AND GRASPING
REFLEX 67

Figure 7.33 shows the fourth complex scene and Table 7.20 presents the results
of the experiments.

Figure 7.33: Complex scene 4. Left image shows the initial scene for both
random grasping and grasping re�ex experiments. The image on the right
shows the scene after 30 grasping attempts with grasping re�ex.

random grasping re�ex
number of grasping attempts 30 30

successful grasps 0 5
unstable grasps 1 3
collisions 6 16
unsuccessful grasps 23 6

Table 7.20: The results of experiments with complex scene 4.

In the complex scene 5 (Figure 7.34, left) a lot of grasps were unstable (Table
7.21). This is because of repeated attempts of lifting object 11, which is
too heavy, and object 14 where shape, weight and material all contribute to
di�culty. The object narrows towards the top and is often slipped.

random grasping re�ex
number of grasping attempts 30 30

successful grasps 0 2
unstable grasps 0 14
collisions 4 9
unsuccessful grasps 26 5

Table 7.21: The results of experiments with complex scene 5.
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Figure 7.34: Complex scene 5. Left image shows the initial scene for both
random grasping and grasping re�ex experiments. The image on the right
shows the scene after 30 grasping attempts with grasping re�ex.

7.3 Discussion

The grasping re�ex experiments performed on single objects as well as those
performed on the complex scenes showed that there is a consistency in gras-
pability of speci�c objects. In other words, some objects are grasped easily
and consistently whenever they are in suitable position and image processing
produces a good representation. Other objects are grasped just occasionally.

On one side this depends on how well individual object's features (weight, size,
shape, colour, material) pair with type of gripper used in the experiments. On
the other side it depends on how suitable the object's features are for the
kind of image processing used, i.e. how di�cult it is to extract good co-colour
and co-planar contours. For small or distant objects, the reconstruction was
often poor. In these cases images with greater resolution, or a visual attention
mechanism could improve the performance.

The gripper used in current setup limits grasps of EGA 1 and EGA 2 types
only to small objects. Larger objects are mostly grasped if they are concave,
by the edges. Although object 9 could been grasped by the handle, it did
not happen in the evaluation because the algorithm does not distinguish the
handle as a good grasping place.

Table 7.22 gives the distribution of EGA grasp types for the successfully per-
formed grasps. In single objects experiments all of the grasping types are
represented. However, the same objects are grasped only with EGA 3 type
of grasps in the complex scenes. In order for vertical EGA 4 type of grasp to
be generated, the parent primitives would have to originate from two similar
contours positioned above/bellow each other. In the �ve complex scenes, most
objects were just partly visible and often not in optimal pose. EGA 1 and EGA
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2 types of grasps have two more constrains then EGA 3 and 4 types. The par-
ent primitives have to face each other and the their allowed mutual distance
is inside a small range of values. In most situations where parent primitives
originate from two separate objects, those constrains exclude grasps of type
EGA 1 and 2.

single objects complex scenes
EGA 1 2 0
EGA 2 1 0
EGA 3 9 19
EGA 4 6 0

Table 7.22: Distribution of EGA types for successful grasps in single objects
and complex scenes experiments.

The experiments showed a need for improving the criteria for ranking grasp-
ing hypotheses and the need for demanding diversity when choosing which
grasps to perform in one exploration cycle. The current strategy used in the
experiments led in several occasions to unsuccessful repetitive behaviour.

The current system has an open loop - �look-then-move� type of control. The
drawback of this is high sensitivity to calibration errors. The accuracy of
grasping operation depends directly on the accuracy of the visual sensor, the
robot end-e�ector, and the robot-camera calibration. This could be avoided
with visual servoing.

The exploration procedure could be additionally enhanced with tactile sen-
sors and use of reactive grasping strategy. When tactile sensing and adaptive
grasping behaviour are included in the system, the early grasping re�ex could
serve as an initial �approach� planner.
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Chapter 8

Conclusion

In this master theses a system for performing an early grasping re�ex was
developed. It integrates image processing, grasping hypotheses generation,
motion planning for collision avoidance, active collision detection using the
force torque sensor and control of the robot and gripper for performing grasping
exploration in a semi-unknown environment.

The experimental evaluation showed that the system is able to perform grasp-
ing even in complex environments based on a weak prior knowledge. This
re�ex is used as an initial behaviour in a cognitive system that aims at learn-
ing object models by exploration.

71
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Abstract: Embodied cognition suggests that complex cognitive traits can only arise 
when agents have a body situated in the world. The aspects of embodiment and 
situatedness are being discussed here from the perspective of linear systems theory. 
This perspective treats bodies as dynamic, temporally variable entities, which can be 
extended (or curtailed) at their boundaries. We show how acting agents can, for 
example, actively extend their body for some time by incorporating predictably 
behaving parts of the world and how this affects the transfer functions. We suggest 
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into predictable and unpredictable entities. We argue that this kind of temporary body 
extension may have been instrumental in paving the route for the development higher 
cognitive complexity as it is reliably widening the cause-effect horizon about the 
actions of the agent. A first robot experiment is sketched to support these ideas. 
In the second part of this article we discuss the concept of Object-Action Complexes 
(OACs) introduced by the European PACO-PLUS consortium to emphasize the 
notion that for a cognitive agent objects and actions are inseparably intertwined. In 
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concept to demonstrate how an agent can acquire knowledge about its world. Here the 
notion of predicting changes fundamentally underlies the implemented procedure and 
we try to show how this concept can be used to improve the robot’s inner model and 
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Neurons are most often sensitive to changes and not to constant stimulation. Hence, 
we have tried to show how the predictability of changes induced by an agent can be 
used to augment the agent’s body and to acquire knowledge about the external world, 
possibly leading to more advanced cognitive traits. 
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1 Introduction: 
During the last years the European Union has invested more than 100 million Euros 
into the field of Cognitive Robotics and adjacent fields subsumable under bio-inspired 
advanced robotics. As the development of such programs rests on the ever growing 
scientific community in these fields, this is indicative of the fact that “a lot of people 
believe in it”. It appears, that machines with truly intelligent, cognitive features1 have 
now become within reach of research and development. This may have been largely 
due to the emergence of “Embodied Cognition” (EC) as a possible theoretical 
foundation for such R&D activities (Lakoff and Johnson, 1999; Brooks, 1999; Todes 
2001; Varela, Thompson, and Rosch, 1991). Summarized in one sentence EC assumes 
that only machines with some kind of a body, which allows direct interactions with 
the world, hence, which situates these machines in their world, will be able to develop 
advanced (cognitive) traits (Chiel and Beer 1997; Pfeifer and Scheier 1999; Steels and 
Brooks 1995; Clancey 1997; Clark 1999; Todes 2001; Riegler, 2002). This notion was 
much influenced by Rodney Brooks, who was one of the first to explicitly state these 
ideas in the context of robotics work (Brooks 1986).  Embodied Cognition is thus 
different from what has been called good old-fashioned AI (GOFAI), which in its 
extreme form supports a Cartesian attitude, treating the mind as an entity independent 
of and, thus, not requiring, the body (see Anderson, 2003 for a comparison between 
the Cartesian viewpoint and EC). This article does not intend to enter into the 
controversy between GOFAI and embodied cognition (first pointed out explicitly by 
Dreyfus, 1972, see also Brooks, 1999). For our purposes it suffices to just illuminate a 
little bit the germination process of EC, which has to a large degree been triggered by 
the notion that after all GOFAI-systems have not really become intelligent (see 
Brooks, 1999 for a discussion). A wealth of possible problems has been put forward 
for explaining this. Most influential was here the discussion of the symbol grounding 
problem (Searle, 1980, Harnad, 1990) and the frame problem of AI (McCarthy and 
Hayes, 1969; Dennett, 1984) as this had prepared the ground for the germs of EC. 

                                                 
1 The term “cognition” is exceedingly ill-defined and no common agreement exist about how cognitive 
is cognitive. After all, also ants can build houses... We will use the term also in a wider sense but 
always in conjunction with human cognitive traits. Furthermore, this article is largely devoted to the 
question, what could be a path towards cognition. Hence we are concerned with processes and not so 
much with their final outcome. Cognitive complexity is, thus, as we see it, a continuum.  
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Meanwhile a large number of articles have appeared discussing, often in a 
controversial way, which conditions are necessary for embodied cognition. A very 
nice summary of this is given by Wilson (2002). She wraps up six of the most 
common claims on cognition found in the literature that to a large degree ask the 
question about the interaction between agent and world, which is a central topic also 
of our paper. 
 
However, one aspect of the EC-discussion is quite puzzling in general. Most of the 
discussion revolves around necessary conditions for a cognitive agent. Little is said 
about what would be sufficient to drive cognitive development. Necessary conditions 
do not specify any on-line procedure, any ontogenetic developmental process, or any 
phylogenetic evolutionary mechanism that could actually drive the development of 
cognition. Hence, from a robotics perspective, necessary conditions are only half of 
the game. If you cannot show (or at least suggest) a process that leads to the 
germination of “something cognitive”, not much has been achieved along those lines.  
 
One possible way out of this dilemma was the idea to let robots develop similar to 
human infants, leading to the growing field of “developmental robotics” (Weng et al., 
2001, Lungarella et al. 2003). For this idea, we, humans, are the proof of concept. 
Hence: build a robot, make it similar to a human, endow it with enough sensor-motor 
complexity, and with a set of useful learning algorithms and let this agent develop and 
learn in interaction with its world and other agents (usually its designers) and you will 
see the emergence of cognition. This can be done with real robots, different from the 
field of “evolutionary robotics”, (Nolfi and Floreano, 2000) which attempts the same 
goals but must almost exclusively rely on simulations, as physical robots cannot have 
offspring and mutate. Both fields have their successes and increasingly complex 
behaviour is observed in such agents, which may some day be (or look) cognitive. 
 
What remains frustrating about these approaches is that self-organization might 
indeed lead to cognition (future will show), but, we are probably none the wiser as it 
is exceedingly difficult and many times totally impossible to gain a deeper 
understanding about the final (developed or evolved) system, let alone about the 
dynamic processes that have led to it2. 
 
While developmental and/or evolutionary robotics may indeed be a way forward, we 
would nonetheless suggest devoting more effort to the denomination, the theoretical 
understanding, and the technical implementation of possible sufficient conditions for 
cognition. One key question is: Is it possible to specify some processes that may in a 
theoretically grounded way lead the way towards cognition in machines? To this end 
we would like to adopt a systems theoretical perspective on agents and their world 
(Ashby, 1952; McFarland, 1989; Walter, 1953), which has the advantage that its 
cybernetic ideology is already “very procedural” as such. In doing so some aspects of 
biological agents (animals and their nervous system) will be discussed, which appear 
to be relevant in this context.  
 
This article is structured as follows. In general we will present several different results 
and ideas on the questions of embodiment, situatedness and cognition. The core 
                                                 
2 Think about self-organization of neural networks as an example. Many algorithms exist for this and a 
wide variety of problems can now be solved by ANNs. On the other hand the theory of ANNs is mostly 
only developed for linear systems and it is very hard to understand more difficult ANNs in an analytic 
way.  
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thread which links them is the aspect of Predictability and procedures which involve 
predictability around which these ideas evolve.  First (section 2) we would like to 
provide an improved systems theoretical perspective on embodiment relying on linear 
systems theory. By this we will define in a more rigorous way what is the body of an 
agent against “the world outside” (Porr and Wörgötter, 2005). This specification has 
direct implications on understanding the interactions between agent and world from 
which cognition might arise. In the next section (3) we will introduce so-called 
“object-action complexes” (OACs) as possible structural entities relevant for 
cognition3 (Hommel et al., 2001).Then (section 4) we will suggest a process by which 
an agent can extend its body-image and show robot experiments for this (4.1) arguing 
that this might be helping the agent to develop cognitive traits (4.2).  Next (section 5) 
we will extend the OAC concept asking which aspects of objects and actions are 
relevant for an agent (animal) and define “Change”, “Repeatability” and 
“Predictability”, falling back on observations from the neurosciences. We will 
implement these aspects in another simple robot experiment (5.1) showing how a 
procedure can be devised by which a machine can discover parts of its world. Finally 
in section 6 we will conclude this article with a discussion. 
 

H

P

Agent

World

H/P H/P

11 +

DUnpredictable
Disturbance

A B C

motor
ouput

sensor
input

 
Fig. 1) Applying linear systems theory to define agent and world. 

2 On Embodiment 
In 2005 we had tried to provide a systems theoretical description of embodiment (Porr 
and Wörgötter, 2005) from the viewpoint of a constructivist (von Foerster, 1960; 
Maturana and Varela, 1980; von Glasersfeld, 1996). This perspective shall also be 
adopted here, because during phylogeny functional traits can only have developed by 
animals interacting with their environment. This situation is depicted by the simple 
diagram in Fig. 1A, where H describes the transfer function of the agent and P the 
transfer function of the world.  Sensor inputs arriving at the agent will through H be 
transformed into motor outputs, while those will – in turn – be transformed into new 
sensor inputs for the agent through P, the transfer function of the world. For example 
the lifting of an object will lead to a changed visual sensation (the object moves), 
where this sensation is different depending on if you have lifted an object submerged 
in water as compared to air (different refraction index leads to different P). Note, this 
diagram describes in the most general sense what it means for an agent to be situated. 
The loop from agent to world and back represents in a systems theoretical diagram the 
notion of situatedness (Thelen and Smith, 1994; Port and van Gelder, 1995; Beer, 
2000). The distinction between H and P corresponds to the distinction between 
“agent” (the agent’s body) and “world”. 

                                                 
3 Note, the concept of OACs is still to some degree “emerging” and being controversially discussed 
(Geib et al. 2006). 
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At that point we had argued that every part of the world which is fully predictable 
could be integrated into the agent (Porr and Wörgötter, 2005). In linear systems theory 
this amounts to dividing the agent’s original transfer function H by P arriving at a new 
transfer function H/P (Fig. 1B). This operation can only be performed if P is known; 
which is the case for all fully predictable aspects of the world. In Fig.1 B this leads to 
the fact that the transfer function of the world vanishes (becomes equal to one). 
Examples for an (incomplete) bodily integration process are the “forgetting about” a 
well-fitting prosthesis, which becomes much integrated in the patient’s body or the 
feeling of a race-car pilot of “becoming united with the machine”. Note, this 
definition (Fig. 1A) and the process of integrating P into H (Fig. 1B) do not rely on 
the physical world. In our sense also non-physical agents (internet robots) can be fully 
situated and embodied as long as they can be described by such system theoretical 
relations (e.g. Etzioni and Weld, 1995). 
 
Integration of P into H, however cannot happen for unpredictable aspects of the world, 
which we called “disturbances” D (Porr and Wörgötter, 2003, 2005). Such 
disturbances can never be integrated into the body of the agent (Fig. 1C). On the 
contrary, unpredictable events from parts of your body can lead to the desire to 
remove the inflicted part (e.g. the removal of a hurting tooth). Clearly these examples 
are only cursory, but the mathematical distinction between predictable and 
unpredictable transfer functions remains valid, by which the body of an agent can in 
principle be set apart from the world. Note, however, Predictability is again only a 
necessary condition for embodiment. Clearly the trajectory of the sun is predictable 
but, in spite of this, the sun cannot be integrated into your body. 
 
Two sufficient conditions, however, can be suggested to complete the definition. 
1) Proximity: The predictable entity, for which bodily integration is to be considered, 
needs to be proximate (or even physically attached4) to the currently existing body of 
the agent. Most of the time this leads to the fact that the current body of the agent will 
be able to exert causal effects on the newly considered body parts5. Note, the notion of 
exerting a (mutually) causal influence is already captured by the division H/P, here we 
are asking under which circumstances such a division – the bodily integration – is 
allowed, for which Proximity is one sufficient condition.  
2) Continuity: The new body part should be integrated for a substantial part of the 
life time of the agent. Hence any alteration to a body will only with time become a 
manifest part of the body (the body-image) of the agent. Bodies are continuous for 
some time. 
 
And so we define:  

Entities which are fully predictable and proximate to the 
(current) body of an agent can be integrated into the body. 
This integration will lead to an alteration of the agent’s body if 
it is continuous relative to the life time of the agent. 

 

                                                 
4 The physical attachment does not have to be mechanical. Think of a WIFI connected system. 
5 Note this relation is transitive. The new body part should also causally affect the old body (if only 
through a load change, after having screwed on the new robot hand). In fact the new body part could be 
much larger than the old body. (Think of a small robot that is being physically integrated into a big 
plant – what is body, what is body-part?) 
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Hence, this definition allows understanding the body of an agent in a constructive way 
(much like “building” a robot). We note that it is not possible to achieve the situation 
of Fig.1B in full, removing the transfer function of the world entirely. Even if all 
entities were predictable for an agent, there would still be many that do not fulfil the 
two sufficient conditions, which would, thus, contribute only to P and never to H. 

2.1. Critical Assessment of the Embodiment Definition 
It seems that the above definition is now capturing each and everything and one might 
ask: are their any agents left at all that are – under this definition – non-embodied?  
More specifically it also seems that the definition of situatedness, by referring to 
closed-loop interactions between agents and world, is identical or very similar to the 
definition of embodiment given here. 
 
Indeed, strong similarities do exist! Let us discuss the different possible cases: 

1. NOT Situated NOT Embodied  
2. Embodied AND Situated 
3. Embodied NOT Situated 
4. Situated NOT Embodied 

 
Case 1 would refer to open-loop systems that are without body (e.g. pure symbol 
manipulation systems). This case is only of theoretical interest here as it would 
represent the archetype of a Cartesian attitude. Case 2 is most common for biological 
systems and robots and it is the case that we have discussed in Fig. 1. There is 
however no principle objection why this case should not hold true for more abstract 
A-life6 creatures like internet agents or computer viruses as long as they obey the 
necessary and sufficient conditions described above within their world.  
Case 3 can also be immediately understood as this represents all open-loop systems, 
which do not feed their output(s) back through the environment onto themselves. 
These systems are not situated. Case 4 makes troubles, it seems. How could a system 
be situated but not embodied? It is by the sufficient condition of Proximity and 
Continuity that this situation can be most easily understood and indeed, biological 
examples of such systems exist, which are swarms of many (embodied) individuals. 
In a swarm the individuals have only fleeting contact with each other. Hence as a 
whole the swarm represents a non-embodied (or very weakly embodied) system, 
which will however indeed influence its environment and also receive feedback from 
it. Cognitive complexity can arise from such (social) systems, for example the 
building of termite mounds, etc. In the context of this article we are, however, not 
concerned with such social, cooperative aspects, which clearly reach out into human 
societies, too, and will only to a minor degree discuss some implications of swarm-
intelligence later. 

3 Object-Action Complexes (OACs) 
The question arises whether this notion of embodiment might be of any use for our 
understanding of agents and their cognitive development. This requires considering 
the processes of agent-world interaction in more detail for which we would like to 
introduce the concept of object-action complexes (OACs). OACs had first been 
discussed by the European PACO+ Consortium as a possible way to better formalize 
the requirements for a machine to approach some level of cognitive complexity. 
OACs are related to state-action transitions e.g. known from machine learning (Sutton 
                                                 
6 A-life=artificial life. 



 7

and Barto, 1998). They rest on the suggestion that objects and actions are inseparably 
intertwined. Starting with Gibson’s notion of affordances (Gibson, 1979): A hollow 
thing with liquid may suggest drinking. For this we define an OAC formally by [O 
→A O’], which says object O suggests action A and transforms under this action into 
object O’ (cup-full to cup-empty) as the final outcome of this action. Note, rigorously 
one should define the OAC with respect to the Attributes (full, empty) of an object 
that get altered by an action. This should be kept in mind when using the abbreviated 
[O →A O’] notation. The notion of OACs, however, goes beyond Gibson and the 
intertwining of Objects and Actions becomes more evident when considering the role 
of Actions more closely. While objects may suggest actions, it is often the action(-
plan) that defines the objectness of a physical thing. This become clear by following 
example:  It is the action of drinking that makes this thing hollow,full “a cup” (“a 
container”, etc.). The decisive influence of the action becomes immediately obvious if 
you plan to turn the thing solid-bottom upside down to use it as “a pedestal” for some 
figurine for your mantelpiece decoration. Hence, the planned and executed action 
turns a thing with some (required) properties into a meaningful object. Depending on 
the planned actions, different properties of the same thing (hollow, full vs. solid 
bottom) become important. Clearly it is a very difficult (cognitive) problem for an 
agent to find out which properties are important and which are not. We will come to 
this later. 
 

O1 O1 O1A1 A1 A2
O3 O3 O’3

O2 O2 O2

O’1

O’2

Object

Agent

A

A B C

 
 

Fig. 2) Different types of transformations of objects by actions 

4 Route to Cognition – Temporary Bodily Integration 
In the following we would like to suggest how the above notions might be helpful in 
defining some processes that could indeed lead to higher behavioural complexity in an 
agent suggesting a possible route to (higher) cognitive traits. 
 
It has long been known that being able to predict the world, or more specifically to 
predict the changes induced by the agent in the world7, leads to improved fitness of 
the agent fostering its survival (and reproduction). Furthermore, a whole field has 
emerged during the last 10 years or so, which tried tries to explain advanced cognitive 
properties by so-called “probabilistic models” (Thrun, Burgard and Fox, 2005; Chater, 
Tenenbaum and Yuille, 2006, see also a special issue in TICS, 2006, on Probabilistic 
Models of Cognition). These models most often rely on Bayesian inference (Bayes, 
1763; Tenenbaum, Griffiths and Kemp, 2006) which is a powerful probabilistic 
method for making predictions.  
 

                                                 
7  It may make sense to point out that we are taking about Predictability from an agent centred 
perspective (actions by the agent). Predicting events that happen in the world without the agent’s doing 
will also improve fitness (“thunder may predict rain”). This refers to temporally related events, which 
follow each other, such that this correlation can be learned. This is, however, an entirely different type 
of predictive mechanism not of relevance in the context of this paper. 
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A frame problem, however, hides here (McCarthy and Hayes 1969, Dennett 1984). In 
a complex world, such as that a robot or human faces, it does not make sense to try to 
predict each and everything. It is, thus, of interest to analyse a bit more in detail from 
a procedural perspective what happens when an agent interacts with the world using 
the OAC concept and bringing it together with some systems theory. This viewpoint 
will lead to the notion of “being predictable and, therefore, we can ignore it” as a 
powerful method allowing the agent to free mental resources and avoid such a 
possible frame problem from starters (see “Some Speculations”, below). 
 
Fig. 2A shows that during the interaction of an agent with an object normally also 
attributes of the agent (O2) will change8. After all the effectors of an agent are also 
just physical objects that will be influenced when getting in touch with another object 
(O1). For biological agents such contacts are most of the time fleeting and of little 
duration as indicated in Fig. 2A by the small contact zone of both OACs. An example 
would be a cat chasing a ball around. A different situation is depicted in Fig. 2B. Here 
a more permanent contact is established between agent and object established by 
action A1. Such cases also exist for animals (a cat holds a mouse between its fangs). A 
new object O3 has this way been formed, however, for most animals follow-up actions 
are normally very restricted and object manipulation cannot be performed (beyond the 
eating of the mouse). This is different for humans and in a restricted way for some 
animals (Hunt, 1996; Povinelli, 2000; Weir, Chappell and Kacelnik, 2002). Dexterous 
manipulation becomes possible by the fact that we can use the newly formed object 
and move it in a predictable way using our hands leading to situation (C) in Fig. 2. 
This notion is not terribly new as such but some interesting conclusions arise when 
looking at the situation in Fig. 2C from a systems theoretical viewpoint. 
 

H H H/P2

+
+ +

D
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D
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P
P1 P1
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Fig. 3) Systems theoretical representation of temporary embodiment. 
 
Fig. 3A depicts a situated agent (human) facing a few disturbances. In the process of 
grasping an object the human will – if successful – be able to make the grasped object 
fully (or at least very) predictable to her. Hence, an entity that had been a disturbance 
(of – say – her visual input space) will first become a predictable entity P2 (Fig. 3B), 
where the human will then be able to temporarily integrate this entity into her body 
(Fig. 3C). The remaining aspects P1 of the world cannot be integrated as they might, 

                                                 
8 According to Petrick and Geib (personal communication) the aspect of an object’s attribute and, thus, 
the OAC definition as such, needs to be more carefully considered. Think about an open door which 
affords the action of walking through, by which the door’s attribute (open) will not change. We believe 
that this does not pose a problem for the definition of OAC as given above, though, as the attribute list 
of the object, can in principle also contain entries about the relation of the agent with respect to the 
object. Fig. 2A suggests that by an action the agent will also change. Or more specifically the relation 
of the agent to the object changes (panels B, C). As O1 and O2 are symmetrical, one could attach an 
attribute to one of them (or to both) which describes their relation to each other. Through the performed 
OAC, this attribute will change. 
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for example, be too unpredictable or too far away or from the agent’s currently 
existing body. The idea that humans (and monkeys) indeed perform temporary bodily 
integration is supported by experimental results that over time cortical receptive fields 
are extended representing the tip of a stick, which a monkey had to use to obtain food 
for an prolonged period of time (Obayashi, Tanaka and Iriki, 2000). Hence a long 
duration, where the processes depicted in Fig.3 had taken place, has in this case even 
led to a long-lasting plastic change of the nervous system of this agent (monkey). 
 
The apparently strange notion of temporary bodily integration becomes much more 
digestible if one thinks of an advanced robot that has grasped a pair of pliers and can 
handle it now with high precision and dexterity. What would prevent us – the robot’s 
designers – from using a few screws to permanently attach these pliers to the body of 
the robot this way making the temporary bodily integration a permanent one? 
This brings us briefly back to swarms: Here one could argue that (social) contacts 
formed between individuals would lead also to an augmented body concept by which 
a swarm can achieve more than any of its members. For slime moulds such contact 
can indeed be permanent and they can, indeed, form a body in the more traditional 
sense. Hence, it seems that gradual transitions and different types of temporary bodies 
do indeed exist. It would be interesting to look at swarms and swarm re-organization 
also from a systems theoretical perspective, but this would go beyond the scope of this 
article. 
 

C
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Fig. 4) Temporary embodiment experiment (for explanation see text). 
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4.1. Robot Experiment – Temporary Embodiment 
In the following we will describe a set of experiments performed with a simple 
industrial robot (Stäubli, Switzerland) demonstrating how the principle of temporary 
bodily integration can be implemented in a machine in a simple algorithmical way to 
provide some support to this idea. 
 
To this end we assume a few things for our machine to be innate: 

A. A visual representation exists by which a scene can be decomposed into 
simple 3-D entities, which we call primitives (see Fig. 4A especially also 
the inset; for technical details see Krüger, Lappe and Wörgötter, 2004). 
Notions of distance (metric) exist therein. 

B. The machine “knows” that coherently moving primitives belong together. 
This is known as the rigid body motion principle (see Faugeras, 1993) and 
corresponds to the prominent Gestalt law of Common Fate. 

C. Through this, the robot has learned about its own body (gripper). This can 
be achieved by a purely correlation based learning process where the robot 
has learned to associate coherent motion in the visual field to the fact that 
there has been a motor command, which the machine has used to perform a 
movement. We assume that the process of knowing its own body is 
basically completed; but that this process keeps on running “in the 
background” to safeguard against incompleteness and errors in the body 
representation. 

D. The machine can move its arm and it has also a certain drive to move its 
arm around (without which nothing would ever happen!) 

E. The machine can push things around by making (visually measured) contact 
to entities in the scene, which do not belong to the machine. Measurement 
relies again on the 3-D primitives for which the concept of distance exist. 

F. A grasping reflex can also be performed with some success, triggered by 
certain geometrical constellations between primitives from the world 
(Aarno et al., 2007). It can feel a successful grasp (haptic sensors) and it 
knows that it cannot perform another grasp without first letting go. Like 
babies, it, however, rather likes to hold on to a grasped entity. After some 
longer time it might however “get bored” and then it releases the object 
(also similar to small children).  

G. It has an exploration drive by which it will first try to grasp a thing and if 
this fails (measured by the haptic sensors at the hands). It will try to push it 
instead. This exploration is triggered by novelty and will start as soon as 
something new (new primitives) are discovered in the scene. 

 
These rather basic sub-procedural components are enough to drive the required 
process. Fig. 4A shows the body-representation of the robot as viewed by itself. All 
black-grey9 primitives have been learned earlier (process C) to belong to its body. In 
the following we will for simplicity use the primitive type “black-gray” like a mental 
concept to graphically depict if a primitive is deemed to belong to the robot. If an 
object enters the visual scene the robot will try to grasp it (process G). If unsuccessful 
it will push it around (process E). This is shown for a not-graspable, upside down, 
                                                 
9 Note, primitives at an edge are always showing two colours, one for the inside, the other for the 
outside. Here the robot appears dark (black) and the background brighter (grey) leading to a black-grey 
primitive.  
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green cup in Fig. 4B, where three movement stages are shown (Fig. 4B1-B3). If a 
grasp is successful (Fig. 4C), it will move the object (process D) like the spoon in Fig. 
4C, where we show seven snapshots of movement stages. At first it will realize that 
the object is represented by many primitives which belong together (process B). This, 
we had at some point called “Birth of an Object” as it represents a step where the 
physical “object-ness” of otherwise purely visual entities (the primitives) can be 
ascertained (Kraft et al., 2007). If the machine does not accidentally drop the object 
but instead moves it for a longer time it will realize that the movement of these 
primitives will (albeit in a complicated geometrical way) be related to its own motor 
actions (process C). As it does not know better it will update its body-image based on 
this sensor-motor correlation and extend it to now include the coherently and 
predictively moving object (process C). This is shown in Fig. 4C by the gradual 
spread of the black-grey primitives along the spoon until the whole spoon is being re- 
coloured. Again we emphasize that this is just a graphical representation of the 
spreading inclusion of the spoon into the body image of the robot.  If a new entity will 
enter the visual field now, sub-process G is triggered again. It feels reluctant to let go 
(process F) and, thus, another grasp is inhibited (also F), hence sub-processes G,E will 
lead to a pushing action now (Fig. 4D). As a consequence this agent, based on very 
primitive sub-processes, begins to perform an interaction between a very simple 
“tool” that extends its body (until it drops it) and the world.  
 
Fig. 4 shows the complete experiment as performed with our robot. Clearly there are 
many more rather technical details that we had to take care of until the robot actually 
could do all this (see Aarno et al., 2007 as well as Kraft et al., 2007 for details), but 
the complete sequence as such does not require an other component beyond those (A-
G) listed above. 

4.2. Some speculations 
What might have been the consequences of such a process for early humans (and 
possibly for nowadays robots)? Clearly, temporary bodily integration spatially 
extends the body of the agent and creates a totally new situatedness. As it is 
predictable, the agent does not have to worry about the new entity and it can largely 
ignore it “as such”. Instead it can now use it to influence the world, thereby vastly 
enlarging its contact points to the world, which, before such processes came into 
being, had been limited to his original, non-extended body only. An agent who has 
realized that through such a process entities of the world can be made predictable 
might also have the chance to discover that it is also possible to operate with 
predictable outcome on other objects out in the world and that chains of predictable 
outcomes can be actively generated (Mendes, Hanus and Call, 2007), even possible 
transforming and shaping the object to a certain ends (Hunt, 1996; Weir, Chappell and 
Kacelnik, 2002). The discovery of the Law of Cause and Effect (Thorndike 1911) 
during evolution of humankind, which appears to be a cornerstone of complex 
cognition10, could, thus, well have been bootstrapped by the horizon enlargement of 
an agent via temporary bodily integration of parts of the world.  
 

                                                 
10 We note, that also other animals have some concept on the basic Law of Cause and Effect (many 
mammals, ravens, etc), but usually only of order one. Hence causal chains remain inaccessible to them. 
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5 Extending the OAC Concept 
Above we had defined an Object-Action Complex by [O →A O’]. Based on this we 
can also define the Change as ∆O = O - O’, where sometimes only the absolute value 
of ∆O is of relevance. Again we emphasize that Change is measured at the object’s 
attributes which change. This subtractive procedure requires a memory process 
because we need to remember a (perceptual) Prior (O) and compare it with a Posterior 
(O’). Similar to the statement we had made a above, we can again point out that it is 
not an easy problem to determine what (which attributes) should be remembered and 
compared. When repeating an OAC the agent can also assess the Expected Change, 
which is < ∆O>, the average Change across trials, together with its standard deviation 
σ∆O called Repeatability 11 . A small standard deviation would represent a high 
repeatability of this OAC, because all Changes are similar. Hence, the Expected 
Change can be considered as an Inner Object Model of a certain OAC. Here we need 
to strongly emphasize that different inner models are also possible. Change may be 
very relevant in general, but sometimes the absolute outcome value or a normalized 
one might be of greater importance for measuring the success of a task. Hence, which 
model to use, depends on the goals and the task of the agent. 
 
But, which attributes are important? When performing a certain OAC many things can 
change: Filling a cup leads to a full, heavier cup, an emptier, lighter coffee pot a 
splashing noise and possibly a change of the illumination (because someone else has 
switched a light on).  Normally, through repetition the agent can find out which 
properties change causally (Thorndike 1911), hence in way correlated to the OAC 
(certainly not the illumination), and this way the agent can improve the Expected 
Change reaching smaller values of σ∆O with more and more trials12. Here we note that 
we have tacitly assumed that the agent will be able to perform “fairly optimal” actions. 
Hence, the filling-action as such ought not to introduce additional contingencies 
which affect Change and Expected Outcome. In reality – say for small children – this 
in not necessarily the case. Hence such “clumsy” agents need to improve their actions 
in parallel to updating the Expected Outcome of the corresponding OAC. Thus, 
Action Models as well as Inner Object Models need to be updated and improved in 
parallel. Assuring convergence of such a double-procedure is far from trivial and we 
will discuss some aspects later. 
 
Storing Expected Change and Deviation of course requires also some kind of memory. 
A simple way to measure the Unpredictability P of an OAC is to calculate P= 
abs(∆O - < ∆O>), Change for a single trial minus Expected Change13. If your actions 
are ok, and your inner object model is complete you should find that actual action 
outcome and expected outcome match. Hence, this OAC is then highly predictable 
and P is small. Humans keep on trying when an attempted OAC keeps on leading to 
an unpredictable outcome. On the other hand, they are getting bored and stop 
repeating actions for which a predictable outcome is again and again obtained. 

                                                 
11 Note: As everyone is used to associate a small standard deviation to “good” and a large one to “bad”, 
we will keep on calling σ∆O the Repeatability and not the Unrepeatability (but compare to 
“Unpredictability” defined later.) 
12 Alternatively a teacher can tell the agent to “pay attention to” a certain change (similar what we often 
do with our kids), which is a much more efficient procedure as compared to many required repetitions 
in trial and error learning. 
13 Note, we define (Un-)Predictability as predicting change, not predicting status-quo. 
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Boredom14, hence comes with high Repeatability which corresponds to a small value 
of σ∆O. One more thing should be reasonably assumed. Agents should not average 
Change and Predictability over their complete life span, Forgetting – hence limiting 
the averaging window – will help to remove the influence of early trials on the inner 
model (which are most of the time much more erroneous than later trials). 
 
The notions above heavily rely on the aspect of Change, Expected Change and 
Predictability. The nervous system of (probably all) animals is highly change sensitive 
and vastly neglects constant inputs as almost all neurons respond in an adaptive way 
(“phasic”) bringing their activity levels back to (near) zero if their inputs remain 
constant. Hence, without over-stating, it seems fair to say that Change is the most 
relevant aspect of the world for biological agents. 

5.1. Robot Experiments – Discovery by Doing 
 
The considerations above suggest that Predictability will allow an agent to extend its 
body, but it will also allow for “discovering the world” in a reliable way.  This has 
been done in another set of experiments with a much simpler robot that has learned 
some rules and inner models of cause-effect relations by interacting with a human 
teacher. Here we cannot describe the full algorithmic procedure (see Agostini et al., 
2008 for details), but the underlying idea is that the robot simultaneously learns cause-
effects relations and rules while experiencing situations in accordance to a goal 
oriented behaviour. The cause-effects experienced are dictated by the rules and 
supervised by a teacher. The learned cause-effect pairs represent a particular coding of 
the model of the world strongly related to the concepts of OACs. In this work, we 
would like to show how the procedure of learning cause-effects can be general 
delineated in terms of the concepts of Change, Predictability, etc, developed above.  
Thus, we need to define a rather general process for the discovery and accumulation 
of knowledge by an agent. Clearly this process does not have to be the only one, 
rather it is meant as an example that the consequent employment of the above 
discussed principles could lead to a smarter agent.  In the following we will not 
discuss how an agent would make a choice (decision making), this is a different issue 
unrelated to the model building for OACs. The same is true for planning, which also 
is not considered here. Hence, in a sense we are strictly dealing with a procedure for 
interactive OAC learning and model update. 

Table 1: Definitions 
Let us come back to our definition of 
OAC, Change, Expected Outcome, and 
especially Unpredictability P= abs(∆O - 
< ∆O>), Change for a single trial minus 
Expected Change15. As the definition of 
P relies only on (cumulative) changes it 
is independent of the specific OAC 
performed and we can measure the Success of any OAC by holding P against some 
threshold Ф. If P< ФS the OAC was successful.  

                                                 
14 It is equally possible to use these quantities to define other psychologically relevant entities, like 
Frustration, which would arise if Repeatability does not get better. 
15 We note that all these definitions apply to one given OAC. Any other OAC will have values for these 
entities on its own.  This would require an index, which we would like to avoid for easier writing and 
more clarity. 

∆O Change 
< ∆O> Average Change 
σ∆O Repeatability 
P Unpredictability 
ФS Success Threshold 
ФB Boredom Threshold 
N,B Counters 



 14

 
 
Cleary, success thresholds should change with praxis. An inexperienced young child 
building a LEGO toy house will have a different (in this definition: higher) success 
threshold than an experienced adult16. Especially, when performing an OAC for the 

                                                 
16 These definitions are strictly following a constructivist attitude and, hence, rely entirely on the agents 
own interactions with the world, where we assume that minimization of Repeatability σ∆O is the agent’s 
target function for improving on an OAC. Clearly other target functions could be imposed on the agent 
also by ways of a teacher (hence “from the outside”), which would however, not alter the arguments 

Note: All variables, counters, etc. are without index, but are always specific for the one OAC to which they belong! 
Note: N counts how often a given OAC has been performed during the life-time of the experiment; B counts how 
often it has been performed one after the other (in a sequence). 
1:         Initialize everything 
2. OAC:      Perceive situation 
3:        Match against Memory and select all possible performable OACs and keep 

                                                        them for possible use below (code lines 11+) 
 
The following lines (4-10) assess the result from the last-performed OAC 
4:        If σ∆O < ФB  or B large (Boredom) (Agent was getting bored by the last trial) 
5:  if existing, select any performable OAC different from last 
6:  else Goto NOAC (there are no OACs known to be performable, ask for a new one!) 
7:        Else 
8:        If N small and P> ФS (we had a Failure last trial but are not sure if this was chance or not) 
9:  if performable again, select the same OAC (try again to rule out chance) 
10:  else continue (same OAC is in this situation not performable, try another existing or new) 
 
In all other cases: Exploration 
11:        Else  
12:        If some performable OACs exist  
13:  Choose OAC freely (normally in a task oriented way) 
14:        Else { 
15: NOAC:      Ask for a new OAC (a new OAC is given by the supervisor) 
16:   Set N= B= ∆O = <∆O> = 0 and ФS= ФB = σ∆O = large (Initialize) } 
 
17:        If current OAC different from previous OAC 
18:               Set B=0 (Repetition counter which assesses Boredom) 
19:        Perform OAC 
20:        Increase counters B and N 
21:        Measure ∆O (Change) 
22:        Calculate P=abs(∆O - < ∆O>) (Unpredictability) 
23:        If P< ФS (Success) { 
24:  Update  < ∆O> and  σ∆O (Model Update) 
25:  Lower ФS (Be more demanding on Success next time!) 
26:  Change ФB (if desired) 
27:  Goto OAC } 
28:       Else (Surprise) (don’t do any model update, something is “funny”) 
29: Goto OAC 
30:       End 
Note: The selection of OACs can (but does not have to) be performed so as to try to resolve a previously experienced 
surprise, which is the case for the PFR in Fig. 5 which resolves a surprise that prevented a previously attempted “Go” 
OAC. The procedure is supervised to the degree that the agent will indicate if none of its OACs can be performed 
(code line 3) in a given situation (code line 2). The agent will in this case ask for an instruction. 
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first time, its success threshold should be very high, because the agent does not know 
about any Expected Change. Failure occurs for P> ФS and this may lead to Surprise 
and the triggering of a different OAC, possibly for resolving the Surprise, or it may 
lead to the repetition of the current OAC to check the consistency of the Failure. Thus, 
Surprise arising from an unpredictable situation can be one strong driving force for 
the discovery of the world by a machine. Note, Surprise is not the only driving force. 
Even without Failures (which lead to Surprise) exploration can be triggered by 
Boredom. If Repeatability is too good, hence σ∆O < ФB, or if an OAC has been 
performed too often one after the other the agent should be getting bored, which 
would trigger another OAC. All this suggests now a procedure for an agent for 
acquiring knowledge about the world as shown in the box. Together with the bodily 
extension discussed above the agent could then especially also acquire knowledge 
about the world beyond the reach of its own effectors. In the process of performing 
this iteration between Model Update and Exploration, the agent will acquire improved 
models for the OACs it has tried; hence, it will learn about some cause-effect relations. 
If bored, it will try out something new and it will, possibly by the help of a teacher, try 
to resolve Surprises. Clearly this procedure can be augmented by many facets and 
such a “discover-by-doing” process is not limited to the above described pseudo-code.  
 
Several things need to be discussed. For example, it is necessary to comment on the 
statement “….to resolve the Surprise…” brought up above. Many times surprise will 
arise if an agent faces a presumably known situation (a cup) but with an as yet 
undiscovered attribute (closed). A well-tried OAC (cup-filling) will now fail, 
triggering surprise. The agent could in this case indeed (via trial and error or by being 
taught) try to discover that only Cupopen can be filled. This way it would resolve the 
surprise.  One also needs to be aware that we are assuming that the agent has a certain 
reliable action repertoire. This assumption would however not really hold for babies 
where the action repertoire is limited and unreliable. How can they learn? After all, 
such inept agents face a two-fold difficulty: They have to update their inner object 
model and they need to improve their actions at the same time. This, however, is an 
ill-posed problem. At least one of the two (inner object model or action) ought to be 
fairly reliable, without which the agent cannot update the other as it would not know 
from where a contingency arises. How can human babies, who are faced with this 
dilemma, solve this problem? We believe that their bodily limitations are the answer. 
Their limited action repertoire and their very limited reach leads in the beginning to 
only very simple cause-effect relations with very wide allowance for the resulting 
effects. As a consequence of these imposed limitations they will stumble across OACs 
“regardless of what they are doing”. Hence, the constraining element comes from 
their bodies and from the specific very restricted situatedness in which they find 
themselves. We would argue that these constraints are probably enough the make a 
simultaneous action improvement and inner object model update convergent. 
 
In the context of this article the complete “Discovery-by-Doing” procedure cannot be 
described, but we can show results for a robot that is supposed to learn the rules of 
how to clear a path in front of it by pushing boxes away. Note, as this is meant to 
exemplify the concepts, the logic in the following example is not fully rigorous and 
complete (see Agostini et al., 2008 for a fully operational version of this). Initially, the 
                                                                                                                                            
presented in the following. We note that self-estimation of statistical correlation properties, like 
through < ∆O> and σ∆O, is a very time-consuming process (trial and error learning). Other forms of 
learning, which provide a target function from the outside (supervised learning) are quicker, but the 
target function may not match the agents own goals. 
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robot assumes that it can move forward regardless of any visual input (OAC: “Go” 
forward, code lines roughly 2,3,11,13,17-22). It will update its inner model of this 
OAC (in vision space, code lines 23→24-27), which, however, will be just an empty 
space as moving over an empty space will in this case lead also into an empty space. 
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Fig. 5) Different OACs for a box-pushing robot. A) Schematic, B) Five trials of the PFR action. A) 
Abbreviations: Red denotes an OAC where the subscript represents the attribute list with: ¬ logical 
NOT, v OR, ^ AND. The attribute (Av¬A) stands for “anything”. Above the red arrow stands the 
action of the OAC (adopting the robots view point: “Go”, go forward; “PFR”, push box from the right 
sideways; “PL”, push left box downward). The symbol √ stands for success, while x denotes a failure. 
Small numbers below individual trials refer to the code lines in the pseudo code (see box). The dashed 
vertical lines denote Surprise as a consequence of failure. X, Y are arbitrarily denoted observable 
attributes that change their state (blue arrow) following actions PFR or PL. The long black back-
arrows denote that the robot can, after having cleared one obstacle, return to any of the previous 
OACs, in accordance to the acting criterion (policy, instructed, etc). Furthermore, for the “PL” 
situation it is not relevant if attribute X or ¬X exists, hence X does not show up in the “PL”-OAC.  B) 
Shown are perceptual priors and their posterior after the PRF action. The gradual development of the 
inner model is depicted at the bottom, for graphical reasons, however, here given by absolute grey 
values and not by Change. 
 
However, it will eventually encounter a Surprise whenever something blocks its way 
(the go-forward OAC falls below its success threshold, code lines 23→28,29). As the 
surprise is genuine (code lines 2,3,7,8→10), the human instructs the robot to perform 
a certain (pre-programmed, hence reflex-like) action called “push the obstacle from 
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the  right” by which the obstacle can be removed (code lines 15). The robot will 
perform the new action, measure the outcome (code lines 16-22), record it into a new 
inner model storage area (23→24-27), and update the policy coding by generating 
rules in accordance to this new OAC. The robot is then artificially forced by us to 
move back to its staring position. If it does not see anything it will perform a “go-
forward” OAC, if it encounters the same blocker again it will now weakly assume 
(hence with high threshold ФS) that the same situation allows for the same “push-
from-right” OAC which will lead to success and to the removal of the blocker. 
 
Hence, if it tries this for the second time the machine will average the new outcome 
with the previously received result and this way it will arrive at a better inner object 
model (Expected Change) at the same time threshold ФS will be lowered.  In panel B 
of Fig. 5 we show five real experiments of the robot performing the PFR action. 
Cleary neither the initial situations are identical nor are the outcomes. The 
development of an inner model for the outcome of PFR is shown at the bottom. To 
provide an easier intuition we are using here absolute grey value averages O and 
calculate <O> instead of changes ∆O to calculate < ∆O>. Note, as emphasized above 
different types of inner models may be calculated by an agent (absolute, relative, 
normalized, etc., etc.) depending on the task. 

6 Conclusion 
Many of the notions put forward in this article had been presented at least in parts by 
other authors, which we have tried to acknowledge along the way. So this paper hopes 
to contribute to the discussions on embodied cognition by its different (systems 
theoretical) perspective as well as by the attempt to find an uninterrupted procedure, 
based on the evaluation of Change and Predictability, towards more cognitive 
complexity. “Uninterrupted” means here that the same principles have probably been 
valid for our primordial ancestors and are still applicable for us and our children 
(which we teach). It is plainly impossible to draw all cross-links to prior work and 
some aspects (like Piaget’s view, which had just also surfaced a bit, Piaget, 1930) 
have been totally left out. 
 
Thus, in this article we have tried to provide a procedural perspective on embodiment 
and cognition using ideas from linear systems theory to explain our assumptions. This 
Ansatz allows disentangling the concept of embodiment from that of situatedness and 
relies heavily on concepts of “Change” and “Predictability”, which are prevalent in 
neuronal responses. Specifically, we tried to show what happens to a system when an 
agent is able to manipulate an object in a predictable way: From a systems theoretical 
viewpoint this object then becomes temporarily integrated into the agent’s body.  By 
ways of simple robot experiments we have shown that the idea of temporary bodily 
integration can be consistently represented on a machine using the principle of rigid 
body motion (RBM) to integrate entities into the body image of the agent as soon as 
those entities move coherently and if this happens together with a motor command 
that the agent has produced. Given preconditions A-G above, this process relies then 
only on signal correlations and does not need any teacher or other external influence 
(which could not have been there anyways during evolution). 
 
In the following we had discussed how a process (relying on Change, Predictability, 
Surprise and Boredom) can be formulated by which a robot can (with help) discover 
the rules of its world. This is achieved by exploration, repetition, surprise and the 
resolving of surprise, which can either be achieved by a teacher (like in Fig. 5A 



 18

“Instruction”) or through trial and error learning. Trial and error learning makes such 
procedural trees accessible already early in human evolution, where supervision has 
still not played a big role and learning was almost exclusively by trial and error. 
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