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1. Executive Summary

Plan recognition(PR) is the inference of an agent’s high level plans and goals based on observations of their
actions. We distinguish PR from other work reported in WP3 on activity recognition. PR focuses on the
recognition of sequences of high level actions as plans for high level goals. The kind of activity recognition
reported in WP3 should be viewed as a necessary precursor to the recognition task we discuss here. For
example, activity recognition for recognizing grasping actions would be one part of a process that would
collect low level sensor inputs, and form them into repeatable “basic actions”. A sequence of such basic
actions would constitute the observation stream taken as input to the kind of PR algorithms discussed here.

PR is necessary for PACO-PLUS style intelligent agents in order to recognize high level plans of other
agents. For example, in order for an agent to recognizing a sequence of grasping and moving actions as the
robot cleaning up the kitchen, the basic grasping, moving, and releasing actions must all be combined into
a higher level plan for the cleaning task.

The two documents included in this deliverable report on a number of significant research developments in
PR:

• Formalization of how plans can be represented in a lexicalized grammar, specifically Combinatory
Categorial Grammars (CCGs)[1]. (Appendix A)

• Formalization of the idea of headedness and plan heads for use in plan recognition. (Appendix A)

• Experimental evidence of the value of headedness in unambiguous environments. (Appendix A)

• Distinguishing three different possible sources of ambiguity in plan recognition called action, syntac-
tic, and attachment ambiguity. (Appendix B)

• Experimental evidence of the value of headedness in domains with high syntactic ambiguity. (Ap-
pendix B)

While this work is a significant research contribution in its own right, it should be seen as fitting clearly into
the PACO-PLUS research program. As such the PR work described in this deliverable is heavily influenced
by the research objectives of PACO-PLUS. While, the work reported here is not explicitly formulated in
terms of PACO-PLUS’ Object Action Complexes(OACs) the representations used here are consistent with
this approach. As such this work echos a number of themes taken from the PACO-PLUS project:

• The understanding of CCG categories as functional types fits well with the formulation in WP4 of
OACs as functions.

• OACs are grounded in observable embodied actions, similarly in lexicalized grammars all syntactic
categories are tied to an observable action.

• grounding of actions and lexicalized representations of action come together in a concept we call
“headedness” of plans taken from natural language.

• headedness is a new idea in the representation of plans and plan recognition and has a significant
impact on the runtime of the plan recognition algorithm. This strengthens the PACO-PLUS contention
that efficient intelligent systems much be grounded in real world experience.

Thus, the work included in this deliverable should be seen both as a strong contribution to plan recognition
research and as a contribution to the PACO-PLUS research agenda.
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2. Papers Included in D4.3.4

[A] Delaying Commitment in Plan Recognition Using Combinatory Categorial Grammars
Christopher Geib
Published in the proceedings of the International Joint Conference on Artificial Intelligence 2009
(IJCAI-09).

Abstract: This paper presents a new algorithm for plan recognition called ELEXIR (En-
gine for LEXicalized Intent Recognition). ELEXIR represents the plans to be recognized
with a grammatical formalism called Combinatory Categorial Grammar(CCG).We show
that representing plans with CCGs can allow us to prevent early commitment to plan goals
and thereby reduce runtime

[B] Lexical Ambiguity and its Impact on Plan Recognition
Christopher Geib
In submission to the International Conference on Automated Planning and Scheduling 2010 (ICAPS-
10).

Abstract: Viewing plan recognition (PR) as a parsing problem, this paper distinguishes
three sources of ambiguity: action ambiguity, syntactic ambiguity and attachment ambi-
guity. Previous work PR in has often conflated these different sources of ambiguity. This
paper clarifies this distinction and explicitly studies the effect of syntactic ambiguity on the
runtime of a particular PR algorithm. It also argues for new method for controlling plan
level ambiguity in probabilistic PR based on the idea of plan “heads” using lexicalized
grammars.
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Delaying Commitment in Plan Recognition Using Combinatory Categorial
Grammars

Christopher W. Geib

University of Edinburgh School of Informatics
10 Crichton Street,

Edinburgh, EH8 9AB, Scotland
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Abstract
This paper presents a new algorithm for plan recog-
nition called ELEXIR (Engine for LEXicalized In-
tent Recognition). ELEXIR represents the plans to
be recognized with a grammatical formalism called
Combinatory Categorial Grammar(CCG). We show
that representing plans with CCGs can allow us
to prevent early commitment to plan goals and
thereby reduce runtime.

1 Introduction
Given a plan library and a set of observations, the problem
of identifying an agent’s plans and goals on the basis of their
observed actions is called plan recognition (PR), and is a well
studied problem in AI. Much of the prior research on PR [Bui
et al., 2002; Avrahami-Zilberbrand and Kaminka, 2005;
Geib, 2006; Kautz, 1991] use algorithms that make early
commitments to hypothesized root goals and sub-plans. This
creates a problem. As [Geib, 2004] has pointed out, such
early commitment can result in maintaining an exponential
number of hypotheses. Many, of these hypotheses will be
discarded later as being impossible. Thus, early commitment
to hypotheses can needlessly increase runtime.

To address this problem, we will formulate PR based
on Combinatory Categorial Grammars (CCGs)[Steedman,
2000], a grammatical formalism developed for use in natu-
ral language parsing(NLP). Using CCGs to represent plan li-
braries will require us to introduce the new idea of plan heads.
We will show that making the correct choices about plan
heads enables a least commitment approach to plan recog-
nition and reduces runtimes.

In the rest of this paper, we will outline our approach
to plan recognition. We then show how to represent
plans in CCGs and define plan heads. We will then
present a new, probabilistic plan recognition algorithm called
ELEXIR(Engine for LEXicalized Intent Recognition) based
on these ideas. We will discuss its theoretical complexity,
and an empirical evaluation of its performance. These exper-
iments will show that correct choices for plan heads enable
significant computational saving.

We note, the relationship between PR and NLP is not a new
idea, and there is previous work in using ideas from NLP in
PR including [Carberry, 1990; Pynadath and Wellman, 2000]

and others. However, we know of no prior work using CCGs
and headedness to control early commitment.

2 Intuitions and an Example
We are interested in probabilistic plan recognition, and will
use weighted model counting to solve it. We assume as given
a set of observations and a CCG specification of a plan lexi-
con defining the plans to be recognized. To perform PR, we
advocate parsing the observations into the complete and cov-
ering set of explanations that organize the observations into
one or more plan structures meeting the requirements defined
in the plan lexicon. We then establish a probability distri-
bution over the explanations to reason about the most likely
goals and plans. To do this, we must encode the plans in
CCGs. An example will help show how to do this.

Consider the simple abstract hierarchical plan drawn as a
partially ordered AND-TREE shown in Figure 1. To execute

  G

  A   B   C   D

a b c d

Figure 1: An abstract plan with partial order causal structure

action G the agent must perform actions A, B, C, and D. A
and B must be executed before C but are unordered with re-
spect to each other, and finally D must be performed after C.

3 Representing Plans in CCG
To represent the example plan in a CCG, each observable ac-
tion is associated with a set of categories.

Definition 3.1 We define a set of categories, C, recursively:

Atomic categories : A finite set of basic action categories.
C = {A, B, ...}.

Complex categories : If Z ∈ C and {W, X, ...} , ∅ ⊂ C, then
Z\{W, X, ...} ∈ C and Z/{W, X, ...} ∈ C.
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Intuitively, complex categories can be thought of as functor
categories that can take a set of arguments ({W, X, ...}) and
produce a result (Z). The direction of the slash indicates
where the functor looks for its arguments. We require the
argument(s) to a complex category be observed after the cat-
egory for forward slash, or before it for backslash.

Thus, an action with the category A\{B} is a function that
results in performing action A in contexts where an action
with category B has already been performed. Likewise A/{B}
is a function that results in performing A if an action with
category B is executed later.

We are now in a position to define a plan lexicon.
Definition 3.2 We define a plan lexicon as a tuple PL =
〈Σ,C, f 〉 where, Σ is a finite set of observable action types,
C is a set of possible CCG categories, and f is a function
such that ∀σ ∈ Σ, f (σ)→ Cσ ⊆ C.
Cσ is the set of categories an observation of type σ can be as-
signed. As a short hand, we will often provide just the func-
tion that maps observable action types to categories to define
a plan lexicon. For example,

a := A, b := B, c := (G/{D})\{A, B}, d := D.

defines one plan lexicon for our example plan. The following
definitions will also be helpful:
Definition 3.3 We define a category R as being the root or
root-result of a category G if it is the leftmost atomic result
category in G. For a category C we denote this root(C)
Thus G is the root-result of (G/{D})\{A, B}. Further,
Definition 3.4 we say that observable action type a is a pos-
sible head of a plan for C just in the case that the lexicon
assigns to a at least one category whose root-result is C.
In our lexicon c is the head for G.

This formulation of CCGs is closely related that of
[Baldridge, 2002] in allowing sets of arguments to categories.
Sets of arguments are critical for our treatment of partial or-
dering in the plan. For example, the first argument to c’s cate-
gory is the leftward looking set {A, B} representing the partial
ordering of these actions before C. This definition also allows
multiple categories to be associated with an observed action
type. However, for ease of exposition, we will suppress nota-
tion for this if an observation only has a single category.

Next we must show how CCG categories are combined into
higher level plan structures. In CCGs combinators [Curry,
1977] are used to combine the categories of the individual
observations. We will only use three combinators defined on
pairs of categories:

rightward application: X/α ∪ {Y}, Y ⇒ X/α
leftward application: Y, X\α ∪ {Y} ⇒ X\α
rightward composition: X/α ∪ {Y}, Y/β ⇒ X/α ∪ β

where X and Y are categories, and α and β are possibly empty
sets of categories. Other Combinatory rules are sometimes
used in NLP[Steedman, 2000], however, we leave the use of
these combinators in the PR context for future work.

To see how a lexicon and combinators parse observations
into high level plans, consider the derivation in Figure 2 that
parses the sequence of observations: a, b, c.

a b c
A B (G/{D})\{A,B}

<
(G/{D})\{A}

<
G/{D}

Figure 2: Parsing Observations with CCGs

As each observation is encountered, it is assigned a cate-
gory on the basis of the lexicon. Combinators then are used
to combine the categories. First, a is observed and assigned
A and no combinators can be applied. Next we observe b,
and it is assigned B. Again, none of the combinators can be
applied. Notice however, all the hierarchical structure from
the original plan for achieving G is included in c’s category.
Therefore, once c is observed and assigned its category, we
can use leftward application twice to combine both the A and
B categories with c’s initial category to produce G/{D}.
3.1 Designing Plan Lexicons
In the preceding discussion, we have avoided some of the rep-
resentational questions in designing a plan lexicon. The crit-
ical choice made during lexicon construction is which action
types will be the plan heads. Different choices for heads re-
sult in different lexicons. For example, the following is an
alternative lexicon for G where d is the head rather than c.

a := A, b := B, c := C, d := (G\{A, B})\{C}.
We can also represent the plan for G with the following lexi-
con where a has two possible head categories for G:

a := { ((G/{D})/{C})/{B},
((G/{D})/{C})\{B} },

b := B, c := C, d := D.

There are also a number of still more complex lexicons where
other choices are made for the heads.

Modeling issues that are similar to choosing heads for
CCGs occur in traditional hierarchical task network (HTN)
representations[Ghallab et al., 2004] in the form of choos-
ing the sub-goal decomposition. With their long tradition in
planning, decisions about what is and isn’t a sub-goal in a sin-
gle level of an HTN may seem quite intuitive. However, like
choosing heads for a CCG this is a design decision for HTNs
and can have serious impact on PR and planning algorithms.
We will say more about how to choose CCG heads later in
this paper.

Keep in mind, we want to use parsing of CCGs to build ex-
planations for the observed actions. However, we don’t want
to make early commitments to goals. In contrast to tradi-
tional HTNs, CCG categories function as a tree and/or sub-
tree spine crossing multiple levels of plan decomposition. We
can use the “vertical slicing” of plans by categories to define
the scope of our commitments in building goal and plan hy-
potheses. We state the following principle:
Principle of minimal lexically justified explanation: In

building explanations we never hypothesize any plan
structure beyond that provided by the categories of the
observed actions in the plan lexicon.
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This principle clearly defines when, how much, and what kind
of plan structures and hypothesis we can build. It enables a
least commitment approach in that it limits plan hypothesis to
those for which we have observed the head of the plan. The
choice of heads for plans will now allow us to determine when
commitments are made about goals, sub-goals, and plans. As
we will see next, it also enables a simple algorithm for gener-
ating explanations for observations.

4 Building Explanations in ELEXIR
While we would like to use NLP parsing algorithms for expla-
nation construction, there are differences between these prob-
lems that prevent this. In the case of PR, we can’t bound a-
priori how many observations there will be. Further, we can’t
assume that all of the observations must contribute to a single
goal. We can’t even assume that we have seen all of the obser-
vations associated with the plan. Many well known parsing
algorithms like CKY, even when modified for CCGs [Steed-
man, 2000], leverage some or all of these assumptions and
are therefore unusable. Therefore we must provide our own
algorithm for parsing action categories into explanations.

For ease of computation we will restrict our action gram-
mars to only leftward applicable categories.
Definition 4.1 We define a set of categories CL as leftward
applicable if and only if

1. CL = CA ∪CC and
2. CA is a set of atomic categories and
3. CC is a set of complex categories of the form

X{/Yi}∗{\Z j}∗ such that X ∈ CA and ∀i,Yi ⊆ CA and
∀ j,Z j ⊆ CA.

Intuitively all of the leftward looking arguments in a category
must precede (be “outside”) all of the rightward looking argu-
ments. Thus (((A/{B})/{C})\{D})\{E} is a leftward applicable
category but(((A/{B})\{C})/{D})/{E} is not. We will return
shortly to discuss the reasons for this limitation.

Definition 4.2 We next define an explanation for a sequence
of observation instances for each time instanceσt1...σtn given
a plan lexicon PL = 〈Σ,CL, f 〉 as a sequence of categories
[c1...ci] that result from parsing the input stream on the basis
of the plan lexicon.

We can now provide a simple algorithm to generate all the
explanations for a set of observations. See Figure 3. The in-
tuition for the algorithm is as follows. For each explanation
and for each category that the current observation could be
assigned, check that all of its leftward looking arguments are
present in the current explanation. If so, we clone the cur-
rent explanation, add the category to the explanation, and use
application to remove all of its leftward looking arguments.
Then for each category in the explanation that could combine
with the new category using rightward composition or appli-
cation, duplicate the explanation and execute the composition
in the new copy. Add the new explanation to the set of expla-
nations and repeat for the next observation.

To remain consistent with the plan lexicon, the algorithm
cannot assign a category to an observation unless all of the
category’s leftward arguments have been observed. To do so

Procedure BuildExplanations(σt1...σtn) {
ES = { [ ] };
FOR i = 1 to n

ES ′ = ∅;
FOR each exp = [c1...c j] ∈ ES

FOR each c ∈ f (σti);
IF all of c leftward arguments are in exp, and can

be removed from exp in order, THEN
LET [c1...ck] be exp with all of c’s leftward

arguments removed by function application
and c′ be the result of c with its leftward
arguments removed.

ES ′ = ES ′ ∪ [c1...ck, c]
FOR each cm ∈ [c1...ck] such that there exists

a combinator that will compose cm
and c′ resulting in c”.

exp′ = remove(cm, [c1...ck, c]
ES ′ = append(exp′, c”).

END-for;
END-if;

END-for;
END-for;
ES = ES ′;

END-for;
return ES ; }

Figure 3: High level algorithm for explanation generation.

would hypothesize explanations that violate the ordering con-
straints specified in the plan lexicon. Restricting our gram-
mars to leftward applicable categories simplifies this test,
captured in the IF clause at the center of the algorithm.

Thus, the algorithm incrementally creates the set of all
explanations by assigning categories, discharging leftward
looking arguments, and then applying each possible right-
ward looking combinator between the existing categories and
the categories introduced by the current observation.

For example, given the original lexicon and the observa-
tions: a, b, c, d the algorithm produces [G] and [G / {D}, D]
as the explanations. Note, the second explanation is included
to account for the case where the D category will be used
in some other, as yet unseen, plan. Under the assumption
that a given category can only contribute to a single plan, if
these categories are consumed at the earliest opportunity they
will be unavailable for later use. Since all leftward arguments
are discharged when assigning an observation a category, and
each possible combinator is applied as later categories are
added, this algorithm is complete and will produce all of pos-
sible explanations for the observations.

5 Computing Probabilities in ELEXIR
The above algorithm computes the exclusive and exhaustive
set of explanations. Given this, if we can compute the con-
ditional probability of each explanation, then the conditional
probability for any particular goal is just the sum of the prob-
ability mass associated with those explanations that contain
it. More formally:
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Definition 5.1

P(goal|obs) =
∑

{expi |goal∈expi}
P(expi|obs)

where P(expi|obs) is the conditional probability of explana-
tion expi. Therefore, we need to define how to compute the
conditional probability for an explanation.

There are a number of different probability models used to
compute the probability of a CCG parse in the NLP litera-
ture [Hockenmaier, 2003; Clark and Curran, 2004]. We will
extend one described in [Hockenmaier, 2003]. For an expla-
nation, exp, of a sequence of observations, σ1...σn, that re-
sults in m categories, c1, ..., cm, in the explanation, we define
the probability of the explanation as:

Definition 5.2

P(exp|{σ1...σn}) =

n∏

i=1

P(ciniti|σi)
m∏

j=1

P(root(c j))K

Where ciniti represents the category initially assigned in this
explanation to observation σi. Thus, the first product rep-
resents the probability of each observation having their as-
signed initial CCG categories. This is standard in NLP and
assumes the availability of a probability distribution over the
observation’s set of categories.

The second term captures the probability that each category
will not be combined into a larger plan but itself represents a
separate plan. This is not part of traditional NLP models. In
NLP it makes no sense to consider the probability of multiple
interleaved sentences or fragments. However, this assumption
does not hold for PR. It is more than possible for a given se-
quence of observations to contain multiple interleaved plans
or to only cover fragments of multiple plans being executed
(consider multi-day plans). Therefore, our system must be
given a prior probability for each category that occurs as a
root-result in the lexicon. The role of these priors in Defini-
tion 5.2 requires some discussion.

We will denote the multiset of all values of root(c j) for a
given explanation, as expGoals, and the probability of this par-
ticular multiset of root-result categories being adopted as top-
level goals as P(expGoals). Keep in mind, in ELEXIR we want
to allow for multiple instances of a given result in expGoals (it
is acceptable for root(ci) = root(c j) where i , j).

We denote the set of categories in expGoals as Goals. Fi-
nally, we represent the assumed probability of an agent adopt-
ing a particular root-result c as a goal as P(c) with each in-
stance of c in expgoals being chosen (or rejected) indepen-
dently. This means the probability that there will be exactly n
instances of category c in expGoals is given by P(c)n(1−P(c)).

This is almost certainly incorrect – intuitively the probabil-
ity of multiple instances of a single goal decreases far more
rapidly than this, making this an over estimate of the likeli-
hood of the goals. The algorithm supports more sophisticated
probability models, and this is an area for future work.

If we let |Goalsc| represent the number of instances of cat-
egory c in expGoals:

P(expGoals) =
∏

c∈Goals

P(c)|Goalsc |(1 − P(c))
∏

c<Goals

(1 − P(c)).

Collecting all of the 1 − P(c) terms produces a product over
all the categories in the lexicon and is therefore a constant:

P(expGoals) =
∏

c∈Goals

P(c)|Goalsc |K

Rewriting in terms of the instances in the explanation yields
the second term seen in Definition 5.2.

P(expGoals) =

m∏

j=1

P(root(c j)K

6 Complexity Analysis of ELEXIR
Having completed the description of the algorithm and prob-
ability model, we briefly consider its theoretical complexity.
In order not to be distracted by the number of possible expla-
nations computed, we consider how efficient the algorithm is
in computing a single explanation for n observations.

We begin by noting that testing for the equivalence of two
categories (and hence for combinator applicability) for any
particular CCG is a constant time operation. Since each cate-
gory can be though of as a tree, testing equality is equivalent
to doing an in-order traversal. However, since the CCG gram-
mar is fixed, we know the size of the largest category, and can
then treat this cost as a constant,C.

The algorithm has two stages, explanation building and
computing probabilities. We discuss each separately.

Explanation Building 1) Discharging leftward argu-
ments: Let K be the fixed size of the grammar’s largest
leftward looking argument set. Verifying that all K
arguments have been seen costs CK operations for each
of the possibly n − 1 previous categories. This results in
a worst case O(n) cost.
2) Applying combinators: Let J be the fixed number of
combinators. The algorithm must test each new category
against each of the (in the worst case) n − 1 preceding
categories. This results in nCJ tests for each observation
for an O(n) cost.

Computing Probability Computing the first term of the
probability can be done in constant time when the cat-
egory is chosen. The second term requires a single mul-
tiplication for each of the categories in the explanation.
The cost of this is bounded above by O(n).

Thus the worst case complexity for building a single explana-
tion is O(n). We also note this is as efficient as any algorithm
can be since each of the observations has to be considered.
Therefore the effective runtime of ELEXIR hinges most criti-
cally on the number of explanations being built. We argue that
a least commitment approach can control the number of ex-
planations being built by correctly choosing plan heads. We
will examine this claim in the next section.

7 Empirical Analysis of ELEXIR
To verify the correctness of our system and to test our hypoth-
esis about the efficacy of headedness we have developed a
testing harness that allows us to systematically vary a number
of parameters that define the plans in the CCG plan lexicon.
These parameters include:
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• order: How many and what type of ordering constraints
exist between the actions in the plans. This parameter
can take on the following values:

– Total: actions in a sub-plan are totally ordered.
– First: each sub-plan has a designated first action.

All other actions in the plan are ordered after it but
are unordered with respect to each other.

– Last: each sub-plan has a designated last action.
All other actions in the sub-plan are ordered before
it, but are unordered with respect to each other.

– Unord: actions in a sub-plan are unordered.
• depth: The depth of each plan.
• num-roots: The number of plans in the lexicon.
• and-bf: The number of children for each sub-plan.
• headedness: Determines which sub-plan step will be the

head. This ranges between 0.0 (leftmost/”first”) and 1.0
(rightmost/”last”).

To create these plans, num-roots complete hierarchical
plans based on AND-trees obeying depth and and-bf were
generated and ordering constraints were established over each
sub-tree. These plans were then converted to a CCG lexicon
by starting at the root of the plan and recursively descend-
ing the tree following the actions with the indices given by
d (headedness * and-bf) e collecting siblings that are to the
left and the right of the action. When a leaf is reached a CCG
category is built maintaining the ordering constraints of the
original plan. This process is repeated for all sub-plans not
covered by the initial category.

Given a CCG plan library we generated observations to test
the system by randomly selecting a root-result category and
producing a plan instance for it based on the plan library. (For
test cases with multiple plans this process was repeated and
the resulting plan instances were interleaved, maintaining the
ordering constraints in the individual plans.) ELEXIR is then
timed computing the conditional probability of all the root-
results found by the algorithm given CCG plan library and
the sequence of observations.

All of our experiments on our Allegro Common LISP 8.1
implementation of ELEXIR were conducted on a MacBook
with 4Gb of main memory and 2 2.2-GHz CPUs. We report
CPU time exclusive of any time used by garbage collection,
the operating system or by other processes. For cases where
the runtime registered as zero we report a runtime of 1 msec.

As a first exploratory test of the system we set roots to
twenty, and-bf to three, and depth to two. We then ran a
full factorial experiment on all values of the order factor and
headedness at values of 0.001, 0.5, and 1.0. Each data-point
had two interleaved plans resulting in a total of eighteen ob-
servations. ELEXIR achieved one hundred percent accuracy
on this input data recognizing both plans in the input stream
with the majority of the runs completing in under a second.
These results verify the correctness of our implementation
and its accuracy in the case of no noise or ambiguity.

7.1 Reducing Runtimes by Choosing Plan Heads
The central claim of this paper is that using CCGs and the cor-
rect choice of plan heads can delay commitment to plan and

goal hypothesis and thereby reduce runtimes for PR systems.
To validate these claims, we need to compare the system’s
runtimes varying the headedness of the plans. Synthetic data
provide the perfect means for us to vary headedness of plans
while controlling for other variables.

Notice that previous work in PR that make early commit-
ments to plans and goals are effectively always operating with
plans libraries that have a headedness value fixed at zero. If
we fix headedness at zero, then each category is effectively
a left most depth first tree with no leftward arguments. Thus
when the first action of a plan is seen the whole left spine of
the tree is introduced with the category, and all subsequent
observations are also left most depth first trees. Thus, headi-
ness values very close to zero make the same early commit-
ment that we argued against in other PR systems.

This means we can use very low headedness values as the
baseline for our experiments. If we see a drop in runtime
as headedness is increased, this confirms our hypothesis that
moving the head later in the plan delays commitments to the
goal hypothesis and reduces the algorithm’s runtime.

Figure 4: Average Runtimes for Order First, Last, and Total
Plans. Each point represents the average of 500 test runs.

Figure 4 displays the results for a full factorial experiment
where each test case was taken from a plan lexicon with num-
roots set to one hundred, and each plan had an andbf of four.
The tested factors were order and headedness, and they var-
ied between total, first,last and 0.001, 0.25, 0.5, 0.75, 1.0 re-
spectively. All other factors were held constant at their pre-
vious values. By setting headedness to these values each of
the children of each AND-node is, in turn, treated as the head
of the plan. The steady drop in runtime across all values of
order as the head of the plan is moved to the right provides
very convincing evidence for our claims.

We see a significant decrease in runtime for all ordering
cases as the head is moved later in the plan and commitment
to plan structure is delayed. We note all of the gains for the
order first case are almost immediate while the gains for the
last case do not occur until much later. Considering the or-
dering constraints in the respective plans will explain this.

In the order last case, we do not see improvement in the
runtime until the head of the plan is assigned to the last ac-
tion. In this case, since all the leading actions are unordered
with respect to each other, any commitment to the structure of
the plan before the last action is equivalent in runtime, but de-
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laying commitment to the plan structure until the final action
results in significant savings.

In the case of the order first, a value of 0.001 for headed-
ness aligns the head of the plan with the causally first action
of the plan. As we move the head later in the plan we get
an initial drop in runtime as one of the unordered actions is
selected, but no significant later savings since the ambiguity
associated with the unorded actions is being moved from one
side to the other of the head action.

We did not identify headedness as having a significant ef-
fect in completely unordered plans. The lack of structure in
these plans means that whenever an action in one of these
plans is observed ELEXIR is required to consider an excep-
tionally large number of hypotheses, but moving the head
does not restrict the number of hypotheses. This should not
be seen as a significant limitation. We believe completely un-
ordered plans are unlikely in the real world.

7.2 Discussion and Limitations
These experiments show that a PR algorithm based on CCGs
and headedness is viable and provides a principled way to
control early commitment. However, we have not provided an
answer for how to choose plan heads during lexicon design.
These decisions have to be made by considering three key
factors:

1. Criticality of early recognition: In cases where early
recognition is critical, choosing a head that is early in the
plan is better. Earlier heads allow earlier recognition and
must be weighed against the runtime. We can certainly
imagine domains where the need for early recognition
outweighs the runtime costs.

2. Runtime: In general, as we have shown, to minimize
runtime, choosing actions that fall later in the plan as
heads is better.

3. Causal structure: We can see in these experiments align-
ing choices of plan heads with the causal structure pro-
duces the greatest computational wins.

Thus, all three of these features must be considered by the
system builder when encoding a PR domain.

It is worth noting that the algorithm given here does have
a significant limitation. It is unable to compute the probabil-
ity for any plan for which the head has not been observed.
Consider the first example CCG lexicon given for the initial
example. Suppose the system is only given two observations
[a, b]. Intuitively this should give us a significant amount of
evidence for the goal G. However, the category with root-
result G is assigned to c, and c has not yet been observed.
Therefore, the system is unable to consider G as an explana-
tion for the observations.

We are working on developing a revised algorithm to ad-
dress this limitation and consider this a significant area for
future work. That said, there are domains where the speed
of this algorithm and its ability to allow multiple different
choices for plan heads make it worth considering.

8 Conclusions
In this paper, we have defined ELEXIR, a probabilistic plan
recognition algorithm using CCGs to encode plans. We have

analyzed the complexity of the algorithm, and described its
empirical evaluation. We have also shown that CCGs provide
a formal way to control the early commitment problem faced
by other plan recognition systems.
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Abstract

Viewing plan recognition (PR) as a parsing problem, this pa-
per distinguishes three sources of ambiguity: action ambi-
guity, syntactic ambiguity and attachment ambiguity. Previ-
ous work PR in has often conflated these different sources of
ambiguity. This paper clarifies this distinction and explicitly
studies the effect of syntactic ambiguity on the runtime of a
particular PR algorithm. It also argues for new method for
controlling plan level ambiguity in probabilistic PR based on
the idea of plan “heads” using lexicalized grammars.

Introduction
Plan recognition(PR) is the problem of inferring which
plans, from a given plan library, an agent is executing based
on observations of their actions. PR is a well studied prob-
lem in Artificial Intelligence, and has seen a significant in-
crease in interest due to the availability of large quantities
of real world sensor data. Following (Carberry 1990) and
(Pynadath & Wellman 2000), we are interested in viewing
the problem as one of parsing a sequence of observations to
produce plans.

Starting from real world data and viewing PR as a pars-
ing task, we can see the problem as made up of three major
tasks: 1) recognizing actions, 2) assigning syntactic cate-
gories to each of the actions, and 3) combining the actions
based on their categories into plans. Each of these tasks
must address ambiguity that we will refer to as: action am-
biguity, syntactic ambiguity, and attachment ambiguity re-
spectively. This paper will focus on syntactic ambiguity,
however, to clearly disambiguate this work, we will briefly
discuss related research on the other two forms.

Action ambiguity is typically a result of sensor noise. The
observation of a single real world action is usually made
up of multiple, temporally extended, noisy sensor reports.
These reports must be converted into a usable sequence of
observations of actions. For example, labeling video frames
showing an agent reaching for a coffee mug as part of a
grasp-mug action. This problem is typically called activ-
ity or behavior recognition.

Starting from real world noisy data (video, sonar, passive
RF, GPS data and others), successful activity recognition
research has used Hidden Markov Models (HMMs) (Bui,
Venkatesh, & West 2002), Conditional Random Fields
(CRFs) (Liao, Fox, & Kautz 2007; Vail & Veloso 2008), and

other forms of Bayesian reasoning (Avrahami-Zilberbrand
& Kaminka 2005; Hoogs & Perera 2008; Liao, Fox, & Kautz
2005). In many cases, researchers have shown impressive
results with significant variation in the sensor noise. How-
ever, even a perfect activity recognizer can not eliminate all
ambiguity from the problem.

Consider unambiguously recognizing a grasp-mug ac-
tion. The agent’s goal is still unclear. Is the agent going
to drink out of the mug? place it on the table? clean it? It
is only by considering the larger plans created by sequences
of observed actions that we can recognize the goals of the
agent.

Previous work in PR has not distinguished between syn-
tactic and attachment ambiguity, however in their work on
natural language parsing (Sarkar, Xia, & Joshi 2000)(AXJ)
clearly lays out the differences between choosing a syntactic
category for a given observation (syntactic ambiguity) and
finding the correct attachments between the categories (at-
tachment ambiguity) that will result in a sentence (in our
case a plan).

AXJ show that, in the case of natural language parsing,
the computational cost of attachment ambiguity is far less
than that of syntactic ambiguity. Their results do not directly
transfer to the PR domain due to differences between action
grammars and natural language grammars. However, this
result suggests exploring the cost of syntactic ambiguity in
PR. We leave the study of attachment ambiguity in PR as an
area for future work.

We know of no systematic analysis of the effect of vary-
ing syntactic ambiguity on PR or specific ways to control
it. In this paper, we will first review the PR algorithm
(ELEXIR)(Geib 2009) based on parsing plans represented
as Combinatory Categorial Grammars (CCGs) (Steedman
2000). We will then discuss how to compute plan level am-
biguity. We will then discuss how to use plan heads in the
CCG representation to control the effects of of plan level
ambiguity on ELEXIR’s runtime.

ELEXIR Overview
The ELEXIR system(Geib 2009) performs probabilistic PR
using a weighted model counting algorithm given a set of
observations and a CCG specification of the plans to be
recognized in a plan lexicon. To perform plan hypothesis
construction, ELEXIR parses the observations, based on the
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plan lexicon, into the complete and covering set of expla-
nations each of which contains one or more plan structures.
ELEXIR then establishes a probability distribution over the
explanations to reason about the most likely goals and plans
of the agent. The first step is to encode the plans in CCGs.
We refer the interested read to (Geib 2009) for complete
details of the formalization and algorithm behind ELEXIR.
However, an understanding of how plans are represented in
CCGs will be important for our discussion.

Representing Plans in CCG
Consider the simple abstract hierarchical plan drawn as a
partially ordered AND-TREE shown in Figure 1. In this

  G

  A   B   C   D

a b c d

Figure 1: An abstract plan with partial order causal structure

plan, to execute action G the agent must perform actions A,
B, C, and D. A and B must be executed before C but are
unordered with respect to each other, and finally D must be
performed after C. To represent this plan in a CCG, each
observable action is associated with a set of syntactic cate-
gories. A set of possible categories, C, is defined recursively
by:
Atomic categories : A finite set of basic action categories.
C = {A, B, ...}.

Complex categories : ∀Z ∈ C, Z ∈ C and non empty set
{W, X, ...} ⊂ C then Z\{W, X, ...} ∈ C and Z/{W, X, ...} ∈ C.

Complex categories represent functions that take a set of ar-
guments ({W, X, ...}) and produce a result (Z). The direction
of the slash indicates where the function looks for its argu-
ments. Therefore, an action with category A\{B} is a func-
tion that results in performing action A when an action with
category B has already been performed. Likewise, A/{B}
is a function that results in performing A if an action with
category B is executed later.
Definition 1.1 We define a plan lexicon as a tuple PL =
〈Σ,C, f 〉 where, Σ is a finite set of observable action types, C
is a set of possible CCG categories, and f is a function such
that ∀σ ∈ Σ, f (σ)→ Cσ ⊆ C.

where Cσ is the set of categories an observation of type σ
can be assigned. We may provide just the function that maps
observable action types to categories to define a plan lexi-
con. For example:

a := A, b := B, c := (G/{D})\{A, B}, d := D. (1)

defines one plan lexicon for our example plan.
Definition 1.2 We define a category R as being the root or
root-result of a category G if it is the leftmost atomic result
category in G. For a category C we denote this root(C)

Thus, G is the root-result of (G/{D})\{A, B}. Further,

Definition 1.3 we say that observable action type a is a pos-
sible head of a plan for C just in the case that the lexicon
assigns to a at least one category whose root-result is C.

In our lexicon c is a possible head for G.
In general, a lexicon will allow multiple categories to be

associated with an observed action type. This is the source
of syntactic ambiguity s the parser must choose between
them.

In CCGs combinators (Curry 1977) are used to combine
the categories of the individual observations. We will only
use three combinators defined on pairs of categories:

rightward application: X/α ∪ {Y}, Y ⇒ X/α
leftward application: Y, X\α ∪ {Y} ⇒ X\α
rightward composition: X/α ∪ {Y}, Y/β ⇒ X/α ∪ β

where X and Y are categories, and α and β are possibly
empty sets of categories.

To see how a lexicon and combinators parse observations
into high level plans, consider the derivation in Figure 2 that
parses the sequence of observations: a, b, c. Notice, all the

a b c
A B (G/{D})\{A,B}

<
(G/{D})\{A}

<
G/{D}

Figure 2: Parsing Observations with CCGs

hierarchical structure from the original plan for achieving G
is included in c’s category. Thus, once c is observed and as-
signed its category, we can use leftward application twice to
combine both the A and B categories with c’s initial category
to produce G/{D}.

Empirical Studies of Ambiguity in ELEXIR
Using synthetic grammars and observation streams we can
test the impact on ELEXIR’s runtime of varying the syn-
tactic ambiguity of the grammar. Constructing plan lexi-
cons and keeping the underlying plan structure fixed while
varying the number of observable actions in the grammar
provides a simple way to control the number of categories
associated with each observable action and the associated
syntactic ambiguity.

To see if syntactic ambiguity has a measurable effect even
on simple problems, we use totally plans with a tree height
of two and a branching factor of five. Thus, each plan has
twenty-five steps. For our lexicon we generated sixty-one
such unambiguous plans. For each of these plans, the left-
most depth first action of each sub-tree was chosen as the
head for the sub-tree. Thus the CCG categories can be
thought of as encoded the plan as a series of leftmost depth
first sub-trees.

With these CCG categories in hand, we generate multiple
lexicons with differing levels of ambiguity by controlling the
number of observable actions in the grammar. We measure
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the ambiguity, A, as a real value between zero and one where
the number of observable actions, |C|, is given by:

|C| = (1 − A) ∗ |l|, (2)

where |l| is the number of leaf actions in the plans repre-
sented by the lexicon. Given a set of plans encoded in CCGs
we can then systematically vary the ambiguity of the result-
ing lexicon. We, use formula 2 to compute the number of
observable actions for the lexicon, given the desired ambigu-
ity, and then randomly assign each category to an observable
action while guaranteeing that each observable action gets at
least one category. Using this method we generated lexicons
for the same set of underlying plans with ambiguities of 0.0,
0.1, 0.2, 0.3, 0.4, and 0.5.

Given these CCG plan lexicons we generated observa-
tions to test the system by randomly selecting a root-result
categories and producing a plan instance for it based on the
plan lexicon. ELEXIR is then timed computing the condi-
tional probability of all the root results found by the algo-
rithm given CCG plan lexicon and the sequence of observa-
tions. All of our experiments measuring the runtime for our
C++ implementation of ELEXIR were conducted on a Mac-
Book with 4Gb of main memory and 2 2.2-GHz CPUs. Fig-
ure 3 shows the average, minimum, and maximum runtimes,
testing fifty plan instances each for ambiguity values of 0,
0.1, 0.2, 0.3, and 0.4 with a runtime bound of one minute.

All three statistics show significant increases for even very
limited amounts of ambiguity. The reason the maximum and
average statistics decrease after 0.2 is that the vast majority
of the experiments did not return in under a minute. The
number of experiments that did return in under a minute is
given along the X-axis in the figure. Once the ambiguity
exceeds 0.2 more than half of the test cases jumped from
runtimes of under ten seconds to over a minute. As the am-
biguity increases the number of successful sub-minute tests
drops until none of the tests returned in under a minute when
the ambiguity reached 0.5 (and average of two categories per
observation).

Figure 3: Ambiguity increases min, max and average run-
time. Notice the significant ceiling effect above A=0.2

Choosing Heads in Plan Lexicons
The critical choice made by during lexicon construction is
which action types will be the plan heads. Different choices

for heads result in different lexicons. For example, the fol-
lowing is an alternative lexicon for our G plan.

a := A, b := B, c := C, d := (G\{A, B})\{C}. (3)

We can also represent the plan for G with the following lex-
icon which has two possible categories for action a:

a := { ((G/{D})/{C})/{B}, (4)
((G/{D})/{C})\{B} },

b := B, c := C, d := D.

There are also a number of still more complex lexicons
where other choices are made for the plans heads. (Geib
2009) has pointed out that correctly choosing plan heads
can have significant impact on the runtime of ELEXIR. We
hypothesize that correctly choosing plan heads can help in
addressing syntactic ambiguity.

It will be helpful to have a value, h, to quantify where
the head occurs within a plan. We will establish a canonical
order of actions for the plan, that obey the plan’s ordering
constraints, 1 and define the headedness for a particular plan
as the rank of the plan’s head action in the ordering divided
by the length of the plan. Thus, grammar (3) would have
a headedness value of one for the plan for G, grammar (4)
would have a headedness value of 0.25 for the plan for G,
and our original grammar (1) would have a headedness value
of 0.75 for the plan for G.

Reducing Runtimes by Choosing Plan Heads
Our previous experiment held the headedness of plans con-
stant at 0.0. In order to explore the impact that varying head-
edness might have on controlling ambiguity, we ran exper-
iments systematically varying the headedness of the plans
with five values: 0.0 (the same as our previous experiment),
0.25, 0.5, 0.75, and 1.0. Our hypothesis in this experiment is
that larger headedness values will delay commitment to high
level goals and thereby reduce the runtime of the algorithm.

To create these different lexicons, we used the same set of
sixty-one totally ordered plan trees. These plans were then
converted to a CCG lexicon by starting at the root of the
plan and recursively descending the tree following the ac-
tions with the indices given by d ( h * plan-branching-factor)
e collecting siblings that are to the left and the right of the
action. When a leaf is reached a CCG category is built main-
taining the ordering constraints of the original plan. This
process is repeated for all sub plans not covered by the ini-
tial category. This results in five grammars where the head
of each plan moves from left to right over each of the actions
of the plan as the value of h is increased.

Varying both headedness and ambiguity restyled in thirty
distinct grammars. For each grammar, we ran fifty tests rec-
ognizing a single plan. The minimum runtimes for each of
the test conditions is graphed in Figure 4. As we have al-
ready seen, placing a one minute bound on the runtime is

1For the purposes of our experiments, it will not be significant
that actions that are actually unordered with respect to either other
can have differing values for headedness. The fact that we can
systematically move through the plan’s actions is more important.
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Figure 4: Increasing headedness (moving the head to the
right) helps control the cost of ambiguity.

h A=0.0 A=0.1 A=0.2 A=0.3 A= 0.4 A=0.5
0.01 50 42 25 5 1 0
0.25 50 45 41 39 18 10
0.5 50 45 43 40 36 17
0.75 50 49 37 40 25 25
1.0 50 49 40 39 29 26

Figure 5: Number of test cases with runtimes under one
minute.

sufficient to prevent some of the test cases from being com-
pleted. Therefore, rather than an average we have graphed
the minimum runtimes and remind the reader that these fig-
ures represent a lower bound on runtimes for these problems.
However keep in mind that in the first experiment that none
of the test cases with an ambiguity of 0.5 returned in under
a minute.

Figure 4 provides convincing evidence for our hypothe-
sis. We note that each of the lines for the higher headedness
values starts with a faster minimum runtime (sometimes two
orders of magnitude) and remain below the 0.0 line and even
enables many of the test cases for ambiguity 0.5 to return in
under one second.

Further evidence of the ability of headedness to aid in con-
trolling ambiguity in plans is seen in Figure 5. This table
presents the number of test cases that returned within the one
minute bound. It shows that moving the head to the right in
a plan increases the number of test cases with a runtime un-
der one minute, relative to plans with the same ambiguity.
Thus, even though ambiguity is being increased as we move
to the right, increasing headedness in the plans is allowing
ELEXIR to run fast enough to return an increasing number
of results within the one minute bound.

For example, a headedness value of 0.75 enables half of
the tests to return in under a minute where the ambiguity of
the plan lexicon had prevented any of the test cases returning
when the lexicon had a headedness value of 0.0. Thus we
can conclude that not only is the minimum runtime for the
algorithm being kept low by moving the head of the plan
away from the first actions of the plan, but the number of
cases that can be brought within a reasonable runtime is also
increasing.

Conclusions
This paper has discussed different sources of ambiguity in
the plan recognition. We have provided a systematic study of
syntactic ambiguity for a particular PR algorithm. We have
shown that even relatively low levels of syntactic ambiguity
can be crippling to the runtime of PR algorithms. Finally,
we have shown that introducing the idea of heads in plans
and moving the heads of plans away from the initial actions
of a plan can be a powerful tool to help control the runtime
of PR even in the face of significant syntactic ambiguity.
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