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1. Executive Summary

The core focus of WP4 is the formalization of Object Action Complexes (OACs). More specifically, as part
of WP4.3 (Action Description Language) this deliverable reports on the translation of OACs into explicit
symbolic representations, using a formal language like the Linear Dynamic Event Calculus (LDEC), and
their applicability in constructing a knowledge base that supports high-level planning and plan recognition.
While it is still early in the project, and we are in the process of achieving consensus on some of the lower
level details of Object Action Complexes, there are a number of important themes that we have identified
concerning OACs. Moreover, these insights have resulted from discussions with other workpackage groups
that we believe couldn’t have come about from any one group pursuing these ideas in a vacuum.

Foundationally, we see OACs as knowledge structures that encapsulate

• both an object and the actions it affords, and

• the situational features that suggest the efficacy of each affordance.

As such, we believe that OACs not only provide a rich theoretical foundation but also provide a natural
integration of ideas from multiple disciplines including: high-level AI planning using LDEC action repre-
sentations (WP4, WP5); low-level real time vision (WP2), robotic action, and object representations (WP1,
WP2); psychology and the Theory of Event Coding (TEC)[4]; and learning technologies for building these
representations (WP6).

Critically, we believe that these structures cross the levels of the cognitive hierarchy of our agent, mak-
ing use of representational information that includes: low-level vision systems, robotic control algorithms,
high-level action and planning representations, all the way to representations usually reserved for plan recog-
nition, language, and other kinds of abstract reasoning.

Our proposed formalization grounds OACs in the LDEC language. LDEC [8, 9] is a logical formalism that
combines the insights of the Event Calculus [5] and the STRIPS planner [1], together with Dynamic and
Linear Logics (e.g., as in [2], [3], and others). The use of LDEC as a high-level representation language
follows in the tradition of logical languages inspired by the situation calculus [6]. LDEC has the added
advantage, however, that it incorporates into its semantics a STRIPS-style treatment of fluent change, mak-
ing it a suitable language for modelling planning domains, and the basic procedure underlying the planning
process itself.

In this deliverable we have attached a number of additional documents that cover our current thinking
on these topics in a more detailed manner. In particular, we have made very specific proposals for the
formalization of OACs in LDEC as well as methods for learning these representations. Here we very briefly
sketch their relation to this work package and its deliverables, and make links to the specific contributions
of each paper.

[A] (Presented at Humanoids-06 in Genoa, Italy) This paper sketches the relationship between lower-level
robot control and high-level robot planning. As such, it draws together a number of diverse ideas,
provides a much more formal definition of OACs in terms of an LDEC representation, and makes
proposals for how one could learn such a representation using cognitively plausible mechanisms.

[B] (Technical Report) This document is an evolving specification for the interfaces required for an actual
artifact of the type described in the Genoa paper. This document was produced with the anticipation
of implementing its suggestions for the Paco-Plus demos. As such it leverages the existing hardware
platforms and existing software of multiple of the Paco-Plus teams to produce a working robot system
based on OACs.

[C] (Submitted to AAAI-07) This paper presents a formal treatment of LDEC and its relationship to
STRIPS-style planning, under conditions of complete knowledge and in the presence of incomplete
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information and sensing. Our current approach to high-level plan generation takes advantage of this
close correspondence by building on the extended-STRIPS planner PKS [7], which is capable of
constructing conditional plans.

[D] (Presented at IJCAI-07 in Hyderabad, India) This paper present a formal discussion of the relation
of plan recognition and language and suggests ways in which they could be drawn closer together.
We see this as foundational work aimed at bringing together a number of different representations
that are used for different cognitive tasks and must be unified to produce a more complete cognitive
architecture.

Together, these papers report a number of significant developments:

• OACs grounded from instantiated actions in robot control-space can be used as an interface between
the very different representation languages used for robot control and AI planning.

• Information leveraged from an early exploration/robot vision system can be used to induce a high-
level representation that abstracts the robot-level state space, leading to a division of tasks that can be
performed between the two levels of representation.

• OACs can be embodied in an Associative Net and learned by very simple machine-learning algo-
rithms.

• LDEC serves as a suitable language for modelling both complete and incomplete information, pro-
viding a representation of ordinary physical actions as well as sensing actions.

• Our OAC + LDEC model provides a complete base for planning (utilizing existing planning tech-
nology), and progress towards plan recognition as far as possible in advance of robot perceptual
capabilities.

This work package has also heavily informed and influenced other work packages including WP2,WP3,
WP5, and WP7. Formalization of the OAC concept and its associated machinery both for learning and
reasoning has helped to establish interfaces to other components as well as suggest learning and control
paradigms in our discussions with other work packages.

2. Attached Papers

[A] Object Action Complexes as an Interface for Planning and Robot Control
Christopher Geib, Kira Mourão, Ronald Petrick, Nico Pugeault, Mark Steedman,
Norbert Krueger, and Florentin Wörgötter
Published in the Proceedings of the Humanoids-06 Workshop: Toward Cognitive Humanoid
Robots, 2006

Abstract: Much prior work in integrating high-level artificial intelligence planning tech-
nology with low-level robotic control has foundered on the significant representational
differences between these two areas of research. We discuss a proposed solution to this
representational discontinuity in the form of object-action complexes (OACs). The pairing
of actions and objects in a single interface representation captures the needs of both rea-
soning levels, and will enable machine learning of high-level action representations from
low-level control representations.
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[B] Paco-Plus Design Documentation for Integration of Robot Control and AI Planning
Christopher Geib, Ronald Petrick, Kira Mourão, Nicolas Pugeault, Mark Steedman,
Pascal Haazebroek, Norbert Krueger, Dirk Kraft, and Florentin Wörgötter
Technical report

Abstract: This document was started as a way to capture the conclusions of the discus-
sions between the authors, for specific proposals about how to interface the high-level “AI
Planning layer” and the “Robot control layer”. This document captures our current con-
clusions and the implications for the interface between these two modules.

[C] Representing Knowledge and Sensing in the Linear Dynamic Event Calculus for
Knowledge-Level Planning
Ronald Petrick and Mark Steedman
Submitted to the AAAI Conference on Artificial Intelligence (AAAI-07)

Abstract: The Linear Dynamic Event Calculus (LDEC) is a logical language for reason-
ing about actions and change. One of the novel features of this formalism is its close rela-
tionship with STRIPS, and its STRIPS-style treatment of fluent change for addressing the
frame problem. In this paper we extend the LDEC representation to incorporate knowledge
and sensing actions using the idea of “knowledge fluents”—fluents that model the agent’s
knowledge of ordinary world-level fluents. Using this representation, we show how to
transform LDEC actions into STRIPS-like planning operators usable by the knowledge-
level contingent planner PKS.

[D] On Natural Language Processing and Plan Recognition
Christopher Geib and Mark Steedman
Published in the Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI-07), pages 1612–1617, 2007

Abstract: The research areas of plan recognition and natural language parsing share many
common features and even algorithms. However, the dialog between these two disciplines
has not been effective. Specifically, significant recent results in parsing mildly context
sensitive grammars have not been leveraged in the state of the art plan recognition systems.
This paper will outline the relations between natural language processing(NLP) and plan
recognition(PR), argue that each of them can effectively inform the other, and then focus
on key recent research results in NLP and argue for their applicability to PR.
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Abstract

Much prior work in integrating high-level artificial intelligence planning technology with low-
level robotic control has foundered on the significant representational differences between these two
areas of research. We discuss a proposed solution to this representational discontinuity in the form
of object-action complexes (OACs). The pairing of actions and objects in a single interface repre-
sentation captures the needs of both reasoning levels, and will enable machine learning of high-level
action representations from low-level control representations.

1 Introduction and Background

The different representations that are effective for continuous control of robotic systems and the dis-
crete symbolic AI presents a significant challenge for integrating AI planning research and robotics.
These areas of research should be able to inform one another. However, in practice, many collaborations
have foundered on the representational differences. In this paper, we propose the use of object-action
complexes[7] to address the representational difference between these reasoning components.

The representations used in the robotics community can be generally characterized as vectors of
continuous values. These vectors may be used to represent absolute points in three dimensional space,
relative points in space, joint angles, force vectors, and even world-level properties that require real-
valued models [12]. Such representations allow system builders to succinctly specify robot behavior
since most if not all, of the computations for robotic control are effectively captured as continuous trans-
forms of continuous vectors over time. AI representations, on the other hand, have focused on discrete
symbolic representations of objects and actions, usually using propositional or first-order logics. Such
representations typically focus on modeling the high-level conceptual state changes that result from ac-
tion execution, rather than the low-level continuous details of action execution.
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Neither of the representational systems alone cover the requirements for controlling deliberate action,
however, both levels seem to be required to produce human level behavioral control. Our objective is to
propose an interface representation that will both allow the effective exchange of information between
these two levels and the learning of high level action representations on the basis of the information
provided by the robotic control system.

Any such representation must provide clear semantics, and be easily manipulable at both levels. Fur-
ther it must leverage the respective strengths of the two representation levels. In particular, the robotic
control system’s access to the actual physical state of the world through its sensors and effectors is es-
sential to learning the actions the planning system must reason about. Each low-level action executed by
the robot offers the opportunity to observe a small instantiated fragment of the state transition function
that the AI action representations must capture. Therefore, we propose that the robotic control system
provide fully instantiated fragments of the planning domains state transition function, that is captured
during low-level execution, to the high-level AI system to enable the learning of abstract action repre-
sentations. We will call such a fragment an instantiated state transition fragment (ISTF), and define it to
be a situated pairing of an object and an action that captures a small, but fully instantiated, fragment of
the planning domain’s state transition function. The process of learning domain invariants from repeated,
reproducible instances of very similar ISTFs will result in generalizations over such instances that we
will call object-action complexes (OACs). To see how this is done, the rest of this paper will first discuss
a detailed view of a robot control system, then we will discuss an AI planning level description of the
same domain. We will then more formally define ISTFs and OACS, show how ISTFs can be produced
by the robot control system, and how OACs relate to the AI planning level description. We will then
discuss the learning of OACs on the basis of ISTFs.

To do all this, we require a particular domain for the robot to interact with. Imagine a relatively
standard but simple robot control scenario illustrated in Figure 1. It consists of an arm with a gripper, a
table with two light colored cubes and one dark colored cube. The robot has the task of placing the cubes
into a box, also located on the table. We will also assume the robot is provided with a camera to view the
objects in the domain. However, at the initial stage, the system does not have any knowledge of those
objects. The only initial world knowledge available to the system is provided by the vision module, and
the hard-coded action reflexes that this visual input can elicit.

2 Vision-based Reflex Driven Discovery of Objects and Affordances

We assume a vision front-end based on an Early Cognitive Vision framework (see [8]) that provides
a scene representation composed of local 3D edge descriptors that outline the visible contours of the
scene [15]. Because the system lacks knowledge of the objects that make up the scene, this visual
world representation is unsegmented: descriptors that belongs to one of the objects in the scene are not
explicitly distinct from the ones belonging to another object, or to the background (this is marked by
question marks in Figure 1-2). This segmentation problem has been largely addressed in the literature
[16, 11, 3]. However, while these segmentation methods are purely vision-based and do not require of
the agent to interact with the scene they are unsatisfying for our purpose because they assume certain
qualities from the objects in order to segment them: e.g., constant color or texture, moving objects, etc.

Instead we will approach the problem from another angle: we will assume that the agent is endowed
with a basic reflex action [1] (Figure 1-3) that is elicited directly by specific visual feature combinations
in the unsegmented world representation. The outcome of these reflexes will allow the agent to gather
further knowledge about the scene. This information will be used to segment the visual world into objects
and identify their affordances.

We will only consider a single kind of reflex here: the agent tries to grasp any planar surface in the
scene.1 The likely locations of such planar surfaces are inferred from the presence of a coplanar pair of
edges in the unsegmented visual world. This type of reflex action is described in [1]. Every time the

1Note that other kind of reflex actions could be devised to enable other basic actions than grasping.
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Figure 1: Illustration of how object classes are discovered from basic uninformed reflex actions.

agent executes such a reflex, haptic information allows the system to evaluate the outcome: either the
grasp was successful and the gripper is holding something, or it failed and the gripper closed on thin
air. A failed attempt drives the agent to reconsider its original assumption (the presence of a graspable
plane at this location in the scene), whereas a successful attempt confirms the feasibility of this reflex.
Moreover, once a successful grasp has been performed, the agent has gained physical control over some
part of the scene (i.e. the object grasped, Figure 1-4). If we assume that we know the full kinematics of
the robot’s arm (which is true for an industrial robot), it is then possible to segment the grasped object
from the rest of the visual world as it is the only part that moves synchronously with the arm of the robot.
At this point a new “object” relevant for the higher level planning model is “born”.

Having physical control of an object allows the agent to segment it and to visually inspect it under a
variety of viewpoints and construct an internal representation of the full 3D shape of the object (see [9]).
This shape can then be stored as the description of newly discovered class A (Figure 1-5) that affords
grasp-reflex-A encoding the initial reflex that “discovered” the object.

The object held in the gripper is the first instance a1 of the class A. The agent can use its new
knowledge of class A to reconsider its interpretation of the scene: using a simple object recognition
process (based on the full 3D representation of the class), all other instances (e.g., in our example a2) of
the class in the scene are identified and segmented from the unknown visual world.

Thus through a reflex-based exploration of the unknown visual world object classes can be discovered
by the system until it achieves an informed, fully segmented representation of the world, where all objects
are instances of symbolic classes and carry basic affordances.

To distinguish the specific successful instances of the robot’s reflexes, we will refer to the specific
instance of the reflex that was successful for the object as a particular motor program. Note that such
motor programs are defined relative to a portion of an object, in our example, the surface that was grasped.
We will extend this by assuming all motor programs can be defined relative to some object.

The early cognitive vision system [15], the grasping reflex [1] as well as the accumulation mecha-
nism [9] that together provides a segmentation of the local feature descriptors into independent objects
currently exist in one integrated system that we will use as a foundation for this architecture.
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3 Representing AI Planning Actions

As we have noted, we can also model this robot domain scenario using a formal AI representation. In this
case, we will formalize the robot domain using the Linear Dynamic Event Calculus (LDEC) [18, 19], a
logical language that combines aspects of the situation calculus with linear and dynamic logics, to model
dynamically-changing worlds[10, 6, 5].

Our LDEC representation will define the following actions.

Definition 1 High-Level Domain Actions

• grasp(x) – move the gripper to pick up object x,

• ungrasp(x) – release the object x in the gripper,

• moveEmptyGripperTo(`) – move an empty gripper to the specified location `,

• moveFullGripperTo(`) – move a full gripper to the specified location `.

These actions represent higher level counterparts of some of the motor programs available to the robot
controller, but already these actions incorporate elements of the state of the world that are not part of
robotic control representations of actions. For instance, ungrasp models an action that is quite similar to a
motor program that performs this operation. Actions like moveEmptyGripperTo and moveFullGripperTo,
on the other hand, are much more abstract and encode information about the state of the world (i.e. the
gripper is empty or full). Note that in this case the actions partition the low-level “move gripper” motor-
programs into two separate actions that, as we will see, can more readily be learned from the available
ISTFs. This representation will also allow us to bypass the learning of the conditional effects[13] of such
actions.

Our LDEC representation will also include a number of high-level properties.

Definition 2 High-Level Domain Properties

• graspable(x) – a predicate that indicates whether an object x is graspable or not,

• gripperLoc = ` – a function that indicates the current location of the gripper is `,

• objInGripper = x – a function that indicates the object in the gripper is x; x is nil if the gripper is
empty,

• objLoc(x) = ` – a function that indicates the location of object x is `.

Finally, we also specify a set of “exogenous” domain properties.

Definition 3 Exogenous Domain Properties

• over(x) = ` – a function that returns a location ` over the object x,

• locOnTable(`1) = `2 – a function that returns a location `2 relative to the table (e.g., on the table
or in a box) for another location `1 above the table.

Like the properties in Definition 2, the exogenous properties model high-level features of the domain.
However, unlike domain properties that are directly tracked by the high-level AI model; exogenous
properties are information provided to the high-level AI system by some external (possibly lower level)
source. (We will say more about exogenous properties in Section 6.)

Using these actions and properties we can write LDEC axioms that capture the dynamics of the robot
scenario described in Table 1). Action precondition axioms describe the properties that must hold of
the world to apply a given action (i.e., affordances), while the effect axioms characterize what changes
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Table 1: LDEC Axiomatization of High-Level Domain Actions

LDEC Action Precondition Axioms

objInGripper = nil ∧ graspable(x)⇒ affords(grasp(x))

objInGripper = x ∧ x , nil⇒ affords(ungrasp(x))

objInGripper = nil⇒ affords(moveEmptyGripperTo(`))

objInGripper = x ∧ x , nil⇒ affords(moveFullGripperTo(`))

LDEC Effect Axioms{
affords(grasp(x))

}
([

grasp(x)
]
objInGripper = x ∧ gripperLoc = objLoc(x){

affords(ungrasp(x))
}
([

ungrasp(x)
]
objInGripper = nil ∧ objLoc(x) = locOnTable(objLoc(x)){

affords(moveEmptyGripperTo(`))
}
([

moveEmptyGripperTo(`)
]
gripperLoc = `{

affords(moveFullGripperTo(`))
}
([

moveFullGripperTo(`)
]
gripperLoc = ` ∧ objLoc(objInGripper) = `

as a result of the action. These axioms also encode the STRIPS assumption: fluents that aren’t directly
affected by an action are assumed to remain unchanged by that action [4].

We note our LDEC axiomatization is readily able to accommodate the indexical, or relative infor-
mation. For example, an instantiated function like over(box1) represents a form of indexical knowledge,
rather than a piece of definite information like the coordinates of the box in three dimensional space.
Moreover, our LDEC axiomatization can model spatial relationships expressed with respect to objects.
For instance, moveFullGripperTo(over(box1)) can represent an action instance that moves the object in
the gripper to a location “over box1”

Intuitively, the information encoded in a collection of LDEC axioms captures a generalization of the
information in a larger set of ISTFs. The action precondition axioms capture information from the initial
state of an ISTF and the action executed, while the effect axioms capture the generalities for the initial
state to final state mappings from an ISTFs. As such we believe they can be learned from the ISTFs.

It is easy to show that this representation supports high-level planning. For instance, with these
axioms it is trivial for an AI planner to construct the following simple plan:[

grasp(obj1); moveFullGripperTo(over(box1)); ungrasp(obj1)
]
,

to put an object obj1 into box1, from a state in which the robot’s gripper is empty. However, building
even this sort of simple plan from first principles is well beyond the capability of the robot controller
alone.

So far we have shown that a low level robot controller is capable of producing ISTFs for a domain, we
have shown a way an AI level planner could formalize the same domain, and we have shown the necessity
of using the AI planner with the robot controller to produce high level behavior. In the remainder of the
paper we will outline a process whereby we can learn the AI level representation from the ISTFs produced
by the robot controller.
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4 Bridging Robot Control and Planning with ISTFs and OACs

With these two views of the problem in hand, we now, consider how we can bridge the two represen-
tational levels. We see that we can obtain a wealth of object-centric information each time the robotic
system successfully grasps an object: the object grasped, the type of grasping reflex used, the relative
position of the gripper, the fact that the object has been effectively grasped and is now in the gripper
instead of being on the table, etc. This association of before and after states of a particular “grasp”
motor program with a specific domain object meets our definition of an ISTF. It completely describes a
fragment of the planning domain’s transition function.

We more formally define an ISTF as a tuple
〈
si,mp j,Ob jmpi , si+1

〉
comprised of the initial sensed

state of the world si, a motor program instance mp j, the whole object containing the component the motor
program was defined relative to Ob jmpi , and the state that results from executing the motor program si+1.
Keep in mind that the state representations for this ISTF contain all of the information the robot has about
the two states of the world. Some of which may be relevant some of which may be completely irrelevant
to the outcome of the action.

It will be the task of the learning module to abstract away this irrelevant information from the ISTFs
to produce OACs that contain only the relevant instantiated information needed to effectively predict
the applicability of the action and the likely effects of the action. This is only possible if the system
is provided with multiple encounters with reproducible ISTFs. Thus as the system repeatedly interacts
with the world it is presented with multiple very similar ISTFs which it generalizes into OACs, thereby
learning a representation that is not unlike the one we specified in the previous section.

On this basis, we define an OAC as a generalized ISTF tuple:
〈
S i,MP j,Ob jk, S i+1

〉
comprised of

two abstracted states (S i and S i+1) a set of motor programs MP j, and an object class Ob jk. The initial
state of the world, S i, is abstracted to contain only those properties that are necessary for any of the set
of motor-programs in MP j when acting on an object of class Ob jk to result in an state that is satisfied
but the abstracted state definition S i+1. Thus such an OAC contains all of the information found in our
initial LDEC definitions for this domain.

Given the parallels to LDEC representations how are OACs different? The answer to this is, a very
subtle point. OACs constrain the kinds of LDEC rules that can be learned. First OACs distribute infor-
mation in a subtly different manner than LDEC rules. An OAC contains information normally found in
two different parts of the LDEC representation. By bringing together information found in precondition
rules with the effect rules and the object in question they allow learning to take place that previously
couldn’t have been accomplished. Second the heavy use of the object and the object centeredness of
OACS produce LDEC representations that easily lend themselves to a simple forward looking planning
algorithm that is heavily directed by the affordances of the available objects. Third and finally the use
of OACs constrains the LDEC representations to a simple form of axioms that are easier to learn. For
example, without more complex machinery, OACs induced from ISTFs are not able to create action rep-
resentations with conditional effects. Learning such conditional effects of actions is a significant problem
for other approaches.

5 Learning Action Representations

The ability of a low level robotic control system to identify world-level objects only takes us part of the
way to kind of representation we have just described. We must learn from the ISTFs coherent, high-level
actions. Our current proposal for learning such action representations involves the use of Willshaw nets
or Associative Nets(AN).

ANs were first was described in [22, 21] following early work by [20] and [2] extended by [17] and
[14]. They illustrate three basic properties which are characteristic of mechanisms involved in phenom-
ena of human memory and attention: 1) non-localized storage (“Distributivity”), 2) recovery of complete
stored patterns from partial or noisy input (“Graceful Degradation”), and 3) effective functioning even in
the face of damage (“Holographic Memory”).
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Figure 2: Hetero-associative net: Storage and Retrieval

ANs associate pairs of input and output vectors using a grid of horizontal input lines and vertical
output lines with binary switches (triangles) at the intersections (Figure 2). To store an association
between the input vector and the output vector, switches are turned on (black triangles) at the intersection
of lines which correspond to a 1 in both input and output patterns.

To retrieve the associate of the input, a signal is sent down each input line corresponding to a 1 in the
input. When this signal encounters an “on” switch, it increments the signal on the corresponding output
line by one. The output lines are then thresholded at a level corresponding to the number of “on” bits in
the input. If we store an input pattern with itself as output (an auto-associative net), ANs can be used
to complete partial patterns, as needed to recall perceptually non-evident properties of objects, such as
the fact that the red cube on the table affords grasping. This is exactly the information that is encoded in
action precondition axioms. Further it is worthwhile to notice that all of the information needed for this
AN is available in each new instance of an ISTF. In this case, the input and output patterns for the AN are
the same: the initial state, action, and object for a cluster of reproducable ISTFs observed in the course
of interacting with the world. We thereby use repeated presentations of very similar ISTFs (clustered by
action and object) to train auto-associative ANs to effectively store and retrieve associations between the
LDEC action precondition axioms and the property of affording such LDEC operators.

Now consider the LDEC style effect axioms. Rather than using an auto-associative net we can use a
hetero-associative network for this task. In this case, we again use the initial state, action, and object as
the input pattern from each ISTF, however as the output pattern we use the resulting state from the ISTF.
This will allow us to learn and retrieve the state-change transitions associated with LDEC operators, with
states represented as sparse vectors of relevant facts or propositions.

Thus, we hypothesize that such associations can be learned in ANs using repeated presenations of
reproducable ISTFs using the Perceptron Learning Algorithm (PLA). We replace the binary AN switches
with continuous valued switches and use multiple ISTFs that have the same action, object, and resulting
state and the PLA to adjust the weights on the relevant switches. We believe that such an approach can
learn consistent state changes or actions, and learn the association between preconditions and associated
affordances.

More specifically, in the envisioned scenario, as the robot controller explores the world, successful
grasps will produce ISTFs. On the basis of multiple reproducable experiences of particular ISTFs we can
learn the instantiated versions of the precondition axioms and the effect axioms for the robots actions.
The resulting state in each ISTF will vary only in terms of the object-type grasped and the grippers pose.
Further, the invariants can be learned as a basis for classifying the world into object classes and action
types. As we have discussed, identifiers for actions-types can then be associated with the input conditions
for the action via an auto-associative net. Such affordances are added by adding new input and output
lines to the net for the new affordance, and using the existing learning algorithm.

This network can be presented with a possibly incomplete set of properties representing the current
state of the world, and used to retrieve a complete model of the world state, including non-perceptually
available associates including the affordances and object classes.(Figure 3) For ease of exposition, in
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Figure 3: Retrieval of affords(grasp(x)) from objInGripper = nil ∧ graspable(x) in the loaded auto-
associative net

this and the following figures we will continue to show weights of 0 and 1. The full pattern including
affordances can then be input to the other hetero-associative net, and used to retrieve the effects of
carrying out particular actions. (Figure 4).

If the output states and affordances are the same following two different grasp actions for a particular
input state, then clearly the effects (as far as the learner and planner are concerned) of the two grasps are
the same for that input. If the effects are the same for all inputs then the grasps are equivalent and can be
collapsed together. We discuss this next.

5.1 Learning Multiple Grasp Actions

Recall from our discussion of the high-level action grasp that at the lower level there may in fact be many
low-level grasps available to the robot at any point. While many of these grasping actions may have
effects that are indistinguishable from one another, there will also be grasping actions that result in very
different effects. Given this, and our desire to avoid the difficulties of learning actions with conditional
effects, it becomes clear that we will need multiple grasp actions at the higher level of abstraction.
To distinguish these actions and their effects during planning and learning we will introduce multiple
predicates indicating “graspability” by particular motor programs.

Our learning process now operates as follows: when an object is “born” at the lower level of represen-
tation (See Section 2), the message for the addition of the object (e.g., obj23) should include an identifier
for the specific action that was executed (e.g., grasp28, grasp95, etc.) as well as asserting the existence
of a new predicate indicating the object has that action as an affordance (e.g., affords(grasp28(obj23))).2

This predicate is added to the AN and can be used for learning.
We make the strong assumption that the invariants of the domain map onto the input units of the

associative network, which we assume in animals have evolved to this end and for the robot must be built
in, are such as to ensure that when distinct low-level motor programs are indistinguishable at the higher
level of abstraction, they will automatically be classified as instances of a single action.

6 Using Learned Abstract Action Representations

We have described a process that results in learning abstracted action representations that should be close
to the LDEC representations we have sketched for this domain. However, by abstracting the actions in

2Although we only consider grasping actions, we assume other actions, such as pushing, also result in the “birth” of an
object-affordance complex.
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Figure 4: Retrieval of effect grasp(x) from the hetero-associative net

this way there remains a number of open concerns we must address.

Using Learned Action Knowledge with New Objects All new objects are initially associated with
“new” actions. Our problem is to associate a previously unseen motor-program object pair with an
existing high-level action or to mark it as a new action that must be learned at the high level.

Using Learned Action Knowledge for Execution It will be necessary to convert our learned abstract
actions to specific motor programs for execution. Keeping the list of the motor program-object pairs
abstracted by each high-level action should address this issue. Since all abstracted pairs for a given
action should be equivalent, we suggest selecting any one that matches the object bound in the high level
plan.

Learning Exogenous Domain Properties Although we have described a process for learning certain
domain properties, the question remains as to how we will learn the exogenous properties given in Def-
inition 3. For the present we simply assume the presence of over as an exogenous domain property that
is computed by a lower level function.

7 Conclusion

This paper has argued that object-action complexes (OACs) grounded from instantiated actions in robot
control-space, can be used as an interface between the very different representation languages of robot
control and AI planning. We have shown that OACS can be embodied in an Associative Net, and that they
can be learned by a very simple machine-learning algorithm. Almost all of these claims are unproven but
we offer them as defining a research program that we shall be pursuing in the coming years in order to
combine existing robot platforms and existing planners based on LDEC and other situation/event calculi.
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1 Overview

The following document was started as a way to capture the conclusions of the discussions between
the authors, for specific proposals about how to interface the high-level “AI Planning layer” and the
“Robot control layer”. We believe that it most properly should be seen as an evolving design document
specifying the conclusions that we came to and the implications for the interface between these two
modules.

1.1 Document history

Rev. 1: Results of October 9th–11th meeting in Edinburgh
Rev. 2: Extended and modified as a result of November 23rd–24th meeting in Goettingen.

1.2 Objective

Our overall objectives are to produce a principled interface for the interaction of an AI level planning
component with a lower level robotic control component with three requirements:

1. use of Object Action Complexes (OACs) to define and constrain the interactions

2. enable the discovery of objects, actions, and properties by the robot component.

3. enable the learning of AI planning level representations for the objects, actions, and properties on
the basis of robotic level observations
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AI Planning system

Robot Control Layer

Figure 1: Very high-level system architecture

1.3 Basic Assumptions

We have been assuming a two layered architecture wherein the robot controller is responsible for operat-
ing and controlling “continuous” or real valued sensors and actuators and reporting up to the AI planning
level discrete (possibly thresholded) state information. When possible, the AI planner will submit se-
quences of actions to be executed to the robot controller in order to achieve high-level goals.

This has the basic impact of requiring information to flow both from the robot controller to the AI
Planning system and from the planning system back to the robot controller. In Figure 1 we see the flow
of information between these two components. The purpose of much of this document is to define the
nature of that communication and changes in control that accompany them.

2 Issues for the Interface

During our discussions we identified a number of issues that any interface between the AI planner and
Robot controller must address. In this section we identify those issues and sketch any agreed upon
solutions.

2.1 System Level control

As with any multi-layer control system where there are multiple controllers that can suggest actions for
execution there is an issue about adjudicating between the suggested actions. Effectively the question
is: when is each control algorithm in charge of determining the next action for the system as a whole to
execute.

As will be clear when we discuss a proposed example of the system’s execution, one of the primary
objectives of the system is to acquire more information about the state of the world, the objects in it and
the actions that can be performed on them. This has the following implications. Most of the actions called
for by the lower level robot controller are reflexive and exploratory in nature. Most of the actions called
for by the AI planning level are goal directed and require richer models that must be learned from the
lower level. As a result the interface is designed such that while the AI planner has sufficient information
to suggest plans to achieve goals it is allowed to hand actions to the lower level for execution. When the
goals of the AI system have been achieved or the system doesn’t have enough information about the state
of the world the robot controller’s exploratory behaviours are invoked. We will see this in much more
detail when we discuss an example of the system working.
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2.2 Exogenous Domain Predicates

We define exogenous domain predicates as domain information required by the AI level about the state
of the world that cannot be determined by AI system reasoning. Such predicates represent critical state
information needed for planning, for instance for reasoning about the relative positions of objects. An
example of this would be the predicate “over” as in “over(object23, object98)”. It has been generally
agreed that the lower level robot controller is capable of providing this information. Such predicates may
fall into two distinct classes.

1. Computed: A simple definition of the predicate “over” would simply be the projection upwards of
the bounding box for the object. This is easily derivable from the objects visual features, however
may not cover more detailed action needs.

2. Learned: Defining “over the box for the purpose of dropping something into the box” may be a
predicate that requires a more active learning process. This may include experimentation.

This means that in the AI level representation we will have more “prepositions” including preposi-
tions that are task specific: for example, “over-for-grasp23” and “over-for-drop-into”. This is consistent
with linguistic evidence about interpreting prepositions within context.

2.3 Monitoring of Lower Level Action Execution

As part of such an architecture it is important for the AI level to be able to monitor lower level action
execution and, if the plan is failing to meet its goals, to be able to stop the execution. To meet this
requirement we place the following requirement on the AI planner: as the world state is updated at the
higher level, the AI level is required to monitor these conditions and issue a “halt action” command if
the action is not proceeding according to expectations.

2.4 Agreement not to use Specific Locations

Testing equality of locations is very hard to do at the robot level and not something we should ever expect
will be available from the low level. This strengthens the idea that almost all work done at the AI level for
planning should be done relative to specific object identifiers rather than positions in an N dimensional
space.

2.5 Preparatory Actions

There is a necessity for including actions in the AI level plan for “grasp setup actions”. Robotic path
planning is very complex and we need to make a nod in the direction of acknowledging that. At this point
we believe this will be little (or possibly nothing) more than a stub action. But recognizing the problem
is significant. We note that learning such preparatory actions may present a much more significant
challenge for the AI level, since it is not as obvious what if any perceptual change in the world would be
relevant for the learning of this action. But this may be consistent with the child development evidence.

2.6 Division of Representation

Different representations and the corresponding operations that generate/manage these representations
need to be separated into two levels: the lower vision/robot level and the higher AI planning level. We
believe that the lower level should manage information concerning visual features, relations, and untested
reflexes. Class information and newly born objects would be generated at the lower-level through the
operation of the vision system.

The information provided by the lower level would be used to induce the high-level representations.
The high level would operate with unique identifiers (possibly generated at the higher level on the request
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of the lower level) that would be used to index lower-level objects, classes, and motor programs/reflexes.
The high level would have no direct access to local visual features and relations, and would avoid rea-
soning about continuous values. Plans generated at the high level should therefore contain appropriate
“links” to the required low-level entities using the unique identifiers.

2.7 Example of Pulling Objects into the Workspace

There are a number of interesting problems that clearly motivate the need for integrating AI level plan-
ning and lower level robot planning. For example, consider the case of pulling an object that is currently
unreachable, into the working space. This is a textbook example of where AI level planning can be used
to make objects more accessible. The robot system is unable to reach the object initially, however it is
possible to invoke the AI planner to build a plan to pull the object into the work space to allow for a
better grasping action.

The significant caveat is that we need to be sure to be able to define more exogenous domain pred-
icates that will allow us to do the planning in a discrete space, rather than attempting to do “geometric
reasoning” at the AI planning level. For example, the addition of “not in reach” as a perceptual primitive
would be needed for this example, and could be provided by the robot level.

3 Demo 1 Example

As a design document we will not include here a detailed discussion of the component technologies that
go into this system. Instead we suggest reading [1, 2, 3] for details of how the AI planning system and
robot control system work. In this section we will provide a very simple sketch of an imagined interaction
between these components to achieve the end of learning about the world, culminating in clearing a table
of a number of coffee mugs.

We imagine our AI planning system and robot arm equipped with a vision system confronted with a
table that has on it a number of objects:

1. three identical cups,

2. three identical plates, and

3. a box the cups and plates should be put into.

We do not assume the system has knowledge of the cups or plates or their affordances, however, we do
assume that the system knows about the box and its affordances, and that the AI system has the goal of
putting all objects on the table into the box.

We envision the following scenario:

1. Since the AI planner does not know about the objects and their affordances, it invokes the robot
level reflexive exploration behaviour.

2. The robot controller experiments with choosing pairs of coplanar points and attempting to grasp
them to see if they define an object. This task repeats until the robot manages to effectively grasp
an object. For the first case we assume it is one of the cups.

3. By moving the object and subtracting out its gripper the robot forms a model of the cup, and can
then place it back on the table.

4. As a result of this exploration the robot controller reports to the AI planner the “birth of an object”.
As part of this it reports: a UID for the class of objects, a UID for each instance of the object in the
visual field (in this case one for each of the three cups), and a UID for the associated affordance of
the object (namely the single successful grasping instance just used).
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5. On the basis of this new information the AI planning system now knows that its goal of having a
clear table is not satisfied and it attempts to achieve it. Given the new objects and their grasping
affordances the planner is able to build a plan for putting the three cups in the box and sends that
plan to the robot controller for execution.

6. The robot controller executes the plan, sending reports of state changes back to the AI system (to
enable it to monitor the plan for progress). We assume the plan works perfectly, placing all of the
cups in the box.

7. The AI system now believes that its goal of having a clear table has been met (since it knows noth-
ing about the plates) and again invokes the robot controller’s reflex driven exploration behaviour
looping back to the first step.

In discussing this type of demo we have made the commitment that the AI planner would not ask the
low-level system to execute any action that it hasn’t done before (at least as far as identified classes of
objects are concerned). However it is worth noting that the large amount of information we are assuming
is already present in the AI planning system. For example, in this document (though not in other places
[1]) we have glossed over the question of how the system actually learns the high-level representations.
Such learning requires previous knowledge of exogenous domain predicates, classes of actions and much
other knowledge that we are assuming we have access to for this first demo.

4 List of Robot Primitives

The following is a proposed list of the primitive robot reflexes that are initially available in the system.
Note that the names given in this list may not correspond to the names given to these primitives in the
robot system, but instead capture the major classes of reflex behaviours available from the robot system.

• moveGripper: This corresponds to the general movement of the robots end effector to a spe-
cific location in the domain. It will underlie two of the AI level actions, moveEmptyGripper and
moveFullGripper.

• grasp1, grasp2, . . . , graspX: This set forms the low-level reflex for grasping based on a pair of
features within the visual field. This will be the foundation for the AI system’s ability to learn
generalized grasping.

• ungrasp1, ungrasp2: This set are the reflexes that are used to release an object that has been
grasped.

These may of course be extended with other low-level primitives.

5 Definition of Domain Terms

To be more specific in our discussions, we define Object, ObjectType, Pose, Location, and Affordance.

Definition 1 Proposed terms that will be used in following definitions

1. Object: a unique object identifier. That is a unique identifier of an object instance in the world
model that is shared between the AI planner and the Robot/vision system.

2. ObjectType: a unique identifier denoting the type or class of a particular object instance. Each
Object has a single ObjectType.

3. Pose: an identifier that denotes the current orientation of an object. The set of all available poses
is an enumerated type, e.g., {1, 2, 3, . . . , upright}
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4. Location: a unique location identifier. That is a unique identifier used to refer to a location in the
robot/vision systems world model.

5. Affordance: a unique affordance identifier. That is a unique identifier of an affordance that can be
re-executed by the Robot/vision system.

6 Functions that map objects to locations

We are already aware of a number of specialized functions that will be required for the AI system to map
from Objects to Locations for use by the robot system. These functions will have to be learned by the
system and this must take place both at the robot level (training a perceptual primitive to send a message
to the AI system when they are true) and at the AI level (learning when they are important for describing
the preconditions or effects of actions).

• into: This function maps from an object that is concave to a point inside the object. This function
is assumed to produce a location such that if an object in the gripper is released from the location,
the object can be considered “carefully placed into the object”. Note that if the object is not known
to be concave the function throws an exception?

• onto: This function maps from an object to an arbitrary point that is wholly on the object. This
function is assumed to produce a location such that if an object in the gripper is released from the
location, the object can be considered “carefully placed on the object”.

• tograsp1, tograsp2, . . . , tograspX: For each grasp affordance that is learned we introduce a func-
tion that will map from an object that will be grasped using that affordance to a location that sets
up the grasp.

7 Messages from the Robot: Predicates that Define the World State at the
AI Planning Level

In order for the AI Planning system to maintain a world model for planning the robot/vision system must
send messages to the AI planning system about any significant perceptual changes to the world. Such
messages should be “pushed” to the AI system to allow asynchronous update of the world model even
possibly during the execution of an action requested by the AI planning system.

The following table specifies the current complete set of the messages the robot/vision system must
be able to send for this purpose. Note that we distinguish the messages that contain meta-information
(the introduction of new objects or affordances to the world model) from the messages that update the
state of a predicate in the world model.

Predicate Def Example Use Descriptive Note
in(Objectcontainer,Objectcontained) in(box1, obj1) Captures locations of objects

on(Objectsupporting,Objectsupported) on(table1, obj1) Captures locations of objects
ingripper(Object) ingripper(obj1) Captures locations of objects
pose(Object,Pose) pose(obj1, upright) Captures the pose of the object

gripperempty gripperempty Captures the state of the gripper when empty
gripperat(Location) gripperat(tograsp23(obj1)) Captures the location of the gripper

Message Def Example Use Descriptive Note
newobj(Object) newobj(obj1) Introduces a new object.

newaff(ObjectType,Affordance) newaff(objtype1, grasp28) Introduces a new affordance for an object.

Figure 2: Messages sent by the Robot to the AI Planning Level
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8 Messages from the AI Planning Level: Action Requests from the Plan-
ner

The AI planner requests actions for execution. Each such action has specific action effects that should
be visible in the world model after a successful execution. The following table provides the specification
for the action, an example of its use, and the expected change the robot level will report back to the AI
level if the action is successful.

Action Def Example Use Successful Execution Result
moveEmptyGripper(Location) moveEmptyGripper(tograsp23(obj1)) gripperat(tograsp23(obj1))

graspI(Object) grasp23(obj1) ingripper(obj1)
moveFullGripper(Location) moveFullGripper(into(box1)) in(box1, obj1)

drop(Object) drop(obj1) gripperempty
beginexploration beginexploration N/A

Figure 3: Possible AI Planning Level Action Requests

We note that beginexploration is special in the sense that it is a meta-level operation that initiates a
process at the robot level, without any direct execution results.

9 Tasks for AI Planning Level

The following are the major tasks the AI Planning Level team needs to complete.

1. Encode Planning Domain as Specified: This includes encoding the planning problem as specified
above with the given domain primitives and actions. This will result in a planner capable of
building plans for clearing the table of discovered objects. Note that for our example domain all
that will be missing for the system is the specific action/affordance and object instance information
that is needed to produce the plan. This will be provided by the robot controller.

2. Build High-Level Planning System Architecture: This includes creating an infrastructure that
builds plans, submits plans for execution, verifies the resulting state is consistent with its expecta-
tions and if so submits the next action in the plan.

3. Build Truth Maintenance System for High-Level World Model: Since the robot system is
responsible for the assertion of some facts that have multiple effects on the world model at the AI
level, we are responsible for building a small system to effectively update the AI world model.

4. OPTIONAL: Interface to GraspIt Software: If the interface to the GraspIt software is identical
to the interface that will be needed for the Robot then we will make any small changes necessary
for the testing of the AI Planning system within this simulation environment. To the degree that
the interface would be significantly different and require significant extra code we are not sure that
we see the value of the effort in such an integration.

10 Tasks for Robot Level

The following are the major tasks the Robot/Vision team needs to complete. [ this needs real work ]

1. Smoothing of percepts to remove irrelevant discontinuities:

2. Construction of perceptual functions

3. Wrapper for execution of requested tasks
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4. Others?

11 Known “Open” Issues that will Require Addressing Later

During our discussions we identified a number of issues that we will need to return to address later.
These include:

1. Dropping and “onto” vs push and “into”

2. Pushing and pulling actions

3. Objects “disappearing” from the perceptual system
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Abstract

The Linear Dynamic Event Calculus (LDEC) is a logical language for reasoning about actions
and change. One of the novel features of this formalism is its close relationship with STRIPS,
and its STRIPS-style treatment of fluent change for addressing the frame problem. In this paper
we extend the LDEC representation to incorporate knowledge and sensing actions using the idea
of “knowledge fluents”—fluents that model the agent’s knowledge of ordinary world-level fluents.
Using this representation, we show how to transform LDEC actions into STRIPS-like planning
operators usable by the knowledge-level contingent planner PKS.

1 Introduction

The construction of practical planning systems can often benefit from the insights provided by formal
representations based on logical languages. Since the core task of a planner is to reason about actions and
change, formal approaches that facilitate efficient reasoning can aid in the design of effective planning
techniques.

In this paper we focus on a variant of the situation calculus [9] called the Linear Dynamic Event
Calculus (LDEC) [17, 18], a logical formalism for modelling dynamically-changing worlds. The impor-
tance of LDEC lies in its close connections to STRIPS [4]. In particular, this representation motivates a
simple forward-chaining approach to planning using STRIPS-style action operators, making it a natural
choice for representing classical planning domains.

One of LDEC’s weaknesses, in its original form, is that it lacks an obvious way to represent knowl-
edge and sensing actions. While classical planning domains typically assume an agent has complete
knowledge, such assumptions are not always reasonable. Reasoning about sensing as a form of action,
however, requires the ability to reason effectively about knowledge and is often a prerequisite for mod-
elling complex domains, such as those that require contingent planning.

Conceptually, the problem of modelling knowledge and action has been extensively studied and many
approaches share a common treatment of knowledge, namely that reasoning about knowledge reduces
to reasoning about an accessibility relation over a set of possible worlds. From a computational point of
view, working directly with such a representation is problematic since establishing that n propositional
formulae are known (a task that planners often perform) may require reasoning about 2n possible worlds.

We propose an extension to LDEC that avoids the possible-worlds account of knowledge. Instead,
we adapt an existing approach from the situation calculus that represents knowledge using “knowledge
fluents,” i.e., fluents that directly model the agent’s knowledge of ordinary world-level properties [3].
Although this approach is representationally less expressive than the possible-worlds model, it has the
advantage that reasoning about knowledge reduces to the problem of reasoning about ordinary fluent
change and, thus, can be made quite efficient in practice.
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We will also take advantage of the insights provided by knowledge-level planning, which has been
shown to be an effective alternative in certain domains to planners that use world-level representations
(e.g., [1], [19], plus others). In particular, we show how to syntactically transform LDEC domains
into planning operators usable by the contingent planner PKS (Planning with Knowledge and Sensing)
[12]. Since PKS is itself built on an extended-STRIPS representation, we can also interpret our new
LDEC domains in terms of STRIPS-style action operators, and use LDEC as a practical formalism for
modelling conditional planning domains.

This paper is organized as follows. First, we briefly describe the LDEC formalism and demonstrate
the relationship between LDEC and STRIPS. We then introduce the notion of knowledge into LDEC
and use it to model an interesting range of sensing actions. Using these new additions, we show how they
relate to the extended-STRIPS representation used by the PKS planner. Finally, we give some insights
into an intended application of LDEC, and describe some future extensions of our work.

2 Linear Dynamic Event Calculus (LDEC)

The Linear Dynamic Event Calculus (LDEC) [17, 18] is a logical formalism that combines the insights
of the Event Calculus of [8], itself a descendant of the Situation Calculus [9], and the STRIPS planner
of [4], together with the Dynamic and Linear Logics developed by [6], [7], and others.

The particular dynamic logic that we work with here exclusively uses the deterministic “necessity”
modality [α]. For instance, if a program α computes a function f over the integers, then an expression
like “n ≥ 0 ⇒ [α](y = f(n))” indicates that “in any situation in which n ≥ 0, after every execution of
α that terminates, y = f(n).” We can think of this modality as defining a logic whose models are Kripke
diagrams. Accessibility between situations is represented by events defined in terms of the conditions
which must hold before an event can occur (e.g., “n ≥ 0”), and the consequences of the event that hold
as a result (e.g., “y = f(n)”).

This logic also includes the dynamic axiom

[α][β]φ⇒ [α;β]φ,

which defines the sequence operator “;” as a composition operation over events. Like other dynamic
logics, LDEC does not use explicit situation terms to denote the state-dependent values of domain prop-
erties. Instead, it uses the sequence operator to chain together finite sequences of actions. For instance,
[α1, α2, . . . , αn] denotes a sequence of n actions and [α1, α2, . . . , αn]φ indicates that φ must necessarily
hold after every execution of this action sequence.

LDEC also mixes two forms of logical implication, which contributes to its representational power.
Besides standard (or intuitionistic) implication ⇒, LDEC follows [2] and others in using linear logical
implication, denoted by the symbol (. It is this second form of implication that leads to a solution to
the frame problem [9], as we’ll see below.

An LDEC domain is formally described by a collection of axioms. Actions (or events) provide the
sole means of change in the world, and affect the fluents (i.e., properties) of the domain. We define an
LDEC domain as follows.

Definition 1 LDEC domains are described by the axioms:

1. For each action α, an action precondition axiom:

L1 ∧ L2 ∧ . . . ∧ Lk ⇒ affords(α),

where each Li is a fluent literal (a fluent or its negation).

2. For each action α, an effect axiom of the form:

{affords(α)} ∧ φ ( [α]ψ ∧ γ,
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where φ has the form C1 ∧ C2 ∧ . . . ∧ Cl, ψ has the form ¬D1 ∧ ¬D2 ∧ . . . ∧ ¬Dm, and γ has
the form F1 ∧ F2 ∧ . . . ∧ Fn. Each Ci, Di, and Fi is a unique fluent. Also, the Cis must appear
syntactically identical in the corresponding action precondition axiom for α.

3. A collection of initial situation axioms of the form:

L1 ∧ L2 ∧ . . . ∧ Lp,

where each Li is a ground fluent literal.

Definition 1 enforces certain syntactic restrictions to the axioms we permit, to accommodate the
representational limitations inherent in many planners. For instance, actions and fluents may be pa-
rameterized, however, we restrict all fluent arguments to only contain variables that also appear in the
corresponding α term of the same axiom. (Free variables are treated as being universally quantified.)
Moreover, we assume that whenever an action α appears in an axiom, it always has the same parameters.

Action precondition axioms specify the conditions that afford a particular action. For instance, axiom
(1) in Table 1 specifies that in order to pick up an object x, an agent’s hand must be empty and the object
x must be on the table.

We also define a transitivity property for affords:

affords(α) ∧ [α]affords(β) ⇒ affords(α;β).

This rule says that any situation which affords an action α, and after performing α results in a situation
which affords action β, is a situation which also affords α then β. Thus, we can also reason about the
possibility of action sequences.

Logical languages like LDEC must also address the frame problem [9], which arises since actions
typically affect just a few properties among a large set of properties that constitutes the state of the world.
As a result, formal representations must not only capture the changes caused by action effects on the
properties of the world, but also the “non-effects” of actions on those properties that remain unchanged.

Effect axioms use linear implication to build certain “update rules” directly into the LDEC represen-
tation. In particular, when an effect axiom is applied, the fluents in the antecedent (the Cis) are treated
as consumable resources that are “replaced” by the fluents in the consequent (the ¬Dis and the Fis).1

A formula contained in {·} indicates that it is a non-consumable resource. All other fluents remain un-
changed. Thus, linear implication lets us avoid having to include explicit frame axioms in our LDEC
domains. Such rules are instead built into the background proof theory concerning linear implication
(see [17, 18]). For instance, axiom (3) in Table 1 indicates that if a situation affords picking up x, and the
agent’s hand is empty and x is on the table, then after performing the action the agent will be holding x,
the agent’s hand will cease to be empty, and x will no longer be on the table. All other world properties
are unaffected.

Finally, initial situation axioms complete a domain description by defining the initial status of partic-
ular fluents.

3 LDEC and classical STRIPS planning

The axioms in Definition 1 provide a straightforward way of generating plans, by finding an action
sequence afforded by the initial situation that satisfies a given goal formula.

Example 1 Consider the LDEC domain described by the axioms in Table 1, and say that we seek a
constructive proof to establish affords(α)∧ [α]inBox(o1, b1), i.e., a “possible” action sequence α whose

1We treat consumed fluents as being made false and we require that these fluents be part of a corresponding action precon-
dition axiom. In general, linear implication lets us model actions with resource constraints, however, we do not focus on such
actions here.
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execution results in o1 being in box b1. Since handempty and onTable(o1) hold by the initial situation
axiom (5), the situation affords pickup(o1) by axiom (1). Applying this action’s effects in axiom (3)
causes these two facts to be replaced by holding(o1) in the resulting situation. This new fact, together
with empty(b1) (from (5)) affords dropInBox(b1) by axiom (2). The result of this action in axiom (4)
causes these two facts to be invalidated, but brings about handempty and inBox(o1, b1), satisfying the
goal. Thus, one solution is given by the plan α = [pickup(o1); dropInBox(o1, b1)]. �

One of the novel features of LDEC is that we can interpret its use of linear implication in terms of
operations that update a STRIPS database [4]. In STRIPS, a databaseD represents the world state. D is
also a closed world database that let us use negation as failure to determine the truth of a formula φ: φ is
true if φ ∈ D and ¬φ is true if φ 6∈ D. Action preconditions and goals are established by simply querying
D in this way to verify their truth. The effects of an action α are modelled by two sets of updates that,
when applied to D, produce a new database representing the state resulting from the execution of α:
formulae added to D indicate the properties that α makes true, while formulae deleted from D indicate
the properties that α makes false. All other properties remain unchanged.

As we have seen, linear implication combined with the necessity operator performs state-changing
operations similar to those of STRIPS. The frame assumptions built into the background theory for
linear implication also parallel STRIPS’s treatment of properties that are unchanged by action. This
resemblance lets us define a simple syntactic transformation for converting LDEC actions into STRIPS
operators. Assuming all LDEC fluents and action names have STRIPS counterparts of the same syn-
tactic form and arguments, we use XS to denote the STRIPS form of an LDEC expression X in the
following construction:

Transformation 1 For each LDEC action α, a corresponding STRIPS operator αS is defined as fol-
lows:

1. The preconditions for αS are given by LS
1 , . . . , L

S
k , for the Lis in an action precondition axiom for

α,

2. The delete list for αS is given byCS
1 , . . . , C

S
l andDS

1 , . . . , D
S
m, for theCis,Dis in an effect axiom

for α,

3. The add list for αS is given by FS
1 , . . . , F

S
n , for the Fis in an effect axiom for α.

Space prohibits us from including a proof of the soundness of Transformation 1, however, we note that
the constituent parts of each LDEC effect axiom are extracted and converted into corresponding STRIPS
add and delete lists. Effects that cause fluents to be negated, such as the Dis in the effect axioms, are
represented by delete operations.

For example, if we apply Transformation 1 to the axioms in Table 1 we generate the STRIPS opera-
tors shown in Table 2. If we apply pickup(o1) to an initial database denoted byD = {box(b1), handempty,
empty(b1), onTable(o1)}, we bring about the database D′ = {box(b1), holding(o1), empty(b1)}. Apply-
ing dropInBox(o1, b1) then produces the database D′′ = {box(b1), inBox(o1, b1), handempty}, which
achieves the goal of putting o1 in box b1, and matches our LDEC conclusions in Example 1.

Given suitable search control, we could employ a simple forward-chaining mechanism to automate
the process of generating plans using the LDEC rules, or by first transforming them into STRIPS oper-
ators. Whichever form we choose, the existing LDEC representation limits us to modelling actions from
classical planning domains, characterized by a restrictive assumption of complete knowledge.

4 Representing knowledge in LDEC

The assumption of complete knowledge is not always realistic. Agents often need to operate with incom-
plete information, and must sense the world to gather additional information. Reasoning about sensing
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handempty ∧ onTable(x) ⇒ affords(pickup(x)), (1)
holding(x) ∧ box(y) ⇒ affords(dropInBox(x, y)), (2)
{affords(pickup(x))} ∧ handempty ∧ onTable(x)

( [pickup(x)]holding(x), (3)
{affords(dropInBox(x, y))} ∧ holding(x) ∧ empty(y)

( [dropInBox(x, y)]inBox(x, y) ∧ handempty, (4)
box(b1) ∧ handempty ∧ empty(b1) ∧ onTable(o1). (5)

Table 1: LDEC domain axioms

Action Preconditions Add list Delete list
pickup(x) handempty holding(x) handempty

onTable(x) onTable(x)
dropInBox(x, y) holding(x) inBox(x, y) holding(x)

box(y) handempty empty(y)

Table 2: STRIPS operators produced by Transformation 1

requires the ability to reason about knowledge, however, which lets us distinguish between what is true
in the world and what is known about the world.

The model of knowledge we introduce in LDEC makes use of knowledge fluents: fluents that directly
track the agent’s knowledge of ordinary world-level fluents [3]. For each ordinary fluent F , we associate
with it a pair of knowledge fluents, KF and K¬F , that have the same arguments as F . Intuitively, KF
means “F is known to be true,” and K¬F means “F is known to be false.” ¬KF and ¬K¬F together
mean “F is unknown.” Each pair of knowledge fluents therefore provides an explicit representation
of the agent’s knowledge of the underlying fluent F .2 Using such fluents we can model the effects of
sensing actions, and the changes that physical actions make, not only to the world state, but also to the
agent’s knowledge state.

Our approach contrasts the more standard approaches to representing knowledge that use sets of
possible worlds (e.g., see [10], [14]). Reasoning about knowledge in these accounts reduces to the
problem of reasoning about an accessibility relation over a set of possible worlds, each of which models
a different configuration of the fluents. Such reasoning can be computationally expensive, however,
since determining whether n fluents are known may require reasoning about 2n possible worlds. With
knowledge fluents, the problem reduces to determining if particular knowledge fluents are true or false.
Thus, we need only reason about 2n knowledge fluents and n ordinary fluents. The main drawback with
this approach is its expressiveness: we are restricted to simple assertions about relational knowledge.

Knowledge fluents are not a new idea. [3] introduces knowledge fluents into the situation calculus.
[13] builds on this formalism to transform standard possible world accounts of knowledge into knowl-
edge fluent accounts. [15] and [16] (among others) also represent definite knowledge using sets of fluents
that are known to be true or known to be false.

LDEC can also support other representations of knowledge, including standard modal logics or
possible world account. We choose to use knowledge fluents, however, since they provide a means of
directly modelling knowledge as ordinary fluents, and they evolve as ordinary fluents do when actions are
applied. Thus, we can work with simple first-order predicates without introducing new modal operators
or reasoning about accessible possible worlds. Since planning systems often restrict their representation
languages, we do not view the expressive limitations of knowledge fluents as being altogether problem-

2We only focus on representing knowledge, where known fluents must also be true in the world. This approach can also
model belief, where an agent’s beliefs need not be true in the world.
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atic, and we can take advantage of existing approaches that work with similar constructs.
Knowledge fluents can appear wherever ordinary fluents can in our LDEC domains, however, we

will consider particular effect axioms for our sensing and physical actions.

4.1 Knowledge-producing actions

For simplicity, we will only consider knowledge-producing or sensing actions that change the agent’s
knowledge state, rather than the world state. Thus, sensing actions will only affect changes to the knowl-
edge fluents, but these changes will depend on the states of the ordinary world-level fluents.

Definition 2 A sensing action α is defined by n pairs of LDEC axioms, where each axiom pair i has the
form:

{affords(α) ∧ φi ∧ Fi} ( [α]KFi ∧ ¬K¬Fi,

{affords(α) ∧ φi ∧ ¬Fi} ( [α]K¬Fi ∧ ¬KFi.

Each Fi is an ordinary fluent with corresponding knowledge fluents KFi and K¬Fi, φ1 := >, and
φi := Fi−1 ∧ φi−1 for each i = 2, . . . , n.

In each pair i of axioms for a sensing action α, the status of Fi is (conditionally) sensed. This is done
by associating the truth of Fi with an appropriate change to the status of KFi and K¬Fi. Note that Fi

appears as a non-consumable resource since its status is unchanged by α. The fluents and actions that
appear in Definition 2 can also be parameterized, provided the same set of arguments always appears for
each Fi, KFi, and K¬Fi, across the n pairs of axioms for α.

Definition 2 lets us to model many interesting types of sensory effects, three of which we illustrate
below: (i) actions that sense the truth value of a particular instance of some fluent, (ii) actions that sense
the truth value of every instance of some fluent, and (iii) actions that sense the truth of a fluent and then
conditionally sense the truth of other fluents, depending on how the initial sensing turns out. (We permit
finite “chains” of such conditional sensing.)

Example 2 Recall the box scenario from Example 1, and say that an agent has two sensing actions:
sense1 and sense2. sense1 tells the agent whether or not the box is empty. sense2 is much more complex,
informing the agent of the objects in the box and whether or not each of these objects is fragile. We
encode the effects of these actions with the axioms:

{affords(sense1) ∧ empty} ( [sense1]Kempty ∧ ¬K¬empty (6)
{affords(sense1) ∧ ¬empty}( [sense1]K¬empty∧¬Kempty (7)
{affords(sense2) ∧ inBox(x)} (

[sense2]KinBox(x) ∧ ¬K¬inBox(x), (8)
{affords(sense2) ∧ ¬inBox(x)} (

[sense2]K¬inBox(x) ∧ ¬KinBox(x), (9)
{affords(sense2) ∧ inBox(x) ∧ fragile(x)} (

[sense2]Kfragile(x) ∧ ¬K¬fragile(x), (10)
{affords(sense2) ∧ inBox(x) ∧ ¬fragile(x)} (

[sense2]K¬fragile(x) ∧ ¬Kfragile(x). (11)

Axioms (6) and (7) describe a simple binary sensor: if empty is true then executing sense1 means
that Kempty will also become true (and K¬empty becomes false), i.e., the agent will know that the box
is empty. Similarly, if ¬empty is true then K¬empty becomes true (and Kempty becomes false) after
executing sense1. In other words, after executing sense1 the agent will know whether the box is empty
or not.
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Axioms (8) and (9) encode a universal effect for sense2: the agent comes to know whether inBox(x)
is true or not for every instantiation of x. Thus, the sensors provide a form of local closed world infor-
mation: the agent has complete information about the objects in the box, but other aspects of the agent’s
knowledge may still be incomplete.

Axioms (10) and (11) encode a conditional sensing effect for sense2: the agent comes to know
whether fragile(x) is true or not for those instantiations of x for which inBox(x) is true. Thus, it senses
whether or not the objects in the box are fragile. �

4.2 Knowledge-level effects of physical actions

Unlike sensing actions, ordinary “physical” actions change the state of the world by altering ordinary
fluents. If an action’s effects are known to the agent then changes to ordinary fluents must also bring
about changes to the corresponding knowledge fluents. To capture such effects in our LDEC axioms we
will generate the knowledge-level effects of physical actions directly from the ordinary effect axioms,
and augment these axioms with the new effects.

Transformation 2 For each ordinary LDEC effect axiom in a domain, add the following conjuncts to
the consequent of the linear implication:

1. For each Ci in the antecedent, add K¬Ci and ¬KCi,

2. For each Di in the consequent, add K¬Di and ¬KDi,

3. For each Fi in the consequent, add KFi and ¬K¬Fi.

The intuition behind this transformation is that an agent will come to know the effects of a physical
action when it is applied. Thus, if an action makes F true, we must also ensure that KF is made true and
K¬F is made false. Similarly, if an action makes F false, we must make K¬F true and KF false. The
end result is a new effect axiom with both world-level and knowledge-level effects grouped together.

Example 3 Applying Transformation 2 to axiom (3) of Table 1 produces the following new effect axiom:

{affords(pickup(x))} ∧ handempty ∧ onTable(x) (

[pickup(x)]holding(x) ∧K¬handempty∧
¬Khandempty ∧K¬onTable(x) ∧ ¬KonTable(x)∧
Kholding(x) ∧ ¬K¬holding(x).

After executing pickup(x) the agent will be holding x, its hand will not be empty, and x will no longer
be on the table. The agent will also know this information to be true. �

4.3 Knowledge-reducing actions

The final type of action we briefly mention is the dual of knowledge-producing actions, namely knowledge-
reducing actions. As with sensing, these actions only affect knowledge fluents but, unlike sensing, they
produce a knowledge loss effect by making pairs of knowledge fluents false. E.g.,

{affords(forget)} ( [forget]¬KF ∧ ¬K¬F,

describes an action, forget, that causes knowledge of F to become “unknown” by making both KF and
K¬F false. F itself is unchanged. We do not discuss these actions in detail here, however, we encode
such effects as above, by appending pairs of negated knowledge fluents as conjuncts to the consequent
of our transformed LDEC effect axioms.
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Action Preconditions Effects
pickup(x) K(handempty) add(Kf , holding(x))

K(onTable(x)) add(Kf ,¬handempty)
add(Kf ,¬onTable(x))

sense2 add(Kw, inBox(x))
add(Kw, inBox(x) ∧ fragile(x))

forget del(Kf , F ), del(Kf ,¬F )

Table 3: PKS actions produced by Transformation 3

5 LDEC and knowledge-level planning

Knowledge-extended LDEC domains present some problems for planning, since LDEC axioms can
include references to knowledge-level and world-level fluents. Working with both types of fluents is
difficult for “offline” planners, since such planners have no direct access to the world state, but must
consult their internal representations, which may not be complete. This is particularly problematic for
sensing actions due to their context-dependent nature: the state of the world-level fluent being sensed
determines the resulting state of the corresponding knowledge fluents.

Our solution is to construct action operators that do not directly access the world state, by extracting
the “knowledge-level” effects from the LDEC axioms. To do this we make use of the knowledge-level
representation provided by the planner PKS. The resulting operators we construct will be similar to
STRIPS operators and will support a natural forward-chaining approach to planning.

PKS (Planning with Knowledge and Sensing) is a contingent planner that constructs plans in the
presence of incomplete information and sensing [12]. PKS generalizes the STRIPS representation by
using a set of databases to represent the agent’s knowledge, instead of a single database to represent the
state of the world. Each database models a particular type of knowledge (that can be formally understood
in terms of formulae of a first-order modal logic of knowledge). We focus on two of these databases here:
Kf and Kw.

Kf : This database is like the STRIPS database D, except it can contain both positive and negative facts,
and the closed world assumption is not applied. Kf typically models the effects of physical actions and
can include any ground fluent literal L, where L ∈ Kf means “the agent knows L.”
Kw: This database represents the plan-time effects of sensing actions. If an action senses a fluent F , then
at plan time all the agent knows is that after it has executed the action it will know F or know ¬F . At
plan time, the agent cannot resolve this disjunction and the actual value of F remains unknown. Hence,
φ ∈ Kw means that the agent “knows whether φ,” that is, it either knows φ or knows ¬φ.

PKS also provides a primitive query language for answering questions about what it does, or does
not, know or “know whether.” We will only use one query, K(φ): is φ known to be true? An inference
algorithm evaluates queries by checking database contents, taking into consideration the interaction be-
tween different types of knowledge. PKS uses primitive queries to represent action preconditions and
goals.

PKS action effects are modelled as updates to the agent’s knowledge state, rather than the world state,
using sets of STRIPS-style “add” and “delete” operations that modify the contents of the databases. E.g.,
add(Kf ,¬φ) would add ¬φ to Kf , and del(Kw, φ) would remove φ from Kw.

Using these databases, queries, and update operations, we can transform our knowledge-extended
LDEC domains into PKS action operators, by compiling action preconditions intoK queries, the effects
of physical actions into Kf updates, and the effects of sensing actions into Kw updates.

Transformation 3 For each LDEC action α, a corresponding PKS operator is defined as follows:

1. For each knowledge fluent KL (similarly, ¬KL) in the precondition axiom for α, add a PKS
precondition: K(L) (similarly, ¬K(L)),

IST-FP6-IP-027657 / PACO-PLUS

Page 34 of 46

Public



2. If α is a physical action: for each knowledge fluent KL (similarly, ¬KL) in the transformed effect
axiom for α, add a PKS effect: add(Kf , L) (similarly, del(Kf , L)),

3. If α is a sensing action: for each pair i of effect axioms for α, add the PKS effect: add(Kw, φi∧Fi).

To ensure Transformation 3 is sound, we require LDEC precondition axioms that only mention knowl-
edge fluents, since PKS action preconditions are formed from knowledge-level queries like K(φ). We
also require PKS’s inference algorithm to be complete with respect to evaluating such queries. Although
we have yet to establish this second requirement in general, it has not posed a problem for us in practice.

Table 3 shows the application of Transformation 3 to some of the actions we defined earlier. The
effects of pickup(x) are modelled as updates to Kf alone, since it is a physical action. (We note that PKS
lets us combine the addition of a fluent and the deletion of its negation into a single add operation, which
is reflected in Table 3.) The sensing action sense2, on the other hand, is modelled by updating Kw. In
this case, the effects encoded by pairs of LDEC axioms are combined into single add updates to Kw.
Finally, the forget action is modelled by a pair of updates that remove all information about F from Kf .

Modelling actions as database updates lets PKS employ an efficient, forward-chaining approach to
finding plans at the knowledge level, by progressing databases in a STRIPS-like manner [12]. Physical
actions update PKS’s knowledge of world-level fluents. For instance, applying the action pickup(o1) to
Kf = {handempty, onTable(o1)} results in Kf = {¬handempty,¬onTable(o1), holding(o1)}. Sensing
actions update PKS’s know-whether knowledge, which plays an important role in building contingent
plans. For instance, sense2 adds inBox(x) to Kw which lets PKS build plan “branches” for the two
outcomes of this information, given any instantiation c of x: along one branch inBox(c) is assumed to be
true, while along the another branch ¬inBox(c) is assumed to be true. Planning can then continue along
each branch, using this new knowledge.

Our ability to transform the extended LDEC axioms into PKS operators provides us with a way of
planning with our LDEC domains. Moreover, we preserve a STRIPS-style “state-update” interpretation
for LDEC, and the forward-chaining model of planning this formalism induces.

6 Discussion and conclusions

This work forms part of a larger project called Paco-Plus that explores agent perception, action, and
cognition using object-action complexes, or instantiated “fragments” of the state-action transition space.3

As part of this work we are interested in learning high-level, symbolic representations that are abstracted
away from a low-level robot/vision system. LDEC fits into this picture as a formal language for encoding
the domain axioms that arise in this setting. Moreover, we see LDEC axioms as the kinds of rules we
can realistically learn, using existing machine learning techniques, from a robot system that has only
primitive actions available to it for observing and acting in the world [5].

The LDEC extensions we describe here are just a first step. We would also like to use LDEC for
modelling indexical knowledge, and extend the planner to construct plans with loops. We also hope
to leverage existing insights on knowledge-level planning, in particular, recent work based on [13] that
investigates the relationship between knowledge fluent theories and standard possible world representa-
tions of knowledge. We have already extended LDEC to support more complex ADL-style actions with
context-dependent effects [11], but have not discussed this addition here. (Such effects aren’t required
for our initial learning tasks.)

Finally, we have implemented the transformations described in this paper for compiling LDEC ax-
ioms into PKS operators, and are exploring the feasibility of using PKS in a robotics setting for high-level
planning. (The examples in this paper are motivated by a proposed test domain.) Preliminary results us-
ing offline simulations look promising, and we remain positive about the utility of LDEC and PKS.

3See www.paco-plus.org for a description of this project.
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Abstract

The research areas of plan recognition and natural language parsing share many common features
and even algorithms. However, the dialog between these two disciplines has not been effective.
Specifically, significant recent results in parsing mildly context sensitive grammars have not been
leveraged in the state of the art plan recognition systems. This paper will outline the relations between
natural language processing(NLP) and plan recognition(PR), argue that each of them can effectively
inform the other, and then focus on key recent research results in NLP and argue for their applicability
to PR.

1 Introduction

Without performing a careful literature search one could easily imagine that the fields of Plan Recog-
nition(PR) and Natural Language Processing(NLP) are two separate fields that have little in common.
There are few papers in either discipline that directly cite work done in the other. While there are
exceptions,[7, 4, 21, 24], even these papers often are only citing NLP in passing and not making use of
recent research results.

Interestingly, many researchers do see these two areas as very related, but are still not taking the
recent lessons learned in one area and applying them to the other. In an effort to rectify this lack, this
paper will outline the commonalities between PR and NLP, argue why the results from each of these
research areas should be used to inform the other, and then outline some recent research results that
could inform a unified view of these two tasks.

2 Commonalities

In this section we will sketch the similarities at the surface and algorithmic levels between PR and NLP
before more formally drawing their representations together in the Section 3. We will start this process
by laying out some terminology so that we can see the common parts of NLP and PR.

Both PR and NLP take as input a set of observations. In PR these are observations of action exe-
cutions and in NLP these are individual words or utterances. In both cases, the observations are used
to create a higher level structure. In NLP these higher level structures may be parse trees [9] or logical
forms [5]. In PR they are usually a hierarchical plan structure[18, 17, 10] or at least a high level root
goal[14]. In either case, both NLP and PR construct a higher level knowledge structure that relates the
meanings of each of the individual observations to a meaning for the collection of observations as a
whole.

For the purposes of this discussion it will aid us to abstract away from the specific details of the
higher level structure that is built by this process. To simplify this discussion we will talk about these
systems as if they were creating an hierarchical data structure that captures the meaning of the collection
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of observations. We will use the PR terminology and call this structure an explanation and following the
NLP terminology call the process of producing a single explanation parsing.

In order to parse a set of observations into an explanation both PR and NLP must specify the patterns
of observations they are willing to accept or the rules that govern how the observations can be combined.
In PR this specification is done in the form of a library of plans, while in NLP this is done through a
grammar. In Section 3 we will argue that there is no significant distinction between PR plan libraries and
NLP grammars. Therefore, in this paper we will call all such specifications of the rules for acceptable
combination of observations grammars.

With this terminology in place, we can now describe both NLP and PR as taking in as inputs a set of
observations and a grammar specifying the acceptable sets of observations. Both NLP and PR then parse
these observations to produce explanations that organize the observations into a structured representation
of the meaning of the collection.

Given this level similarity, it is not surprising that grammars in both NLP and PR can result in
multiple explanations for a given set of observations. However, it is of interest that in both disciplines
this ambiguity has been resolved using very similar probabilistic methods. In both areas, the state of the
art methods are based on weighted model counting. These systems build the set of possible explanations
and establish a probability distribution over the set in order to determine the most likely explanation.

The work in NLP often uses probability models derived from an annotated corpus of text[8] while
the probability models from PR have been based on Markov models of the world dynamics [6] or prob-
abilistic models of plan execution [10]. While space prohibits a full exposition of these very different
probability models, it is still telling that a weighted model counting method is the state of the art in both
fields.

Beyond these surface and algorithmic similarities there are psycholinguistic reasons for believing
that PR and NLP are very closely tied process that should inform one another. For example, consider
indirect speech acts like asking someone “Do you know what time it is?” To correctly understand and
respond to this question requires both NLP and PR.

Correctly responding requires not merely parsing the sentence to understand that it is a request about
ones ability to provide a piece of information. It also requires recognizing that asking the question of
someone else is the first step in a two part plan for finding out a piece of information by asking someone
else. PR allows one to conclude that if someone is following this plan they most likely have the goal of
knowing the piece of information (the current time in this case) and that providing the desired information
will be more helpful than answering the literal question asked.

Given the similarities between the two areas, it seems reasonable that work in one area should inform
the other. However important results in each area are not being leveraged in the other community. In the
next section we will more formally specify the relation between these two areas to help researchers take
advantage of the results in both areas.

3 Plans as Grammars

Our argument that PR and NLP should inform one another would be significantly strengthened if we
could show, as we have asserted above, that the plan libraries used by PR systems are equivalent to the
grammars used by NLP systems. In the following section we will show the parallels between these two
constructs and a mapping between them.

Almost all PR work has been done on traditional hierarchical plans.1 While much of the work in plan
recognition has not provided formal specifications for their plan representations they can all generally be
seen as special cases of Hierarchical Task Networks (HTN) as defined in [11].

According to Ghallab the actions of an HTN domain are defined as either operators or methods. An
operator corresponds to an action that can be executed in the world. Following Ghallab we will define
them as a triple (n, add − list, delete − list) where n is the name of the operator, add − list is a list

1See [6] for an exception that works on hierarchical Markov models
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of predicates that are made true or added to the world by the operator, and delete − list is the set of
predicates that are made false or deleted from the world by the operator.

A method on the other hand represents a higher level action and is represented as a 4-tuple
(name, T, {st0, ..., stn}, C) such that name is a unique identifier for the method, T names the higher
level action this method decomposes, and {st0, ..., stn} identifies the set of sub-tasks that must be per-
formed for the higher level task to be performed. Finally, C represents a set of ordering constraints that
have to hold between the subtasks for the method to be effective.

We will draw a parallel between HTNs and context free grammars (CFGs). Following Aho and
Ullman[1] we define a CFG, G, as a 4-tuple G = (N,Σ, P, S) where

• N is a finite set of nonterminal symbols,

• Σ is a finite set of terminal symbols disjoint from N ,

• P is a set of production rules that have the form n → ω where n ∈ N and ω ∈ (Σ ∪N)∗, and

• S is a distinguished S ∈ N that is the start symbol.

Given these definitions, we would like to map the plans represented as an HTN into an equivalent
CFG. We first consider the case of a collection of HTN plans that are totally ordered. That is, we assume
that for every method definition the constraints on the subtasks st0, ..., stn define a total ordering over
the subtasks. Without loss of generality, we assume that the subtasks’ subscripts represent this ordering.

To encode the HTN as a CFG, we first consider the operators. The processing for these is quite
simple. We identify the names of each operator as a terminal symbols in our new grammar, and attach
the add and delete lists to the non-terminal as features. Next we consider mapping the method definitions
into productions within the grammar.

Given a totally ordered method definition, we can add the task to be decomposed to the set of
non-terminal symbols. Then we define a new production rule with this task its left hand side. We
then define the right hand side of the rule as the ordered set of subtasks. Thus, the method definition
(name, T, {st0, ..., stn}, C) is rewritten as the CFG production rule: T → st0, ..., stn and T is added to
the set of non-terminals.

For example, consider the very simple HTN method, m1 for acquiring shoes:

(m1, acquire(shoes),
{goto(store), choose(shoes), buy(shoes)},
{(1 ≺ 2), (2 ≺ 3)})

where the constraints (1 ≺ 2) indicates the task goto(store) must precede the task choose(shoes) and
(2 ≺ 3) indicates that choose(shoes) must precede buy(shoes). This is very easily captured with the
CFG production:

acquire(shoes) →
goto(store), choose(shoes), buy(shoes)

This process of converting each method definition into a production rule and adding the task to be de-
composed to the set of non-terminals is repeated for every method in the HTN to produce the CFG for
the plans. Now we turn to the question of partial ordering.

Limited cases of partial orderness could be handled in CFGs by expanding the grammar with a
production rules for each possible ordering. However, as the NLP community has realized this can
result in an unacceptable increase in the size of the grammar, and the related runtime of the parsing
algorithm[3].

So instead, to address this, the NLP community has produced a number of different grammar for-
malisms that allow the grammar to separately express decomposition and ordering. This includes the
work of Shieber on ID/LP grammars [22], Nederhof on poms-CFGs [20], and Hoffman[13] and Baldridge
[2] on partial orderness in Combinatory Catagorial Grammars. All of of these are attempts to include par-
tial orderness within the grammar formalism (and parsing mechanism) without the exponential increase
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in the grammar size and runtime. Since each of these formalisms use very different representations,
rather than presenting examples, we refer the reader to the cited papers. It suffices to say that these gram-
mar formalisms introduce notational additions to denote partial orderness within the production rules and
to explicitly specify the ordering relations that are required in each production. These formalisms can be
used to capture HTN plan domains that require partial ordering.

It should be clear from this exposition that the grammar formalisms found in the NLP literature are
sufficient to cover the method definitions found in most if not all of the PR literature. However, to the best
of our knowledge no one has used any of the relatively recent grammar formalisms and their associated
parsing machinery for plan recognition. Making use of these grammatical formalisms would also allow
the use of their associated formal complexity results as well, something that has often been lacking in
the work in PR.

Thus, we propose that NLP and PR could be unified by the use of the same underlying grammatical
formalisms for representing the constraints on observations, and using a common parsing mechanism. In
the case of probabilistic NLP and PR systems, we believe these systems may need to retaining separate
methods for computing their probability distributions, however the parsing of observations into explana-
tions could share a common framework. In the next section we will advocate a specific class of grammars
for this task.

4 New Grammar Formalisms for PR

Given that researchers in NLP have been working on the close relationship between grammars, parsers,
and language expressiveness it shouldn’t be a surprise that results from this work could inform the work
in PR. There are some classes of grammars that are too computationally expensive to parse for real world
application. For example, the well known complexity results for parsing context sensitive grammars
(CSGs) have all but ruled them out for NLP work. Likewise we expect poor performance for applications
of CSGs to PR. Unfortunately, PR researchers have used these results as a motivation to build their own
algorithms for parsing, often without even considering the limitations of the existing parsing algorithms.
Examples include graph covering[18] and Bayes nets[6], that trade one np-hard problem for another.
What has been largely ignored by the PR community is the NLP work in extending context free grammars
and their efficient parsing algorithms.

Recent work in NLP has expanded the language hierarchy with grammars that have a complexity
that falls between context free and context sensitive. Examples, include IL/LP Grammars[22], Tree Ad-
junction Grammars(TAG)[15], and Combinatory Catagorial Grammars(CCG)[23, 12, 8]. These “mildly
context sensitive grammars”(MCSGs) have a number of properties that make them attractive for NLP
including greater expressiveness than CFGs but still having polynomial algorithms for parsing. These
properties also make them attractive for adoption by the PR community.

While these grammars are of scientific interest, we should justify their use, since it is not clear that
PR requires grammars that are more expressive than CFGs. Such a claim would rest on the empirical
need for plans that are not context free. If nothing more than a CFG is needed for PR, then a well known
parsing algorithm like CKY that has a cubic complexity seems to be the obvious choices for application
to PR. However, if there are PR problems that require recognizing plans that are not within the class
of CFG plans, this would provide a convincing argument that PR requires a grammar that is not context
free. In the following we will provide just such an example. While there are a number of different classes
of MCSGs with different expressiveness results, and the exploration of all of them may prove useful for
PR research, we will focus on the subclass of MCSGs that includes CCGs and TAGs called Linear Index
Grammars(LIG).

Steedman[23] has argued convincingly that CCGs and other LIGs are able to capture phenomena
beyond CFGs that are essential to real world language use. Given the parallels we have already demon-
strated between NLP and PR, we argue that if this class is necessary for NLP it shouldn’t be surprising to
us if this class of grammars captured essential phenomena in PR as well. In this light, Steedman shows
that CCGs provide for crossing dependencies in NLP, a critical extension that context free grammars
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cannot capture. Likewise, if we find that such crossing dependencies are necessary for recognizing plans
we would have a strong argument that PR requires a grammar that is in the MCSG family.

While a full discussion of the handling of crossing dependencies in CCGs is beyond the scope of
this paper, it will be helpful to understand their basic structure in order to identify them in PR contexts.
Crossing dependencies occur when the words that make up a constituent (like a relative clause) are
interleaved in the sentence with the elements of a different constituent. Steedman[23] has argued that a
particularly strong example of the naturalness of these constructs are Dutch verbs like proberen ‘to try’
which allow a number of scrambled word orders that that are outside of the expressiveness of CFGs.

For example the translation of the phrase “... because I try to teach Jan to sing the song.” has four
possible acceptable orderings [1 - 4] and a fifth that is more questionable.

1. . . . omdat ik1 Jan2 het lied3 probeer1 te leren2 zingen3.
. . . because I Jan the song try to teach to sing.

2. . . . omdat ik1 probeer1 Jan2 het lied3 te leren2 zingen3.
3. . . . omdat ik1 probeer1 Jan2 te leren2 het lied3 te zingen3.
4. . . . omdat ik1 Jan2 probeer1 te leren2 het lied3 te zingen3.
5. ?. . . omdat ik1 Jan probeer1 het lied te leren zingen

The subscripts are included to show the correspondence of the noun phrases to the verbs. For example
in the first ordering the noun phrases are all introduced first followed by their verbs in the same order as
their nouns. This produces the maximally crossed ordering for this sentence.

The realization of these kinds of crossed dependencies in a PR context is relatively straightforward.
Its important to keep in mind the mapping that we are using between traditional language grammars and
planning grammars will mean that dependencies in PR are not the same as in NLP. In NLP dependencies
are features like gender, number or tense that must agree between different words within the sentence. In
the PR context, dependencies are equivalent to causal links in traditional nonlinear planning[19]. That is,
they are states of the world that are produced by one action and consumed by another. Therefore, a plan
with a crossing dependency would have the causal structure shown in Figure 1 where in act1 is found to
produce the preconditions for actions act2 and act3 which each produce a precondition for act4. Such a
structure requires that two different conditions be created and preserved across two different actions for
their use. Note that while the actions are only partially ordered, there is no linearizion of them that will
remove the crossing dependency. That is, act2 and act3 can be reordered but this will not remove the
crossing dependency.

Figure 1: An abstract plan with a crossed dependency structure

The argument for the necessity of MCSGs for planning rests on real world examples of plans with
this structure. Being able to describe what such a plan looks like is not compelling if they never occur in
PR problem domains. Fortunately, examples of plans with this structure are relatively common. Consider
recognizing the activities of a bank robber that has both his gun and ski-mask in a duffel bag and his goal
is to rob a bank. He must open the bag, put on the mask and pick up the gun and enter the bank. Figure 2
shows this plan. This plan has exactly the same crossed dependency structure shown in Figure 1.

Note, that we could make this plan much more complex with out effecting the result. Actions could
be added before opening the bag, after entering the bank, and even between putting on the ski-mask and
picking up the gun so long as the critical causal links are not violated. The presence of plans with this
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Figure 2: An example plan with crossing dependency structure

structure and our desire to recognize such plans gives us a strong reason to look at the grammars that fall
this class as a grammatical formalism for PR.

4.1 Why MCSGs?

Joshi[16] first formally defined the class of MCSGs as those grammars that share four properties that are
relevant for NLP:

• The class of languages included covers all context free languages.

• The languages in the class are polynomially parsable.

• The languages in the class only capture certain types of dependencies including nested (non-
crossing) and crossed dependencies.

• The languages in the class have the constant growth property which requires that if all of the
sentences in the language are sorted according to their length then any two consecutive sentences
do not differ in their length by more than a constant factor determined by the grammar.

This set of properties are also relevant for defining the class of grammars that would work well for PR.
We will argue for each of them in order.

First, we have just demonstrated the need for grammars that are more than context free for PR.
Second, clearly polynomial parsing is desirable for PR. In order to use these algorithms in real world
applications they will need to be extended to consider multiple possible interleaved goals and to handle
partially observable domains[10]. If a single goal can’t be parsed in polynomial time what hope do
we have for efficient algorithms for the needed extensions? Further, PR is needed in a great many
applications that will not tolerate algorithms with greater complexity. For example, assistive systems are
not useful if their advice comes to late.

Third, Plans do have structure that is captured in dependency structures. Therefore, it seems natural
to try to restrict the grammar for plans to the kinds of dependency structures that are actually used.
Whether or not the dependency restrictions that are consistent with NLP are the same set for PR is
largely an empirical question. We have already seen evidence of crossing dependencies that required
us to abandon CFGs in favor of MCSG’s. While nested and crossing dependencies in the abstract can
cover all the kinds of dependencies needed in planning, different MCSGs place different restrictions on
the allowable depth of crossings and the number of nesting. This will have a significant impact on the
expressiveness of a particular MCSG and its applicability to PR.

Fourth and finally, the requirement of the constant growth rate may be the hardest to understand.
Intuitively in the PR domain this means that if there is a plan of length n then there is another plan of
length at most n+K where K is a constant for the specific domain. For example this rules out that the
length of the next plan is a function of the length of the previous plan or some other external feature.
Note this says nothing about the goals that are achieved by the plans. The plan of length n and length
n+K may achieve very different goals but they are both acceptable plans within the grammar. This speaks
to the intuition that given a plan one should be able to add a small fixed number of actions to the plan
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and get another plan. Again this seems to be the kind of property one expects to see in a PR domain and
therefore in a plan grammar.

Now, while we believe we have made a strong argument for the use of MCSGs for PR, this is not the
final word on the question. While we have presented an argument that we need at least the expressiveness
of LIGs, it may be the case that still more powerful grammar formalisms are needed. The most promising
method for proving such a result would require finding plans with dependency structures that are not in
MCSG that our PR systems need to recognize. Thus, determining if MCSGs are sufficient for PR is an
open research question for the community.

While there are well known languages that are not in MCSG it is difficult to see their relevance to
planning domains. For example the language {a2n}, that is the language where in the length of any
sentence of the language is a power of two, is not MCSG as it fails the constant growth requirement. It
is possible to imagine contrived examples where this would be relevant for PR (Perhaps as part of some
kind of athletic training regime, we want to recognize cases where in someone has run around the track
a number of times that is a power of two.) However, this certainly seems anomalous and most likely
should be dealt with by reasoning that falls outside of the grammar, like a counter and a simple test.

5 Conclusions

There are close ties between the process of natural language processing and plan recognition. This
relation should allow these two processes to inform each other and allow the transfer of research results
from one area to the other. However, much recent work in both fields has gone unnoticed by researchers
in the other field. This paper begins the process of sharing these results, describing the isomorphism
between the grammatical formalisms from NLP and plan representations for PR, arguing that like NLP,
PR will require a grammatical formalism in the mildly context sensitive family, and finally that NLP and
PR can form a common underlying task that can usefully be explored together.
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