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1. Executive Summary

The core focus of WP5 is the generalization of the action representation developed in WP2, WP3, and
WP4 to cover communicative acts, and the formalization of syntax and semantics for communication and
interaction in natural language with situated purposeful agents, together with mechanisms for the acquisition
of grammar from sentence-meaning pairs. The deliverable and the attached papers show how the LDEC
action representation and the associated PKS planner developed under WP4 and described in D4.3.1 can both
be induced from lower-level representations of states and state transitions, and provide a basis for natural
language semantics at the higher level of Combinatory Categorial Grammar. The associated deliverable 5.2
describes the computational problem of natural language acquisition. Both of these papers are theoretical
and look ahead to the next phase of the project, since at this stage, as was anticipated in the plan of work in
the annex, the grounded linguistic semantics that will provide the basis for learning is yet to be developed.

Combinatory Categorial Grammar (CCG, Steedman 2000) is a theory of grammar according to which all
language-specific grammatical information resides in the lexicon. A small universal set of strictly type-
driven, non-structure dependent, syntactic rules (based on Curry’s combinators B, S, and T) then “projects”
lexical items into sentence-meaning pairs and defines the mapping from one to the other.

Steedman (2002b,a) showed how the same set of combinatory operations were involved in human and
animal non-linguistic planning, and defined a Linear Dynamic version of the Event Calculus (LDEC) as a
notation for such a planner. Work by UEDIN under PACO-PLUS support reported under deliverable D4.3.1
implements LDEC as a high-level symbolic planner under the PKS framework of Petrick and Bacchus
(2002, 2004).

The present report analyzes the problem of connecting this planner to observable state-changes brought
about by robot sensory-motor systems, on the one hand, and the lexicon and the grammar used by the
language system on the other. It is proposed to use an associative memory such as the associative net of
Willshaw (1981) both to associate affordance concepts with representations of initial conditions of actions,
and to represent state-change or STRIPS-style action updates Fikes and Nilsson (1971). This representation
is unusual in mapping the sensory map or manifold onto symbolic names for actions and their effects,
as a basis for learning from experience. These actions are of the type that can be reasoned about by the
PKS/LDEC planner described in Paco-Plus deliverable D4.3.1. This report describes the process whereby
they will form the basis of the linguistic semantics that forms the basis for language learning described
in deliverable D5.2, once the low level action domain is specified in terms of the Object Action Complex
(OAC) representation. Certain extensions to the planner to handle specific types of action involved in speech
acts for constructing dialogs to create shared plans are also described.

The document comprises two papers that describe this work, as follows:

A: Foundations of Universal Grammar in Planned Action (to appear in Christiansen, Collins and Edelman
2007, Language Universals, Oxford University Press). This paper sketches the complete path between
an attentional manifold of localized facts and a representation of action and change to the level of
symbolic action, the nature of the conceptual system for the planner, and its relation to the lexicon
and grammar. The low-level associative representation is the subject of continuing research and is
yet to be linked to the specific representations used in the various robot platforms of the project. The
high level grammar that will be used in the project itself awaits further specification of the robot action
domains. However, the paper establishes that the CCG grammar formalism is transparent to the action
representation. The significance of this link is that a variety of efficient applicable parsers for CCG
already exist, and will be readily adaptable to the demands of PacoPlus.

B: Planning Dialog Actions (draft, to be submitted to AAAI 2007). This paper applies the PKS and
LDEC formalisms developed under deliverable 4.3.1 to the analysis of speech acts to support dialog
planning in PacoPlus. It shows that dialog acts can be treated analogously to perceptual sensing
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acts in standard planning using PKS. The problem of dialog planning is treated with full generality,
and a number of examples involving indirect speech acts and so-called conversational implicature
are shown to fall out of formalism, including some important asymmetries in such effects that have
not hitherto been commented on in the literature. While some of the effects discussed here (such as
sarcasm) are unlikely to be directly involved in dialog with PacoPlus robotic agents, it is the general
human tendency to interpolate unconstrained inference concerning indirection and implicature that
notoriously causes mixed-initiative dialog to diverge and collapse. It follows that this capability needs
to be represented in our systems.

2. Role of PKS/LDEC and situated dialog in PacoPlus

PKS/LDEC provides a unifying theoretical framework for the various low-level action representations used
in PacoPlus, and a practical mechanism for their integration with high level planning and interaction in
natural language.

3. Relation to Demonstrator 8.1

The lower-level concerns of the representation discussed in this report have been influential in determining
the form of representations used in WP8.1 as reported in D8.1.1. The dialog component is relevant to future
interactive demos.

4. Principal Scientific Results

The work described in this report completes the theoretical path between low-level sensory-related and high-
level plan-related and language-related representations for the Paco-Plus project as a whole. It embodies
the knowledge base for reasoning about shared plans and actions grounded in the system developed under
WPs 2,3 and 4. The claim is that it is a logical necessity that the various low-level representations of the
project compile into intermediate level representations of the kind represented here in order to interface
with cognitive systems for shared planning and language interaction. Because of the transparent relation
to the low-level representations, the high level representation will in turn be shaped and informed by its
distinctively embodied and grounded character. A second result is to show that such an action representation
may be robust to the conversational inference processes of users that tend otherwise to make mixed-initiative
dialog systems fail in practise.

5. Future Work

A number of questions remain open at the time of of this report and constitute further work.

1. While the input to the system is described as a map or manifold of located structured meanings the
precise inventory of such features is left open in order to accommodate the various needs of the various
low-level platforms. This picture will be refined over the coming months with partners in WP2,3, and
4.

2. While the device that maps state changes in such feature maps across time onto affordances or action
concepts is currently assumed to be an associative net, issues such as storage efficiency may call for
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other models of associative memory, such as the Holographic Reduced Representations (HRR) of
Plate (1994) may be called for.

3. While the learning mechanism for the associative memory is described in terms of a generalization
to the Perceptron Learning Algorithm (possibly using the “Kernel Trick” discussed by Freund and
Shapire 1999) the generalization to the LDEC rule representation learning remains incomplete at the
time of reporting.

4. The implementation of the dialog planner is incomplete at the time of reporting.

5. The next phase of the planner development will include incorporation of probabilistic models appro-
priate to the types of nondeterminacy that will undoubtedly arise from low level perception. There is
work of this kind in the US using a very different planner framework by Leslie Kaelbling’s group at
MIT (Zettlemoyer, Pasula and Kaelbling 2005), which we are following closely.

6. Publications Associated with D5.1

1. M. Steedman, 2006: “Foundations of Universal Grammar in Planned Action” in Christiansen, Collins
and Edelman, (eds.), Language Universals, Oxford University Press.

2. M. Steedman and R. Petrick, 2007: “Planning Dialog Actions,” to be submitted to AAAI 2007.
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7. Annexes

A. Foundations of Universal Grammar in Planned Action

Mark Steedman

This paper attempts to link the specific form taken by the universal grammatical mechanism that projects
the finite lexicon of any given language onto the infinite set of strings of words paired with meanings that
constitute that language to a more primitive capacity for planning, or constructing sequences of actions
that culminate in an intended goal. A central consideration in defining this system is that of how action
representations can be learned from interaction with the physical world.

B. Planning Dialog Actions

Mark Steedman and Ron Petrick

The problem of planning dialog moves can be viewed as an instance of a more general AI problem of
planning with sensing actions. Planning with sensing actions is complicated by the fact that such actions
engender potentially infinite state-spaces. We adapt the PKS planner and the linear dynamic event calculus
to the representation of dialog acts, and show potential beneficial consequences for planning mixed-initiative
collaborative discourse.
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Mark Steedman
University of Edinburgh

steedman@inf.ed.ac.uk
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This paper attempts to link the specific form taken by the universal grammatical mechanism
that projects the finite lexicon of any given language onto the infinite set of strings of words
paired with meanings that constitute that language to a moreprimitive capacity forplanning, or
constructing sequences of actions that culminate in an intended goal. A central consideration in
defining this system is that of how action representations can be learned from interaction with
the physical world.

1 Universal Grammar

Two rather different kinds of phenomenon trade under the name of linguistic universals. The
first are often expressed as implicational rules of the form “if a language has property P it has
property Q”. An example is Greenberg’s (1963) Universal 3, “Languages with dominant VSO
order are always prepositional”. While sometimes stated asdeterministic laws, such rules almost
always admit exceptions (as Greenberg 3 does—Dryer 1992:83), and should be regarded as
probabilistic, arising either from the origins of most prepositions as verbs rather than adnominals,
or from a requirement for efficient encoding to ensure easy learnability of the grammar as a
whole, rather than as rules of universal grammar as such. Languages are free to violate such
constraints, just so long as they do not violate so many of them as to make life unreasonably
difficult for the child language learner.

The second kind often take the form of claims of the form “No natural language does X” or
“every natural language does Y”, and seem more like strict constraints on human language, such
as that every language has nouns, or transitive verbs, or relative clauses. This second type of uni-
versal is further divided into three types: “substantive” universals, “functional” universals, and
“formal” universals, although there is some confusion in the literature concerning the definition
of these types.1

∗Thanks to Chris Geib, Kira Mourão, Ron Petrick and Matthew Stone. The work was supported in part by the SE
Edinburgh-Stanford Link grant Sounds of Discourse and EU IST grant FP6-2004-IST-4-27657 PACO-PLUS.

1The following distinctions follow Chomsky 1995. Chomsky 1965:27-30 distinguishes only between substantive
and formal universals. However, the specific instances of formal universal cited there include some that under the
definition of Chomsky 1995:54-55 would be classified as substantive or functional. To the extent that formal universals
are discussed at all in Chomsky 1995:16,222, it is clear thatthe definition is the restricted one stated below, in contrast
to that in Lasnik and Uriagereka 2005:12, where functional universals are referred to in passing as “formal,” threatening
to lose an important distinction.
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Substantive Universals, such as the ubiquity of nouns and transitive verbs are to do with
content, and are determined by ontology, or the way our interactions with the physical and men-
tal world structure mental representations, and hence semantics, into categories like mothers,
dogs, and grasping. Functional Universals, such as the ubiquity of complementizers, case, tense,
definiteness and the like, are determined by relations amongsubstantive entities. Both substan-
tive and functional categories are represented lexically by morphemes, although at least some
functional categories are almost always morphologically implicit or “unmarked” in any given
language. This distinction therefore corresponds quite closely to traditional notions of “open
class” vs. “closed class” items, or “stems” vs. “inflections” and “function words.

The third class, the Formal Universals, are rather different. These relate to the inventory of
syntactic operations that combine substantive and functional categories, and project their charac-
teristics and meanings onto sentences and logical forms. Such universals concern the mathemat-
ical or automata-theoretic class of operations that are countenanced in the theory of grammar,
and take the form of statements such as “Natural languages fall outside the class of context-free
languages” (Chomsky 1957). Such universals are not statistical in nature: one example of a nat-
ural language (or in this case, natural language constructions, as in Huybregts 1984 and Shieber
1985) that is provably non-context-free proves the claim, even if natural language constructions
in general are, in fact “with overwhelmingly greater than chance frequency,” context free.

It is often quite hard to decide to what type a given universalclaim should be assigned.
Greenberg’s Universal 20 claims that only six of the twenty-four possible linear orderings of the
categories Dem(onstrative), Num(ber), A(djective), and N(oun) exhibited in English NPs like
These five young ladsare universally attested. While Greenberg sampled only thirty languages,
and eight further orders have since been attested (Hawkins 1983; Cinque 2005), they modify the
statement of the universal itself, not its statistical strength.

Similarly, Ross (1970) described a universal relating “gapping” or deletion of the verb under
coordination with base constituent order. The pattern can be summarized as follows for the three
dominant sentential constituent orders (asterisks indicate the excluded cases):

(1) SVO: *SO and SVO SVO and SO
VSO: *SO and VSO VSO and SO
SOV: SO and SOV *SOV and SO

This observation can be generalized to individual constructions within a language: just about any
construction in which an element apparently goes missing preserves canonical word order in an
analogous fashion. For example, English ditransitive verbs subcategorize for two complements
on their right, like VSO verbs. In the following “argument cluster” coordination, it is indeed in
the right conjunct that the verb goes missing:

(2) Give Thelma a book, and Louise a record.

At first glance, this observation looks like an implicational universal, and indeed there were
early claims for exceptions, form languages like Dutch (SOV) and Zapotec (VSO, Rosenbaum
1977), which allow both patterns. However, both those languages can be claimed to have mixed
base order, and if the claim is relativized to constructionsit can be seen as making a claim about
the universal apparatus for projecting lexically specifiedconstructions onto sentences, and hence
as a claim about a formal universal.

2



2 Universal Semantics

The only really plausible source for grammatical universals of the second, non-statistical, kind
is the semantics, which in turn is determined by the specific nature of our interactions with the
world, and the concepts that those interactions engender (Chomsky 1965:27-30; Pinker 1979;
Newmeyer 2005). The reasoning is as follows. The only reasonfor natural language grammar to
exist at all is to support semantic interpretation, as a basis for reasoning about joint action in the
world with other members of a language community. Furthermore, we know that syntactic gram-
mars for even the simplest language classes cannot be exactly induced on the basis of exposure
to strings from the language alone (Gold 1967). (While Horning 1969 showed that grammars
of any such class can technically be approximated to any desired degree of probable error by
automatically induced statistical models, and such approximations are in fact quite practically
applicable to problems such as word disambiguation for automatic speech recognition, such
statistical approximation carries exponentially growingcommputational costs. It is also quite
unclear how such approximations can support semantic interpretation.) We also know that exact
induction of even quite high classes of (monotonic) grammarfrom strings paired with labeled
trees corresponding to the yield of the grammar for that string is essentially trivial (apart from
the problem of noise in the input and consequent error) (Buszkowski and Penn 1990; Siskind
1996; Villavicencio 2002; Zettlemoyer and Collins 2005). It follows that the simplest hypoth-
esis concerning the way children acquire their native language is that they induce its syntactic
grammar from pairings of strings and logical forms representing meaning. On this assumption,
language universals must reflect the properties of a universal grammar of logical form, in which
the structure of predicates and arguments carves nature (including our own being) at the joints
in just one way, ideally suited to reasoning about it.

Of course, to say this much is not terribly helpful. The putative grammar of logical form
itself has a syntax, which can in turn only be explained as arising from a semantics that must
be specified in a much stronger sense, using a model theory whose details will ultimatedly be
determined by the nature of our own and our remote non-human ancestor’s interactions with the
world. Worse still, our grasp on this kind of semantics is (asChomsky never tires of pointing out)
even shakier than our grasp on linguistic syntax, mainly because our formal and intuitive grasp
of such dynamic systems is much weaker than that of static declaritive systems. Nevertheless,
this must be where linguistic universals originate.

This is easiest to see in terms of substantive and functionaluniversals—that is, those that
relate to content and category of morphemes, words, and constituents. For example, if it is the
case that all natural languages have transitive verbs, or that no language has a verb allowing more
than four arguments (Steedman 1993, 2000b; Newmeyer 2005:5, citing Pesetsky 1995), then the
universal logical form must include all and only such relations.2 If languages are nevertheless
free to specify the position of the verb with respect to its arguments as initial, second position, or
final, then we may suspect that the universal grammar of logical form specifies only dominance
relations, not linear order.3

2I shall use the term “transitive” indiscriminately, to cover all verbs taking a second argument such as NP, PP, VP, or
S in addition to the subject

3The fact that UG “cannot count beyond two”—that is, that no language requires its verb to be in third position, next-
to-last position, etc. (Newmeyer 2005:4)—must also be semantic, say because of an association between first position
and notions such as “topic”.

3



But it is also true of the formal universals—that is, those that govern the types of rule that
combine constituents or categories, projecting their properties onto larger structures. For ex-
ample, the main reason for believing in a formal universal tothe effect that natural language
grammar formalisms must be of at least the expressive power of context free grammars is not
that intrinsically non-finite state fragments of languageslike English can be identified. All at-
tested and in fact humanly possible instances of such strings can be recognized by covering
finite-state machines, and human beings must in some sense actually be finite state machines.
The real reason is that no-one can see any way to parsimoniously capture the one part of the
semantics that we do have a reasonably good understanding of, namely compositional projection
of function-argument relations under constructions like complementization and relative clause-
formation, governed by the particular type of transitive verbs that take sentences as complement,
other than by simulating an infinite state, push-down automaton.4

Unfortunately, that is about as far as our intuitions take us. The way in which individual lan-
guages reflect the putative underlying universal is not verytransparent to us as linguists (although
it must be transparent to the child). For example, some languages like English lexicalize com-
plex complex causatives like “he was running across the street” with special transitive versions
of verbs likerun taking PP complements. Other languages, like French, appear to lexicalize the
elements of the underlying causative logical form more literally, in expressions like “Il êtait en
train de traverser la rue à la course.”5 Moreover, even such apparently painstakingly elaborated
expressions do not seem to be anywhere near complete in explicitly identifying sufficient truth-
conditions for such utterances about a specific situation (such as one in which the subject of the
remark never reached the destination), and in fact it is verydifficult to specify such truth condi-
tions for any language. The reason is that such conditions seem to include the intentions which
motivated the subject’s plan of action, together with the “normal” consequences that could be
anticipated, as well as the physical action itself. This fact engenders the “imperfective paradox”
that it is possible to truthfully say “he was running across the street” (but not “he ran across
the street”), even if the person in question never reached the other side, just in case what he did
would normally have resulted in his doing so (see Dowty 1979,and much subsequent work).

This paper argues that, if one wants to truly understand thissemantics, and the form of the
linguistic universals that it determines, it is be necessary to simultaneously investigate the nature
of action representations capable of supporting notions ofteleology and change of state, together
with the ways such representations can be learned in interaction with experience of the world,
and the ways in which the specific form that human knowledge representations takes follows
from that experience, and determines observed and predicted grammatical universals. The fact
that we find it difficult to specify such knowledge representations using the logics that have
been developed for other more mathematical inquiries should make us expect to find the form of
such grounded and experientially induced knowledge representations quite surprising, and rather
unlike the hand-built representations for common-sense knowledge or “naive physics” that have
been proposed in the AI literature (Hayes 1979,passim).

4In this sense, the emphasis in Hauser, Chomsky and Fitch 2002on the evolution of recursion itself as the crucial
element distinguishing human cognition and language from animal cognition may be misplaced. It must be the evolution
of concepts that intrinsically require recursive definitionsthat separates us from other animals. Recursive concepts of
mutual belief seem to be plausible candidates, as Tomasello1999 has suggested.

5Many of these explicit elements like “à la course” are of course often elided in actual French utterance in context,
making the problem of automatic translation much harder.
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3 Representing Change and Reasoning About Action

The problem of planning is the problem of finding a sequence ofactionsα, β, etc. through a state
space of the kind represented in figure 1. This structure, in which blobs representstates(which

α
βαβ

Figure 1: Kripke Model of Causal Accessibility Relation

we can think of as vectors of values of facts or propositions), and directed arcs representactions
that transform one state into another (which we can think of as finite-state transducers from one
state vector to another), is known as a S4 Kripke model. We candefine a planning calculus over
such models as follows.

3.1 The Linear Dynamic Event Calculus

The Linear Dynamic Event Calculus (LDEC) combines the insights of the Event Calculus of
Kowalski and Sergot (1986), itself a descendant of the Situation Calculus of McCarthy and
Hayes (1969) and the STRIPS planner of Fikes and Nilsson (1971), with the Dynamic and Linear
Logics that were developed by Harel (1984), Girard (1987) and others.

Dynamic logics are a form of modal logic in which the2 and3 modalities are relativized
to particular events. For example, if a (possibly nondeterministic) program or commandα com-
putes a functionF over the integers, then we may write the following:6

(3) n≥ 0⇒ [α](y = F(n))

This can be read as “ifn ≥ 0, executing the actionα always results in a situation in which
y= F(n)”. (dually) that “in any situation in whichn≥0, there is an execution ofα that terminates
with y = F(n)”.

We can think of this modality as defining a logic whose models are Kripke diagrams in which
accessibility between possible worlds corresponds to state-changing events. Such events can be
defined as mappings between situations or partially specified possible worlds, defined in terms
of conditions on the antecedent which must hold for them to apply (such as thatn≥ 0 in (3)),
and consequences (such as thaty = F(n)) that hold in the consequent.

The particular dynamic logic that we are dealing with here isone that includes the following
dynamic axiom, which says that the operator ; issequence, an operation related tofunctional

6Dynamic Logic offers a dual “diamond” modality of possibility, as well as the “box” modality of necessity, such
that the following means that “ifn≥ 0, executing the actionα sometimes results in a situation in whichy = F(n).”
(i) n≥ 0⇒ 〈α〉(y = F(n))

5



compositionover events, viewed as functions from situations to situations:

(4) [α][β]P⇒ [α;β]P

Using this notation, we can conveniently represent, say, a plan forgetting outsideas the compo-
sition ofpushinga door and thengoing throughit, written push′;go-through′.

Composition is one of the most primitivecombinators, or operations combining functions,
which Curry and Feys (1958) callB, writing the above sequenceα;β asBβα, where

(5) Bβα ≡ λs.β(α(s))

Plans likepush′;go-through′ could be written in Curry’s notation asBgo-through′push′

3.2 Situation/Event Calculi and the Frame Problem

The situation calculi are heir to a problem known in the AI literature as the Frame Problem (Mc-
Carthy and Hayes 1969). This problem arises because the way that we structure our knowledge
of change in the world is in terms of event-types that can be characterized (mostly) as affecting
just a few fluents among a very large collection representingthe state of the world. (Fluents are
facts or propositions that are subject to change). Naive event representations which map entire
situations to entire other situations are therefore representationally redundant and inferentially
inefficient. A good representation of affordances must get around this problem.

To avoid the frame problem in both its representational and inferential aspects, we need a
new form of logical implication, distinct from the standardor intuitionistic⇒ we have used up
till now. We will follow Bibel et al. (1989) and others in using linear logical implication –◦
rather than intuitionistic implication⇒ in those rules that change the value of fluents.

For example, in Steedman 2002, events involving doors in a world (greatly simplified for
purposes of exposition) in which there are two placesout andin separated by a door which may
beopenor shut, as follows:7

(6) affords(push(y,x))∧shut(x) –◦ [push(y,x)]open(x)

(7) affords(go-through(y,x))∧ in(y) –◦ [go-through(y,x)]out(y)

These rules say that if the situation affords you pushing something and the something is shut,
then it stops being shut and starts being open, and that if thesituation affords you going through
something, and you are in, then you stop being in and start being out. Linear implication has
the effect of building into the representation the update effects of actions—that once you apply
the rule, the proposition in question is “used up”, and cannot take part in any further proofs,
while a new fact is added. The formulae therefore say that if something is shut and you push
it, it becomes open (and vice versa), and that if you are in andyou go through something then
you become out (and vice versa). This linear deletion effectis only defined for facts—that is
ground literals.affords(go-through(y,x)) is a derived proposition, so it will hold or not in the
consequent state according to whether it can be proved or notin that state. The way we have
defined affordance, it will hold. (However, we have not yet defined what happens if you go

7We follow a logic programming convention that all variablesappearing in the consequent are implicitly universally
quantified and allothervariables are implicitly existentialy quantified. Since inthe real world doors don’t always open
when you push them, box must be read asdefaultnecessity, meaning “usually”.
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through a door when you areout.)
In order to know when we can apply such rules, we also need to define the conditions that

afford actions of pushing and going through. Here ordinary non-linear intuitionistic implication
is appropriate:

(8) a. door(x)∧open(x)⇒ affords(go-through(y,x))
b. door(x)∧shut(x)⇒ affords(push(y,x))

These rules say (oversimplifying wildly) that if a thing is adoor and is open then it’s possible to
go through it, and that if a thing is a door and it’s shut, then it’s possible to push it.

We also need to define the transitive property of the possibility relation, as follows, using the
definition (4) of event sequence composition:

(9) affords(α)∧ [α]affords(β)⇒ affords(α;β)

This says that any situation which affords an actionα, and in which actually doingα gets you to
a situation which affords an actionβ, is a situation in which affordα thenβ.

To interpret linear implication as it is used here in terms ofproof theory and proof search, we
need to think of possible worlds in the Kripke diagram in figure 1 as states of a single updatable
STRIPS database of facts. Rules like (6) and (7) can then be interpreted as (partial) functions
over the states in the model that map states to other states byremoving facts and adding other
facts. Linear implication and the dynamic box operator are here essentially used as a single
state-changing operator: you can’t have one without the other.

The effect of such rules can be exemplified as follows. If the initial situation is that you are
in and the door is shut:

(10) in(you)∧door(d)∧shut(d)

—then intuitionistic rule (8b) and the linear rule (6) mean that attempts to prove the following
propositions concerning the state of the door in the situation that results from pushing the door
will all succeed, since they are all facts in the database that results from the actionpush(you,d)
in the initial situation (10):

(11) a. [push(you,d)]open(d)
b. [push(you,d)]door(d)
c. [push(you,d)]in(you)

On the other hand, an attempt to prove the proposition (12) will fail because rule (6a) removes
the fact in question from the database that results from the actionpush(you,d):8

(12) [push(you,d)]shut(d)

The advantage of interpreting linear implication in this way is that it builds the STRIPS treatment
of the frame problem (Fikes and Nilsson 1971) into the proof theory, and entirely avoids the need
for inferentially cumbersome reified frame axioms of the kind proposed by Kowalski (1979) and
others (see Shanahan 1997).

This fragment gives us a simple planner in which starting from the world (13) in which
you arein, and the door isshutand stating the goal (14) meaning “find a series of actions that

8We follow the logic programming convention of negation by failure, according to which a proposition is treated as
false if it cannot be positively proved to be true.
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the situation affords that will get youout,” can, given a suitable search control, be made to
automatically deliver a constructive proof that one such plan is (15), the composition ofpushing,
andgoing through, the door:

(13) in(you)∧door(d)∧shut(d)

(14) affords(α)∧ [α]out(you)

(15) α = push(you,d);go-through(you,d).

The situation that results from executing this plan in the start situation (10) is one in which
the following conjunction of facts is directly representedby the database:

(16) out(you)∧door(d)∧open(d)

Using linear implication (or the equivalent rewriting logic devices or state update axioms
of Thielscher (1999) and Martı́-Oliet and Meseguer (1999))for STRIPS-like rules makes such
frame axioms unnecessary. Instead, they are theorems concerning the linear logic representation.
The further implications of the theory for extended forms ofthe frame problem considered by
Hanks and McDermott (1986), Sandewall (1994) and Shanahan (1997) are discussed in Steed-
man 1997, 2000b.

Since we can regard actions as functions from situations to situations, then rule (9) defines
function compositionB as the basic plan-building operator of the system. Composition is one
of the simplest of a small collection of combinators which Curry and Feys (1958) used to define
the foundations of theλ-calculus and other applicative systems in which new concepts can be
defined in terms of old. Since the knowledge representation that underlies human cognition and
human language could hardly be anythingother than an applicative system of some kind, we
should not be surprised to see it turn up as one of the basic operations of planning systems.

This calculus is developed further in Steedman 1997, 2002 inapplication to more ambitious
plans, and a number of generalizations of the frame problem,using a novel analysis ofdurative
events extending over intervals of time, in which such events are represented by instantaneous
inceptive and culminative events, which repectively add/remove facts about the event being in
progress, and the consequences if any of its culmination. This representation has a number of
advantages over more standard interval-based representations such as those of Allen (1984);
Allen and Hayes (1989), including a solution to the imperfective paradox. These ramifications
are passed over here.

By making the calculus affordance-based, we provide the basis for a simple forward-chaining
reactive style of planning that seems to be characteristic of non linguistic animal planning. This
kind of planning is not purely reactive in the sense of Brooks(1986) and Agre and Chapman
(1987): the notion of state representation plays a central role, as Bryson has proposed within the
Behavior-Based AI approach (2001, Bryson and Stein 2001).

There are two ways of thinking about computing plans with theLinear Dynamic Event Cal-
culus. One is as a logic programming language, much like Prolog. Poole 1993 shows how the
Horn clauses of such a representation can be associated witha Bayesian Network probability
model. However, there are problems in scaling such logicistrepresentations to realistically-sized
cases. We noted earlier that STRIPS/LDEC operators can be thought of as as finite-state trans-
ducers (FSTs) over state-space vectors. We can think of these operators, more specifically, as
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FSTs oversparsevectors, since they treat most values as irrelevant, STRIPS-style. It follows that
it is also possible to think of LDEC operators in terms of neural network representations, and
in particular in terms of a very simple device called the Associative Network or Willshaw net,
which is specialized to representing associations betweensparse vectors. These two approaches
are discussed next.

4 Planning and Explanation-Based Learning with LDEC

Once an agent has learned a set of actions as LDEC operators, it is in a position to use them to
form plans and learn more about the world. This process is often talked of in terms of “explo-
ration”, as if it involved a executing a random walk of actions in the real world storing action
sequences in memory according to their good or bad However, random walks make bad plans.
Frequently, even if they end up in desirable states, they getthere by way of detours and unpro-
ductive steps, so that they require critiquing and rejection or modification. They may even prove
fatal. It is just as easy, and much safer, to critique potential action sequences off-line and ahead
of time, a process which is usually called planning.

One simple way to do this efficently for a set of operatorsℵ is to consider the subset A0 ⊆ℵ
of actionsα0i ∈ℵ such that the current stateσ0 affordsα0, and generate the setΣA0 of statesσα0i
that result from executing eachα0i ∈ A0 in stateσ0. Some of these states may be desirable goal
states in their own right. However, assessing their desirability will often depend on considering
what action, including actions by other agents, those states themselves afford. A wise agent will
therefore consider the statesσα0i ;α1 j

∈ Σα0i ;A1j
that result from the sets A1j of further actions

that each first-level stateσα0i affords, and so on recursively by breadth-first iterative deepening,
applying dynamic programming methods to identify optimal plans (Bertsekas and Tsitsiliklis
1996). Although the size of the state-space grows exponentially with depth, this method of
growing the state-space has the advantage that the structure of the search space is isomorphic
to the space of possible plans, potentially allowing planning using graph-based heuristics of the
kind used by Hoffman and Nebel’s 2001 FastForward planner.

In this way we generate a set of plans of the form[α0i ;α1 j ; . . . ;αmx], wherem≤ the depth
of the tree. We can calculate the result state of each plan by applying the LDEC operators in
sequence to the original state. We can assign a value to the plan by comparing the end state with
the start state. We can also assign a cost to the plan in terms of the summed costs of the actions
that it is made up of, and can choose among plans that end in thesame state on a benefit/cost ba-
sis, eliminating wasteful plans such as those that include irrelevant or counterproductive actions.
We can also assign ana priori reliability to the plan by computing the product of the reliability
of its component actions.

Having identified a plan with a good benefit/cost ratio, we canadd that plan to the setℵ
as a plan operator in its own right, and begin to collect observations on its actual reliability
by applying it in the world. This process of adding action operators requires “flattening” the
plan, making any preconditions and deletions of its elementary actions that are not explicitly
added by an earlier elementary action conditions on situations that afford the plan, and making
any additions that are not subsequently deleted be among theadditions of the plan as a whole.
Crucially, Finite State Transducers are closed under composition (Kaplan and Karttunen 1994).

Observations of frequency of use and reliability of operators will be essential to distinguish
generally applicable plans from special-case plans and plans with inherent flaws arising from
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Figure 2: Hetero-associative net: Storage and Retrieval

inadequacies in the knowledge representation. Other methods of generalizing plans will be re-
quired. For example, the recognition that successful minimal plans for piling up specific numbers
of boxes are all instances of the iterative plan[(?there(l); puton(l ,box);climbon(box))+] is an
instance of a very powerful form of generalization. The successful selection of new useful addi-
tions to the set of actionsℵ achieves exponential savings in plan search, and is the key to solving
the exponential growth of plan search spaces, also known as plan decomposition or hierarchical
planning.

5 LDEC operators as Associative Networks

This section shows how we can represent the intuitionistic⇒ LDEC inference rules relating
situations to affordances using the Willshaw net inauto-associativemode, and represent the
linear –◦ inference rules by a secondhetero-associativeWillshaw net, associating input state
vectors with output state vectors.

5.1 The Associative Net

The Associative Net was invented by Willshaw, Buneman, and Longuet-Higgins (1969—see
Willshaw (1981)), following early work by Steinbuch (1961)and Anderson (1968). This de-
vice illustrates three basic properties of network models which are characteristic of mechanisms
involved in phenomena of human memory and attention:

• Non-localized storage (“Distributivity”)

• Ability to recover complete stored patterns from partial ornoisy input (“Graceful Degra-
dation”).

• Ability to work even in the face of damage (“Holographic Memory”).

A number of refinements relevant to practical application are proposed by Sommer and Palm
(1998) and Plate (1991).
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Figure 3: Auto-associative net: Storage and Augmented Retrieval

An associative net acts as a distributed memory associatingpairs of input and output vectors,
as in figure 2, which represents a grid of horizontal input lines and vertical output lines with
binary switches (triangles) at the intersections. To storean association between the input vector
on the left and the output vector along the top, switches are turned on (black triangles) at the
intersection of lines which correspond to a 1 in both input and output patterns.

To retrieve the associate of the input, a signal is sent down each horizontal line corresponding
to a 1 in the input. When such an input signal encounters an “on” switch, it increments the
signal on the corresponding output line by one unit. These lines are then thresholded at a level
corresponding to the number of on-bits in the input. With such thresholding, an associative
memory can store a number of associations in a distributed fashion, with interesting properties
of noise- and damage- resistance, provided that the 1s are relatively sparse.

For example, if one of the on-bits in the input goes off, so that we threshold at 2 rather than 3,
we recover the entire associated pattern. Similarly if an off bit goes on we can similarly recover
the correct association by reducing the threshold of 4 to 3. These properties depend on there
being not too many similar patterns stored in the same net.

It follows that if patterns are “autoassociated,” or storedwith themselves as output, associa-
tive nets can be used to complete partial patterns, as neededto recall perceptually non-evident
properties of objects, such as the fact that the tall, dark and handsome person’s name is Fred, as
in figure 3.

5.2 Associative Networks and the Hippocampal Associative Pathway

There is evidence for the involvement of associative and autoassociative networks in many func-
tions of the brain. Marr’s seminal papers from 1969; 1970; 1971 propose a theory of the cere-
bellum, hippocampus, and neo-cortex using a related associative mechanism throughout.

There is further evidence from hippocampal patients for a dual path model of information
processing in learning (Gluck and Myers 2000. Such patientsare unable to learn associations
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such as people’s names. However, they can exhibit classicalconditioning to the extent of learn-
ing which of those people are nice to them (Damasio 1999:43-46,113-121). There seems to be an
associative hippocampal path that is needed for both associative memory and operant condition-
ing, as well as a non associative non-hippocampal path supporting classical conditioning—as in
the architecture shown in Figure 4.
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Figure 4: The basic Cerebellar-Hippocampo-Cortical dual-path circuit: (adapted from Gluck and
Myers).

6 Associating Situations with Affordances

Forward-chaining hierarchical planning via plan compilation still has an exponential search
space (albeit a search space of better plans), and for realistically sized problems and state-
representations, an animal acting in real time cannot afford to find out what actions the situation
affords by matching the input vectors of all its action operators against the situation. The vast
majority of these operators will not be applicable, so we want the state itselfto actively propose
the operators that it affords.

We can do this by representing all the LDEC⇒ rules as an auto-associative network and all
the LDEC –◦ rules as second hetero-associative network.

We have already seen that the associative hippocampal pathway augments the state represen-
tation, adding facts about individuals (like their name) tovectors including observable facts about
them (such astall(x)∧dark(x)∧handsome(x)). In the same way, the associative pathway can
be made to add fluents likeaffords(go-through(x)) to state vectors includingdoor(x)∧open(x).
The presence of this fluent can then be used to directly accessoperators that have been applicable
in similar situations in the past.

Thus, theaffordsliterals of LDEC correpond to elements of the state vector that correspond
to FST state transducer operators, which are added to each newly generated state by the hip-
pocampal associative memory, and which are removed again bythe application of any such
operator. These operators and these alone form the set that generates the search space for plans.

This hippocampal associative network can in turn be thoughtof as relation between states
and actions that they afford.

For example, suppose an animal has learned the operatorsgo-throughand push, and
associatedaffords(go-through(y,x)) with vectors subsumingin(y) ∧ door(x) ∧ open(x), and
affords(push(x,y)) with those subsumingin(y)∧door(x)∧shut(x). Suppose, morever that agent
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Figure 5: LDEC rules of affordance: Storing preconditions of go-throughin an empty hippocam-
pal auto-associative network, and retrieving the affordance ofpushfrom the loaded net.

has the goal of gettingout but the door is shut.
If the agent matches the loaded affordance network to the situation, as in Figure 5, it will find

that of its two learned operators,pushis most strongly activated.9

The representation of the update effected by the action itself also uses associative networks
in a subtly different way, illustrated in Figure 6. Weights and therefore outputs can take negative
values, and outputs representchangesto the database, rather than truth, with−1 meaning “set
the feature-value to 0,” and+1 meaning “set the feature-value to 1,” while 0 means “leave the
feature value unchanged.” If the agent then considers the application of thepushoperator, using
the “neo-cortical” change network in Figure 6, it will observe that it takes it to a state in which
the door is open. A further application of the affordance netof Figure ls 5 to the result state,
restarting the whole cycle shown in Figure 7, will reveal that this state affordsgo-through, and
that applying this operator will result in beingout.

The change matrix in Figure 6 can be viewed as encoding the relation between affordances
and the states that result from those affordances.

In terms of the logicians’ S4 model in Figure 1, the state-change matrix of Figure 6 encodes
theaccessibility relationdefining the both the search space and the plan space. The hippocampal
matrix 5 represents the relation between states and affordance of those actions.

The associative network representation assumes a solutionto the Binding Problem (von der
Malsberg 1995)—that is, the problem of representing the fact that the propertiesdoor andopen
are predicated of thesameobjectd. This problem was first identified by Rosenblatt (1962), who
noted that a perceptron trained to recognize triangles and squares anywhere in the image, and to
recognize objects in the top half and bottom half of the imagecould nevertheless not distinguish
a picture with a triangle above a square from its inverse. A number of solutions to the binding

9To save space, networks are shown more densely loaded than would be possible in practice. Note that, in STRIPS
terms, both preconditions and deletions are included in theassociation. Under present simplifying assumptions, the two
rules must have equal numbers of inputs: this assumption is non-essential.
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Figure 7: LDEC cycle: Retrieving the affordance ofpushfrom the hippocampal net, generating
the next state from the neo-cortical net, and preparing to retrieve the affordance ofgo-through
from the hippocampal net.

problem have been proposed, from the “deictic” solution of Agre and Chapman (1987) (which
says thatdoorandopenare implicitly predicated of whatever object you are attending to) to the
temporal encoding of variables in synchronous axonal firingrates of von der Malsberg (1995)
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and Shastri and Ajjanagadde (1993). Others, including Rosenblatt himself, have suggested that
the binding problem should be avoided by coding the combinations of properties that you need
in the first place. Clearly, it is perverse to train on triangle features independent of place if place
is important, and training for the combination of triangle features and upper-half features solves
the problem. There is psychological evidence for combination coding of some but not all visual
features (Triesman 1982) and for integrated object concepts (Luck and Beach 1998). While
combination coding cannot be the solution to the entire action representation-induction problem,
object-hood is such a fundamental requirement that it must be built into The lower-level input
representation itself.

One way of thinking of integrated object concepts is to to think of the input to the system
as a map in which objects are represented by locations, and facts likedoor(d) andopen(d) are
represented by (sparse) set bits on a vector representing the value of all facts that can hold of that
location. (The space need not be physical or perceptual space but its easiest to think of it that
way for now.) Some part of the input vector to the associativenetwork cascade then represents an
object/location in the map: if it is a door-location and the door-location is a shut-location and the
non-object specific part of the vector says the you-locationis an in-location then there is a you-
push-the-door-location affordance. This general pictureseems in keeping with the observations
of O’Keefe and Nadel (1978), Morris et al. (1982), O’Keefe (1989), and McNaughton (1989),
concerning single-cell recording from rat hippocampus.

The associative cascade then becomes a function from object/locations to affordances and
their results, in which propositions likedoor(d) andopen(d) are simply the relevant bits of the
vector and the identity of the object-location is implicit.One can either think of this function be-
ing applied to successive positions in a scan or (more likely) of the object/locations as proposing
themselves by some autonomous salience mechanism.

The latter assumption is attractive, and makes object-concepts and their recognition central to
the planning process. One can think of the scene as proposinglocations for attention according
to the a priori value of the objects they contain in terms of successful planning in the past. Such
a representation is “deictic,” like that of Finney et al. 2002b,a, but differs in having an active
attention/focus mechanism. The associative memory then has the effect of turning doors and
other objects into functions from all and only the actions that are afforded by the situation and
the things that they include onto the states that result fromapplying those actions to those things.

The operation of turning something into a function from the Functions-that-apply-to-it into
the results-of-applying-them-to-it is the second major combinator that the planner is based on,
namelytype-raising, usually written asT. The concept of a door can be defined as follows:

(17) door′ = λxdoor.Tx

—where

(18) Tatype≡ λp(type→state).p(a)

The door concept (17) can then be thought of as a function fromthings of typedoor onto
functions from functions-from-things-of-type-door-into-states-that-result-from-applying-those-
functions-to-those-things.

Interestingly, there is more information in the affordancenetwork than the above minimal
planner is using. The unthresholded activation ofaffords(go-through(you,d))in Figure 6 is al-
most as high as that ofaffords(push(you,d)), reflecting the fact that the situationnearlyallows
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going through.
The information that the problem is the door being shut rather than open is potentially avail-

able from the network, and could in principle be used to direct the agent’s attention to those of
the actions that the situation affords that specifically involve doors, such aspush. Even if the
agent doesn’t yet know thepushaction that changes closed doors to open doors, it has a good
chance of discovering this operator by blind exploration ofactions involving the door.

There may be objects other than doors in the situation which areopen—bottles, say—which
also have associated affordances that are activated by the situation—say, drinking.However, none
of those action will turn open bottles into open doors, so it will do No harm to ignore them, once
it is clear that none of them bear directly on the goal.

The object-oriented nature of these associations is an example of a basic fact about animal
ontology. We recognize the object-property status ofdoorandbottle, as opposed toopenby their
consistent relation to actions. Doors consistently affordegress, and bottles consistently afford
drinking, whereas the class of things that are open isn’t consistent in affordances. To see how the
associative network can reveal this distinction, we must turn to the question of how the change
network of sparse STRIPS FSTs can be learned from completelyspecified input-output states.

7 Perceptron-Associative Networks

The associative net can be regarded as a multiple-output Perceptron (Minsky and Papert 1969,
1988b).10 In the autoassociative form as presented so far, it is a perceptron in which the initial
weights are all zero and the gain is 1. However, in order to train such a device on STRIPS rules,
we had to tell it explicitly which (sparse) bits were 1s and which 0s. We want the machine to
work that out for itself, and associate situations including things with properties likedoor, bottle,
andopenwith actions likepush, go-throughanddrink.

The following is a proposal for how we might be able to do this using a version of the asso-
ciative net in which weights are positive or negative real-valued, adjusted to minimize error from
a random initial setting using some form the Perceptron Learning Algorithm (PLA), according
to their positive or negative contribution to the decision of each bit in the output. This is work in
progress, not a confirmed mechanism.

One of the properties of the PLA is that it will set weights on bits whose input value is irrel-
evant to zero. We will pass over the details of the PLA here, referring the reader to Rosenblatt
1962, Samuel 1959, and Russell and Norvig 2003:742, together with the important generaliza-
tion of Freund and Shapire (1999) of the PLA to non-linear classification, using the “kernel trick”
originated by Aizerman, Braverman and Rozonoer (1964). Theway it is applied is as follows.

Every time an actionα is successfully executed, the input state vector with the bit repre-
sentingaffords(α) is autoassociated, the weights being updated according to some version of
the PLA. When learning is complete, and in offline planning, the associated affordance bit is
retrieved and included as input to the change matrix, as in Figure 7

Every time an actionα is successfully executed, the change associative memory isalso up-
10Just as there are multilayered perceptrons, so there are multilayered Associative Nets, such as Hopfield Nets (Hop-

field 1982, Boltzmann Machines (Hinton and Sejnowski 1986),and Recursive AutoAssociative Memory (RAAM Pol-
lack 1990). These devices may well also be applicable to the problem of learning and deploying STRIPS/LDEC rules.
However, like multi-layered Perceptrons (Minsky and Papert 1988a), multi-layered Associative Networks are prey to
false minima and are hard to train and generalize, and we willignore their possibilities here.
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dated according to the PLA, the input state vector with the bit representingaffords(α) set being
associated with the output vector with the bit representingaffords(α) unset.

One interesting property of this proposal is that the weights potentially embody a distinction
between object-properties likedoorandbottle, and other properties likein andopen.

Object properties correspond to facts that are invariant under the effect of (most) actions.
(That is to say that the fact in question holds as long as the object exists. Crucially, if the action
destroys the object, or transmutes it,all the related facts and properties typically either change or
entirely cease to hold.) They therefore have very high weights on the diagonal linking the same
facts in input and output. Properties likein andopenare sometimes changed by actions, so their
weights on the diagonal are lesser.11

The emergence of the object-property distinction is important for the enterprise of mapping
the action representation into natural language semantics. Door andbottlebecome properties of
typee→ t, butopenmust be assigned the second-order type(e→ t)→ (e→ t). This distinction
is in turn grammaticalized as that between nounsN and adjectivesN/N, and in turn provides the
basis for a distinction between the “head” of the nominal construction and the “adjunct”.

This model is at present untested, and it is unclear whether it will be necessary to build
more structure into the net—for example, to compensate for the fact that most fluents are not
affected by most actions, and hence are highly auto-correlated. The way to actually test the
hypothesis is to generate actual state spaces using a symbolic AI-style LDEC planner, then show
that the network can learn the operators. This experiment iscurrently being actively pursued at
Edinburgh using the PKS planner of Petrick and Bacchus (2002, 2004). The present account is
put forward merely as an example of what a neurocomputational theory of planning might look
like.

8 Languages which Lexicalize Affordance

Many North American Indian languages, such as the Athabascan group that includes Navajo,
are comparatively poorly-off for nouns. Many nouns for artefacts are morphological derivatives
of verbs. For example, “door” isch’é’étiin, meaning “something has a path horizontally out”, a
gloss which has an uncanny resemblance to (7). This process is completely productive: “towel”
is bee ’́ad́ıt’oodı́, glossed as “one wipes oneself with it”, and “towelrack” isbee ’́ad́ıt’oodı́ ba̧a̧h
dah ńahidiiltsos—roughly “one wipes oneself with it is repeatedly hung on it”(Young and Mor-
gan 1987)

Such languages thus appear to lexicalize nouns as adefault affordance(T), and tocompose
such affordances (B). Of course, we should avoid crassly Whorfean inferences about Navajo-
speakers’ reasoning about objects. Though productive, these lexicalizations are as conventional
as our own.12

Navajo nouns are also implicitly classified by animacy, shape, and consistency. However,
rather than being realized via a rich gender system, as in some other Athabaskan languages such
as Koyukon, this classification is in Navajo reflected in verbal morphology. For example, the
classifier-iltsos on the verbnáhidiiltsos, “hung,” marks it as predicated of flat, flexible things
like towels. A belt-rack or a gun rack would have a different classifier.

11Such object concepts may nevertheless be quite abstract—holes are an example.
12Navajo-speakers probably find equally exotic the propensity of English to generate denominal verbs, like “table”

and “pocket,” with equal productivity.
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Wikipedia gives the following table of Navajo Classifiers (the orthographic conventions are
slightly different from those used in the examples from Young and Morgan 1987).

(19) Navaho Classifiers:
Classifier+Stem Label Explanation Examples
-’a̧ SRO Solid Roundish Object bottle, ball, boot, box, etc.
-yı́ LPB Load, Pack, Burden backpack, bundle, sack, saddle,etc.
-ł-jool NCM Non-Compact Matter bunch of hair or grass, cloud, fog, etc.
-lá SFO Slender Flexible Object rope, mittens, socks, pileof fried onions,

etc.
-ta̧ SSO Slender Stiff Object arrow, bracelet, skillet, saw, etc.
-ł-tsooz FFO Flat Flexible Object blanket, coat, sack of groceries, etc.
-tłéé’ MM Mushy Matter ice cream, mud, slumped-over drunken

person, etc.
-nil PLO1 Plural Objects 1 eggs, balls, animals, coins, etc.
-jaa’ PLO2 Plural Objects 2 marbles, seeds, sugar, bugs, etc.
-ḱa̧ OC Open Container glass of milk, spoonful of food, handful of

flour, etc.
-ł-ţı́ ANO Animate Object microbe, person, corpse, doll, etc.

As a consequence, the English verb “give” is expressed by 11 different forms in Navajo, de-
pending on the charateristics of the object given, including nı́łjool (give-NCM), used in “give me
some hay” andnı́ti̧i̧h (give-SSO), used in “give me a cigarette”.13

The appearance of such pronominal classifiers on the verb is an example of a “head marking”
system ofcase, inasfar as the final position of such classifiers “structurally” marks the fact that
they are patients of the action (cf. Blake 2001:13). The interest of such classifiers and their
reflex in Navajo nominalizations as a form of case marking agreement is twofold. First, if these
classifiers appear explicitly in Navajo, one might expect that they reflect a universal ontology of
entities. The advantage of such ontologies is that they allow an agent to generalize the notion
of affordances of doors to other actions applying to objectsof that class. The extension to a
system of case allows even further generalization to the full range of transitive actions. Second,
the type-raising nature of case shows up very directly in thetheory of grammar, considered next.

9 B, T, and the Combinatory Projection Principle

Besides supporting the basic operations of seriation and object-orientation that planning depends
upon, syntactic versions of combinatorsB, T support a rebracketing and reordering calculus of
exactly the kind that is needed to capture natural language syntax, and provide the basis of
Combinatory Categorial Grammar (CCG, Ades and Steedman (1982)—see Steedman 2000b for
references)

CCG eschews language-specific syntactic rules like (20) forEnglish. Instead, all language-
specific syntactic information islexicalized, via lexical entries like (21) for the English transitive

13I once read a transcript of a Navajo radio broadcast that is revealing in this connection. The participants were
discussing how to translate the name of the band called Hootie and the Blowfish. They had no trouble with “Hootie” and
“fish”, but thought “blow” deplorably vague, demanding to know exactlywhowas blowing exactlywhatand withwhat
result, in order to come up with the correct translation—roughly, “fish which inflates itself”.
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verb:

(20) S → NP VP
VP → TV NP
TV → {proved, finds, . . .}

(21) proved := (S\NP)/NP

This syntactic “category” identifies the transitive verb asa function, and specifies the type and
directionality of its arguments and the type of its result,/NP indicating an NP argument to the
right, \NP indicating an NP argument to the left, and the brackets indicating that the rightward
argument is the first argument to combine.

The category (21) also reflects its semantic type(e→ (e→ t)), expressed in (22a) below as a
lambda term paired with it via a colon operator, in which primes mark constants, non-primes are
variables, and concatenation denotes function application under a “left associative” convention,
so that the expressionprove′xy is equivalent to(prove′x)y.

We follow Baldridge (2002) in generalizing this notation tofreer word order languages as
follows, where brackets{} enclose one or more sets of arguments that can combine in any
order, and the preceding slash /,\, or | indicates that all members of the set must be found to
the right, left or either direction respectively. We also generalize the semantic notation using
a parallel argument set notation for lambda terms and a convention that pairs the unordered
syntactic arguments with the unordered semantic argumentsin the left-to-right order in which
they appear on the page. Typical transitive verb categoriesthen appear as follows:14

(22) a. English: (S\NP)/NP : λxλy.prove′xy
b. Latin: S|{NPnom,NPacc} : λ{y,x}.prove′xy
c. Tagalog:S/{NPnom,NPacc} : λ{y,x}.prove′xy
d. Japanese:S\{NPnom,NPacc} : λ{y,x}.prove′xy

Such categories should be thought of as schemata covering a finite number of deterministic
categories like (22a).

Some very general syntactic rules, corresponding to function application, and the combina-
tors B andT, together with a third combinatorS which we will pass over here, but which is
parallel in every respect toB, then constitute the universal mechanism of syntactic derivation or
projection onto the set of all and only the sentences of the language specified by its CCG lexicon.
This Universal set of rules is the following:

(23) The functional application rules
a. X/⋆Y : f Y : a ⇒ X : fa (>)
b. Y : a X\⋆Y : f ⇒ X : fa (<)

14These categories are deliberately simplified for expository purposes, and certainly overstate the degree to which
alternative constitutent orders are semantically equivalent in these languages.
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(24) The functional composition rules
a. X/⋄Y : f Y/⋄Z : g ⇒B X/⋄Z : λx.f (gx) (>B )
b. Y\⋄Z : g X\⋄Y : f ⇒B X\⋄Z : λx.f (gx) (<B )
c. X/×Y : f Y\×Z : g ⇒B X\×Z : λx.f (gx) (>B×)

d. Y/×Z : g X\×Y : f ⇒B X/×Z : λx.f (gx) (<B×)

(25) The order-preserving type-raising rules
a. X : a ⇒T T/i(T\iX) : λ f . f a (>T)
b. X : a ⇒T T\i(T/iX) : λ f . f a (<T)

The types⋆, ⋄, and× on the slashes in rules (23) restrict the categories that maycombine by
them. While all categories seen so far have the unadorned slash types/, \, or |, which can
combine by any rule, the language-specific lexicon can restrict the combinatory potential of
lexical function categories using these slash-types. Thus, coordinators likeandare restricted via
the⋆ type toonlycombine by the application rules:

(26) and :=(X\⋆X)/⋆X

The ⋄ slash-type on a function category means that it can combineeither by the application
rules (23),or by the rules>B and<B bearing that slash-type in (24), butnot by the rules>B×

or <B×. In English (as opposed to, say, Latin), adjectives are retricted using this slash-type,
because they are entirely fixed in terms of linear order with respext to the head, unlike adverbs,
and it is the latter rules that allow reordering:

(27) young :=N/⋄N

The variablei type on the type-raising rules (25) means that the raised category inherits the
slash-type of its argument.

The composition rules are all generalized to cover cases where the “lower” functionY|Z and
the resultX|Z are of of higher valency(Y|Z)|W and(X|Z)|W, etc., up to some low value such as 4
(((Y|Z)|W)|V)|U and(((X|Z)|W)|V)|U , which appears to be the highest valency in the universal
inventory of lexical types (Newmeyer 2005, citing Pesetsky1995). It is the combination of
crossed composition, as in>B× and<B×, and this generalization that increases the expressive
power of the formalism to the lowest known trans-context-free level of the “mildly context-
sensitive” class identified by Joshi, Vijay-Shanker and Weir (1991), weakly equivalent to basic
Lexicalized Tree-Adjoining Grammars (LTAG) and Linear Indexed Grammars (LIG). The theory
thus embodies a very strong claim about a Formal Universal, namely that all natural languages
fall into this low-power class.

A number of Principles which amount to the following statement mean that these are theonly
combinatory rules that are available to Universal Grammar:

(28) The Strict Lexicalization Principle
The universal combinatory rules must project, and may not override, the directionality and
slash-type specified in the language-specific lexicon

This theory has been applied to the linguistic analysis of coordination, relativization, and
intonational structure in English and many other languages(Steedman 1996, 2000a; Hoffman
1995; Bozsahin 1998; Komagata 1999; Baldridge 1998, 2002).For example, we can define
relativization without syntactic movement or empty categories, as in (30), via the following
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category for the relative pronoun:

(29) that := (N\⋄N)/(S/NP)

This category yields the following derivation:

(30) (The woman) that Thelma met
>T

(N\⋄N)/(S/NP) S/(S\NP3SG) (S\NP3SG)/NP
>B

S/NP
>

N\⋄N

Such “extractions” are correctly predicted to be unbounded, since composition can operate across
clause boundaries:

(31) (The woman) that Thelma says she met
>T >T

(N\⋄N)/(S/NP) S/(S\NP3SG) (S\NP3SG)/S S/(S\NP3SG) (S\NP3SG)/NP
>B >B

S/S
>B

S/NP
>

N\⋄N)

It is the lexical category (29) of the relative pronoun that establishes the long-range depen-
dency between noun and verb (via the semantics defined in the lexicon via the logical form (not
shown here): syntactic derivation merely projects it onto the phrasal logical form, with compo-
sition and type-raising, as well as application, doing the work of Merge rather than Move, in the
terms of the Minimalist Program.

The conjunction category (26) allows a related movement- and deletion- free account of right
node raising, as in (32):

(32) [Thelma met] and [Fred says he likes] Louise
>B >B <T

S/NP (X\⋆X)/⋆X S/NP S\(S/NP)
>

(S/NP)\⋆(S/NP)
<

(S/NP)
<

S

The⋆ modality on the conjunction category (26) means that it canonly combine like types by
the application rules (23). Hence, the across-the-board condition (ATB) on extractions from
coordinate structures (including the “same case” condition) is captured:

(33) a. A woman [that(N\⋄N)/(S/NP) [[Thelma met]S/NP and [Louise likes]S/NP]S/NP]N\⋄N
b. A woman [that(N\⋄N)/(S/NP) *[[Thelma met]S/NP and [likes Louise]S/NP]S/NP]N\⋄N
c. A woman that(N\⋄N)/(S/NP) *[[Thelma met]S/NP and [Louise likes her]S]]
d. A woman that(N\⋄N)/(S/NP) *[[Thelma met her]S and [Louise likes]S/NP]

CCG offers startlingly simple analyses of a wide variety of further coordination phenom-
ena, including English “argument-cluster coordination”,“backward gapping” and “verb-raising”
constructions in Germanic languages, and English gapping.The first of these is illustrated by
the following analysis, from Dowty (1988—cf. Steedman 1985), in which the ditransitive verb
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category(VP/NP)/NP is abbreviated asDTV, and the transitive verb categoryVP/NP is abbre-
viated asTV:15

(34) give Thelma a book and Louise a record
<T <T <T <T

DTV TV\DTV VP\TV (X\⋆X)/⋆X TV\DTV VP\TV
<B <B

VP\DTV VP\DTV
>

(VP\DTV)\⋆(VP\DTV)
<

VP\DTV
<

VP

The universal set of combinatory rules does not allow any derivation for word orders like the
following, given the lexicon of English:

(35) *Thelma a book and give Louise a record.

Thus, the universal noted by Ross (1970) concerning the direction of gapping and the base order
of constituents in constructions is a theorem of the theory of extraction without movement based
on combinatory projection with rules based onB andT.

It should be evident from the fact that the type raising operation in (30) turns the NPThelma
into a function over predicatesS\NP, while in (34) it turns the same word into a function over
ditransitive verbs(VP/NP)\((VP/NP)/NP) and the NPa bookinto a function over transitive
verbsVP\(VP/NP) that type-raising, even in English, is simply (respectively: nominative, dative
and accusative) grammaticalcase, albeit marked “structurally” by position with repect to the
verb, rather than morphologically, an in LatinThelma, Thelmæ, Thelmam. We have seen that
notions of case and affordance are highly related. Thus sentence (34) can be seen as composing
pairs of functions over affordances and conjoining the result.

It is likely that a number of other universals concerning possible word orders can be base-
generated on similar assumptions of a universal projectionprinciple based on the combinators
B andT. Universal 20 of Greenberg (1963) concerning the possible base orders of Dem, Num,
A and N, as expanded by Hawkins (1983) and Cinque (2005), is particularly promising in this
respect, as Hawkins 1983:121-122 points out.

The close relation between the combinatory syntactic primitives and those involved in
planned action should not come as a surprise. If we turn to those aspects of language which
presumable reflect its origin most directly, namely its use to manipulate the actions of others to
our own advantage, then it is clear that this is quintessentially a planning problem, rather than a
distinctively linguistic one. For example, the problem of identifying the fact that the utterance
most likely to effect the manipulation of getting the windowshut is not the imperative “Shut the
window” but the declarative “It’s cold in here” can be captured in essentially the same terms
of affordance and change in knowledge state that are used to plan with doors and locations, the
main difference lying in the fact that representation of thestate of other minds is required, as
discussed in Steedman 2002, 2006.

15In more recent work, Dowty has disowned this analysis, because of the implicit “intrinsic” use of logical form that
it entails.
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10 Conclusion

This paper has sketched a theory of the way in which experience shapes object- and action-
concepts, how they are used to plan purposive actions in dynamic worlds, and how this system
forms a basis for language, to which the latter is almost entirely transparent. This account is
highly speculative. In particular, it remains to be shown that the particulary simple form of
associative memory assumed here is capable in practice of the kind of learning required, or
whether some other form is needed, such as that proposed by Plate (1991), and whether such
mechanisms scale to realistically-sized problems. Many details will undoubtedly have to be
changed, and many more filled in.

Nevertheless, it seems likely that a proper theory of actionrepresentation will have to embody
the ideas of object-orientation and dynamism, embodied in the associative memory mechanisms
that have long been associated with the hippocampus, that are assumed here. The fact that the
language faculty, whose syntactic aspects have long been thought to be quite mysterious and
unique, appears to reflect these properties so directly may lend conviction to this expectation.
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Abstract

The problem of planning dialog moves can
be viewed as an instance of a more gen-
eral AI problem of planning with sensing
actions. Planning with sensing actions is
complicated by the fact that such actions en-
gender potentially infinite state-spaces. We
adapt the PKS planner and the Linear Dy-
namic Event Calculus (LDEC) to the repre-
sentation of dialog acts, and show beneficial
consequences for planning mixed-initiative
collaborative discourse.

1 Introduction

Successful planning in dynamic domains often re-
quires reasoning about sensing acts, which when ex-
ecuted, update the planner’s knowledge state, with-
out necessarily changing the world state. For in-
stance, reading a piece of paper with a telephone
number printed on it may provide the reader with
the prerequisite information needed to successfully
complete a phone call. Such actions typically have
very large, even infinite, sets of possible outcomes
in terms of the actual valuefound, and threaten to
make search impracticable. There have been several
suggestions in the AI literature for how to handle
this problem, including Moore 1985; Morgenstern
1988; Etzioni et al. 1992; Stone 1998; and Petrick &
Bacchus 2002, 2004.

Stone (2000) points out that the problem of
planning effective conversational moves is also a
problem of planning with sensing or knowledge-
producing actions, a view that is also implicit in

early “beliefs, desires and intentions” (BDI) -based
approaches (e.g. Litman & Allen 1987; Bratman
et al. 1988; Cohen & Levesque 1990; Grosz &
Sidner 1990). Nevertheless, most work on dialog
planning has in practice tended to segregate do-
main planning and discourse planning, treating the
former as an AI black box, and capturing the lat-
ter in large state-transition machines mediated or
controlled via a blackboard or “information state”
representing mutual belief, updated by specialized
rules more or less directly embodying some form
of speech-act theory or theory of textual coherence
(e.g. Lambert & Carberry 1991; Traum & Allen
1992; Green & Carberry 1994; Young & Moore
1994; Chu-Carroll & Carberry 1995; Matheson et al.
2000; Asher & Lascarides 2003). Such accounts
lend themselves readily to optimization using statis-
tical models (e.g. Singh et al. 2002).

One of the ostensible reasons for making this sep-
aration is thatindirect speech acts, achieving coher-
ence via conversational implicatures, abound in con-
versation. (Green and Carberry cite studies showing
around 13% of answers to Yes/No questions to be
indirect.) Moreover, not all implicatures are con-
versational, and the ontology of the ones that are is
complex.

Nevertheless, that very same ubiquity of the phe-
nomenon suggests that it is a manifestation of the
same planning apparatus as the domain planner, and
that it should not be necessary to construct a com-
pletely separate specialized planner to handle dialog
acts. This paper considers the problem of applying
techniques developed in the AI planning literature
for handling sensing and incomplete information to

Annex B



the problem of dialog planning.

2 Introduction to PKS/LDEC

In this paper we work with a particular planning
system, called PKS, and a formal axiomatization of
planning domains in the language of the Linear Dy-
namic Event Calculus (LDEC).

PKS (Planning with Knowledge and Sensing) is
a “knowledge-level” planner that is able to con-
struct conditional plans in the presence of incom-
plete knowledge and sensing Petrick & Bacchus
(2002, 2004). The key idea of this approach is to
represent the planner’s knowledge using a first-order
language, and to represent actions by their effects
on the agent’s knowledge state, rather than their ef-
fects on the world state. Since general reasoning in
such a rich language is impractical, PKS employs a
restricted subset of a first-order language and a lim-
ited amount of inference in that subset. By doing so,
PKS is able to make use of non-propositional fea-
tures, such as functions and variables.

The knowledge-level approach to planning differs
from those approaches that concentrate on proposi-
tional representations over which complete reason-
ing is feasible. Such works often focus on repre-
senting the set of all possible worlds (i.e., the set
of all states compatible with the planner’s incom-
plete knowledge) using a variety of techniques (e.g.,
BDDs, Graphplan-like structures, or clausal repre-
sentations). By representing problems at the knowl-
edge level, PKS can often “abstract” away from the
irrelevant distinctions that occur at the world level.
Furthermore, the resulting plans are often quite “nat-
ural” and have a simple structure. Compared to the
possible-worlds approaches, PKS’s higher-level rep-
resentation is richer, but the inferences it supports
are weaker. Nevertheless, PKS is able to solve prob-
lems that are often difficult for work-level planners.

PKS is based on a generalization of STRIPS Fikes
& Nilsson (1971). In STRIPS, the world state is
modelled by a single database; actions update this
database and, by doing so, update the planner’s
model of the world. In PKS, the planner’s knowl-
edge state (rather than the world state) is represented
by a set of four databases, the contents of which
have a fixed, formal interpretation into a modal
logic of knowledge. Given any configuration of the

databases, this interpretation precisely characterizes
the planner’s knowledge state. To ensure an efficient
inference mechanism, we restrict the types of knowl-
edge (especially disjunctive knowledge) that can be
contained in each of the databases.
Kf : The first database is like a standard STRIPS
database except that both positive and negative facts
are allowed and the closed world assumption is not
applied.Kf can include any ground literal,ℓ, where
ℓ ∈ Kf means thatℓ is known. Kf can also contain
knowledge of function values.
Kv: The second database stores information about
function values that will become known to PKS at
execution time.Kv can contain any unnested func-
tion term; such terms model the plan-time effects
of sensing actions that return numeric values. PKS
can useKv knowledge of finite-range functions to in-
sert multi-way branches into a plan, or use function
terms as a form of “run-time variable”.
Kw: The third database models the plan-time effects
of “binary” sensing actions.φ ∈ Kw means that at
plan time the planner either knowsφ or knows¬φ,
and that at execution time this disjunction will be
resolved. PKS uses such “know-whether” facts to
construct conditional branches in a plan.
Kx: The fourth database contains “exclusive-or”
knowledge of literals. Entries inKx have the form
(ℓ1|ℓ2| . . . |ℓn), where eachℓi is a ground literal. Such
a formula represents knowledge of the fact that “ex-
actly one of theℓi is true.” Such knowledge is com-
mon in many planning scenarios.

Actions in PKS are modelled by sets of queries
and updates to the databases. Action preconditions
are specified as a list of primitive queries that in-
voke an inference algorithm to answer simple ques-
tions about the databases: (i)Kp, is p known to be
true?, (ii)Kvt, is the value oft known?, (iii) Kwp, is
p known to be true or known to be false (i.e., does
the planner know-whetherp?), or (iv) the negation
of queries (i)–(iii).

Action effects are described by a set of updates
to the databases, i.e., collections of formulae that
should be added to and deleted from the databases.
Since updates are made directly to the databases,
they reflect changes to the planner’s knowledge
state, rather than changes to the world state.

Using this representation, PKS can construct
plans by applying actions in a simple forward-



chaining manner: provided the preconditions of an
action are satisfied by the planner’s knowledge state,
an action can be applied; applying an action updates
the planner’s knowledge state to form a new knowl-
edge state, allowing planning to continue. A condi-
tional branch can be added to a plan if the planner
hasKw information about a formulap. Along one
branch,p is assumed to be known while along the
other branch¬p is assumed to be known. The plan-
ning process then continues along each branch until
each branch satisfied the goal.

The Linear Dynamic Event Calculus (LDEC)
Steedman (1997, 2002) is a logical formalism that
combines the insights of the Event Calculus of
Kowalski & Sergot (1986), itself a descendant of the
Situation Calculus McCarthy & Hayes (1969), and
the STRIPS planner of Fikes & Nilsson (1971), to-
gether with the Dynamic and Linear Logics devel-
oped by Girard (1987), Harel (1984), and others.

The particular dynamic logic that we work with
here exclusively uses the deterministic “necessity”
modality [α]. For instance, if a programα com-
putes a functionf over the integers, then an expres-
sion like “n≥ 0⇒ [α](y = f (n))” indicates that “in
any situation in whichn≥ 0, after every execution
of α that terminates,y = f (n).” We can think of
this modality as defining a logic whose models are
Kripke diagrams. Accessibility between situations
is represented by events defined in terms of the con-
ditions which must hold before an event can occur
(e.g., “n ≥ 0”), and the consequences of the event
that hold as a result (e.g., “y = f (n)”).

This logic also defines thesequenceoperator “;”
as a composition operation over events. Like other
dynamic logics, LDEC does not use explicit situa-
tion terms to denote the state-dependent values of
domain properties. Instead, it uses the sequence op-
erator to chain together finite sequences of actions.
For instance,[α1,α2, . . . ,αn] denotes a sequence of
n actions and[α1,α2, . . . ,αn]φ indicates thatφ must
necessarily hold after every execution of this action
sequence.

LDEC also mixes two forms of logical implica-
tion, which contributes to its representational power.
Besides standard (or intuitionistic) implication⇒,
LDEC follows Bibel et al. (1989) and others in us-
ing linear logical implication, denoted by the sym-
bol ⊸. This second form of implication provides

a solution to theframe problemMcCarthy & Hayes
(1969).

An LDEC domainis formally described by a col-
lection of axioms. Actions (or events) provide the
sole means of change in the world, and affect theflu-
ents(i.e., properties) of the domain. For each action
α, an LDEC domain includes anaction precondition
axiomof the form:

L1∧L2∧ . . .∧Lk ⇒ affords(α),

where eachLi is a fluent or its negation, and aneffect
axiomof the form:

{affords(α)}∧φ ⊸ [α]ψ,

where φ and ψ are conjunctions of fluents. An
LDEC domain can also includes a collection ofini-
tial situation axiomsof the form:

L1∧L2∧ . . .∧Lp,

where eachLi is a ground fluent literal.
Action precondition axioms specify the condi-

tions thatafford a particular action. Effect axioms
use linear implication to build certain “update rules”
directly into the LDEC representation. In particu-
lar, when an effect axiom is applied, the fluents in
the antecedent (i.e.,φ) are treated as consumable re-
sources that are “replaced” by the fluents in the con-
sequent (i.e.,ψ). (We treat consumed fluents as be-
ing made false.) A formula contained in{·} indi-
cates that it is a non-consumable resource. All other
fluents remain unchanged. Thus, the LDEC treat-
ment of action is very similar to STRIPS; in particu-
lar, LDEC’s use of linear implication is similar to the
STRIPS assumption, and lets us avoid having to in-
clude explicit frame axioms in our LDEC domains.

Recent work Petrick & Steedman (2007) has
established a preliminary link between PKS and
LDEC, in particular for the representation of sim-
ple sensing actions. We do not go into detail
about this work here, however, we adapt this ap-
proach so that we can include PKS-style queries di-
rectly in our LDEC axioms, as a form of knowl-
edge fluent. Moreover, we extend these fluents to
include speaker-hearer modalities. Thus, we can
write LDEC axioms that include fluent expressions
like [X]Kp (“X knows p”), [X]Kvt (“X knows the



value of t), or [X]Kwp (“X knows-whetherp). We
can also nest such modal expressions to form more
complex representations of multi-agent knowledge,
e.g.,[X]K¬[Y]Kp (“X knows that Y does not know
p”).

We will also assume that our LDEC domains in-
clude the following standard axioms of knowledge:

(1) [X]Kp⇒ p Veridicality

(2) ¬[X]p⇒ [X]K¬[X]p Negative Introspection

3 Planning Speech Acts with PKS/LDEC

3.1 Facts

(3) a. “I suppose Bonnie doesn’t know what train I
will catch”

b. [S]K¬[B]Kvtrain

(4) a. “If I know what time it is, I know what train
I will catch.”

b. [S]Kvtime⇒ [S]Kvtrain

(5) a. “I don’t know what time it is.”
b. ¬[S]Kvtime

(6) a. “I suppose you know what time it is.”
b. [S]K[H]Kvtime

3.2 Rules

(7) a. “If X supposes p, and X supposes p is not
common ground, X can tell Y p”

b. [X]p∧ [X]K¬[C]p⇒ affords(tell(X,Y,p))

(8) a. “If X tells Y p, Y stops not knowing it and
starts to know it.”

b. affords(tell(X,Y,p))∧¬[Y]p
–◦ [tell(X,Y,p)][Y]p

(9) a. “If X doesn’t know p and X supposes Y does,
X can ask Y about it.”

b. ¬[X]p∧ [X]K[Y]p⇒ affords(ask(X,Y,p))

(10) a. “If X asks Y about p, it makes it common
ground X doesn’t know it”

b. affords(ask(X,Y,p))
–◦ [ask(X,Y,p)][C]K¬[X]p

3.3 Planning a Direct Speech Act

(11) Goal: I need Bonnie to know which train I will
catch

Lemma: By speaker supposition, the hearer

knows what time it is:

(12) ⇒ [H]Kvtime (6b);(1)

Lemma: By speaker supposition, Bonnie doesn’t
know what train the speaker will catch:

(13) ⇒¬[B]Kvtrain (3b);(Ksp⇒ p)

The situation affordsask(S,H, time):

(14) ⇒ affords(ask(S,H, time)) (5b);(6b);(9b)

After applyingask(S,H, time):

(15) ⇒ [H]K¬[S]Kvtime (14);(10b)

The situation now affordstell(H,S, time):

(16) ⇒ affords(tell(H,S, time)) (12);(15);(7b)

After applyingtell(H,S, time):

(17) ⇒ [S]Kvtime (16);(5b);(8b))

—which means I know what train I will catch:

(18) ⇒ [S]Kvtrain (17);(4b)

The situation now affordstell(S,B, train)

(19) ⇒ affords(tell(S,B, train)) (18);(3b);(7b))

After applyingtell(S,B, train)

(20) ⇒ [B]Kvtrain (19);(13);(8b)

3.4 Planning an Indirect Speech Act

The situation in section 3.1 also affords
tell(S,H,¬[S]Kvtime), telling the hearer that I
don’t know the time:

(21) ⇒ [S]K¬[C]K¬[S]Kvtime (2)

(22) ⇒ [S]K¬[S]Kvtime (5b);(2)

(23) ⇒affords(tell(S,H,¬[S]Kvtime))(22);(21);(7b)

After applying tell(S,H,¬[S]Kvtime)—that is,
saying “I don’t know what time it is”:

(24) ⇒ [C]K¬[S]Kvtime (10b)

Since (24) is identical to (15), the situation now
again affordstell(H,S, time), and the rest of the plan
is as before.

Asking the time by saying “I don’t know what
time it is” would usually be regarded as an indi-
rect speech act. However, under the present account,
both “direct” and “indirect” speech acts have their
effects by changing the same set of facts about the



knowledge states of the participants. Both involve
inference. In some sense, there is no such thing as
a “direct” speech act. In that sense, it is not surpris-
ing that indirect speech acts are so widespread:all
speech acts are indirect in the sense of involving in-
ference.

Crucially, at no point does the plan depend upon
the hearer identifying the fact that the speakers utter-
ance “I don’t know what time it is” had the illocu-
tionary force of a request or question such as “What
time is it?”.

3.5 On So-called Conversational Implicature

The fact that we distinguish speaker suppositions
about common ground from the hearer suppositions
themselves means that we can include the following
rules parallel to (7) and (8) without inconsistency:

(25) a. “If X supposes the value of p is common
ground, X can say to Y that the value of Y
is something else”

b. [X]K[C]KF = V∧V 6= W
⇒ affords(say(X,Y,F = W))

(26) a. “If X says to Y a value of f, and Y supposes
a different value of f, then Y continues to
suppose that value, and supposes that it is
not common ground.”

b. affords(say(X,Y,F = W)) ∧ [Y]KF = V ∧
V 6= W

–◦ [say(X,Y,F = W)]
[Y]F = V∧ [Y]K¬[C]KF = V

Speakers’ calculations about what will follow from
making claims about hearers’ knowledge states ex-
tend to what will follow from makingfalseclaims
of this kind. To take a famous example from Grice,
suppose that we both know that you have have done
me an unfriendly turn:

(27) a. “I know that as a friend you are bad”
b. [S]K f riend(h) = bad

(28) a. “You know that as a friend you are bad”
b. [H]K f riend(h) = bad

After applying tell(S,H, friend(h) = good), say by
uttering the following:

(29) You’re a fine friend!

the following holds:

(30) ⇒ [H]Kfriend(h) = bad
∧ [H]K¬[C]friend(h) = bad

(27);(28);(26b)

One might not think that getting the hearer to
infer something they already know is very useful.
However, if we assume a mechanism of attention,
whereby things that are inferred become salient,
then we have drawn their attention to their tres-
pass. Moreover, the information state that we have
brought them to is one that would normally suggest,
via rules like (7) and (8), that the hearer shouldcor-
rect the original speaker. Of course, further reflec-
tion (via similar rules that we will pass over here) is
likely to make the hearer unwilling to do so, leaving
them few conversational gambits other than to slink
silently away. This of course is what the original
speaker really intended.

3.6 A Prediction of the Theory

This theory explains, as Grice did not, why this trope
is asymmetrical: the following is predicted to be an
ineffectual way of indirectly complementing a friend
on a friendly act:

(31) #You’re a lousy friend!

Making a hearer think of the key fact for themselves
does not constitute a complement at all, and this time
there is no reason for them not to respond to the con-
tradiction. Unlike (29), this utterance is therefore
likely to evoke a vociferous correction to the com-
mon ground, rather than smug acquiescence to the
contrary, parallel to the sheepish response evoked by
(29).

4 Discussion

The above are toy examples: scaling to realistic do-
mains will raise the usual problems of knowledge
representation that AI is heir to. However, the up-
date effects (and side-effects) of the discourse plan-
ner are general-purpose. They are entirely driven
by the knowlege state, without recourse to specifi-
cally conversational rules, other than some very gen-
eral rules of consistency maintenance in common
ground. Rhetorical relations such as explanation,
elaboration, and causation-to-believe, are emergent
from these general rules. There is therefore some
hope that that conversational planning itself is of low
complexity, and that any domain that we can actu-



ally plan in, we can also plan conversations about.
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